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Abstract: To excavate adequately the rich information contained in multisource remote sensing data,
feature extraction as basic yet important research has two typical applications: one of which is to
extract complementary information of multisource data to improve classification; and the other
is to extract shared information across sources for domain adaptation. However, typical feature
extraction methods require the input represented as vectors or homogeneous tensors and fail to
process multisource data represented as heterogeneous tensors. Therefore, the coupled heterogeneous
Tucker decomposition (C-HTD) containing two sub-methods, namely coupled factor matrix-based
HTD (CFM-HTD) and coupled core tensor-based HTD (CCT-HTD), is proposed to establish a unified
feature extraction framework for multisource fusion and domain adaptation. To handle multisource
heterogeneous tensors, multiple Tucker models were constructed to extract features of different
sources separately. To cope with the supervised and semi-supervised cases, the class-indicator factor
matrix was built to enhance the separability of features using known labels and learned labels. To
mine the complementarity of paired multisource samples, coupling constraint was imposed on
multiple factor matrices to form CFM-HTD to extract multisource information jointly. To extract
domain-adapted features, coupling constraint was imposed on multiple core tensors to form CCT-
HTD to encourage data from different sources to have the same class centroid. In addition, to reduce
the impact of interference samples on domain adaptation, an adaptive sample-weighting matrix was
designed to autonomously remove outliers. Using multiresolution multiangle optical and MSTAR
datasets, experimental results show that the C-HTD outperforms typical multisource fusion and
domain adaptation methods.

Keywords: Tucker decomposition; coupled heterogeneous Tucker decomposition; multisource
heterogeneous data fusion; heterogeneous domain adaptation

1. Introduction

The rapid development of satellite sensor technology has provided multisource hetero-
geneous remote sensing data describing objects with higher resolution, different imaging
angles, and different physical properties. Compared with single-source data, the heteroge-
neous data structure and complex distribution of multisource data make object recognition
tasks challenging, which simulates the emergence of various multisource data-based object
recognition methods in recent years [1–5].

To ensure effective object recognition results, an effective feature representation is
essential to acquire discriminative information from multisource heterogeneous remote
sensing data. For the multisource data-based object recognition task, there are two types of
requirements for the extracted features, where the former, known as multisource fusion-
oriented feature extraction, attempts to excavate the “complementarity” of paired multi-
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source data, and the latter, known as domain adaptation-oriented feature extraction, aims
at reducing the “difference” between data obtained from different sources.

1.1. Existing Multisource Fusion-Oriented and Domain Adaptation-Oriented Feature
Extraction Methods

As for the multisource fusion-oriented feature extraction methods, the conventional
manner is to concatenate paired multisource data into a vector and apply the dimension
reduction methods, e.g., principal component analysis (PCA) [6] and linear discriminant
analysis (LDA) [7], to obtain the fused features to improve object recognition results. In
addition, to better deal with multisource data, the multisource discriminant subspace
learning method [8] was constructed to extract an effective representation of multisource
features combining least square regression loss and L21 norm regularization term. The mul-
tiview K-means (KM) cluster method [9] exploited adaptive weights to fuse the multisource
features and meanwhile output the cluster results.

For the domain adaptation-oriented feature extraction methods, they always try to
transfer data from different sources into a common space to reduce the feature distribution
discrepancy between different sources so that the classifier trained by samples from a
particular source can be used to recognize objects described by other sources. For example,
the transfer component analysis (TCA) [10] method tried to learn shared features across
domains in a reproducing kernel Hilbert space (RKHS) using maximum mean discrepancy
(MMD) [11]. The joint distribution adaptation (JDA) [12] extended MMD to measure both
marginal and conditional distribution and integrated it with PCA to generate features across
domains. Compared with the MMD that was calculated by all the samples from different
domains, the active transfer learning (ATL) method [13] tried to select the representative
samples used for domain adaptation. The homologous component analysis (HCA) [14]
found two totally different but homologous transformations to align the distributions with
side information and preserve the conditional distributions.

The above multisource fusion-oriented and domain adaptation-oriented feature extrac-
tion methods can only deal with input represented as a vector, while multisource remote
sensing data can be naturally represented as a tensor. Among various tensor-oriented fea-
ture extraction methods, Tucker decomposition (TD) [15] and CANDECOMP/PARAFAC
(CP) decomposition [16] are the most prominent methods, where the former decomposes
input of the tensor into the core tensor multiplied by a series of factor matrices along with
each mode and the latter decomposes input of the tensor into a sum of rank-1 tensors.
Therefore, the CP decomposition can be considered a special case of Tucker decompo-
sition. When performing multisource fusion, data from different sources are cascaded
into a large-size tensor, and then a Tucker decomposition method is applied to obtain a
compressed representation of these data. Based on Tucker decomposition, multilinear
PCA [17] was extended from PCA to extract effective features from the input represented
as a high-order tensor directly. In addition, GTDA [18], TLPP [19], and TDLA [20] methods
were constructed sequentially to cope with the input represented as a tensor. To obtain the
useful feature representations as well as the cluster results, the heterogeneous tensor de-
composition (HTD) method was established for feature extraction and cluster task of tensor
samples [21]. When facing domain adaptation cases, the conventional Tucker decomposi-
tion cannot work well. Nevertheless, there are also some tensor-based feature extraction
methods developed to reduce the distribution discrepancy across domains. For example, by
extending the correlation alignment method (CORAL) [22] to 3D boosted CORAL [23], the
gradient feature-oriented 3D domain adaptation method was built to achieve hyperspectral
image classification across domains. In addition, the tensorized principle component align
method was extended from the space align method for extracting features across different
sources of remote sensing data [24].
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1.2. Motivation and Contributions

Since remote sensing data acquired from different types of sensors may present differ-
ent spatial resolutions or spectral resolutions, they can be naturally represented as tensors
with different dimensions, denoted as heterogeneous tensors in this study. The classical
multisource fusion-oriented (e.g., TD and HTD) or domain adaptation-oriented feature
extraction methods can only accept homogeneous tensors (i.e., tensors with the same
dimension) as input and cannot process heterogeneous tensors directly. Although some
methods (e.g., [23,24]) can convert data represented as heterogeneous tensors to a vector or
homogeneous tensor using permuting tensor or interpolation techniques first to comply
with their input requirements and then perform feature extraction. This manner leads to
the loss of structure information of remote sensing data and thus affects the subsequent
object recognition results [25,26]. For input represented as heterogeneous tensors, it is
necessary to analyze this data associatively rather than treating them by stages. In addition,
the above multisource fusion-oriented or domain adaptation-oriented feature extraction
methods are designed separately, lacking a unified framework to handle feature extraction
tasks in different situations jointly.

Motived from the abovementioned, the conventional features tensor extraction method,
i.e., Tucker decomposition, is extended to coupled heterogeneous Tucker decomposition
(C-HTD) to serve as a unified feature extraction framework to deal with multisource fusion
and domain adaptation tasks for multisource heterogeneous data. In detail, the proposed
C-HTD consists of two sub-methods, i.e., coupled factor matrix-based heterogeneous
Tucker decomposition (CFM-HTD) and coupled core tensor-based heterogeneous Tucker
decomposition (CCT-HTD), acting on multisource fusion-oriented and domain adaptation-
oriented features extraction, respectively. For CFM-HTD, to excavate the complementary
information embedding in multisource heterogeneous data, N paired multisource samples
are described as heterogeneous tensors, and then multiple Tucker models are constructed,
where each Tucker model is used to decompose data from a specific source into a core tensor
that indicates classes centroids, a series of orthogonal factor matrices, and class-indicator
factor matrix. Since paired multisource samples should share the same class label, a cou-
pling constraint is imposed on different Tucker models to have a consistent class-indicator
factor matrix. Furthermore, to improve the discriminant of the extracted features, a regular-
ization term is constructed to enlarge the difference between core tensors, i.e., increase the
difference between class centroids. Then, an alternative optimization strategy is developed
to obtain the effective multisource features tensors and the corresponding class label. For
CCT-HTD, to extract the valuable and discriminative information contained in multisource
heterogeneous data, multiple Tucker models are built to decompose data from different
sources into core tensors that indicate class centroids, a series of orthogonal factor matrices,
and class-indicator factor matrix. To embed class information into Tucker models, the
sum to one constraint and nonnegative constraint is imposed on the factor matrix along
with the sample mode so that the value of the corresponding factor matrix can indicate
class label. To reduce the distribution discrepancy across sources, the coupling constraint
is imposed on different Tucker models to share a consistent core tensor, i.e., encourage
samples from different sources to have the closed class centroids. By embedding a self-
updating class-indicator factor matrix, the CCT-HTD can learn forwardly the class label of
unlabeled samples to make the domain adaptation model work for both supervised and
semi-supervised situations. In addition, a regularization term is constructed to ensure the
between-class distance can be maximized. Furthermore, by adding an adaptive weighting
matrix along with the sample mode, the outliers far from class centroids can be removed
to reduce the occurrence of negative transfer [27]. Finally, an alternative optimization
scheme is built to obtain effective features across sources. Notably, the proposed C-HTD
as a unified framework can effectively solve the problem of multisource heterogeneous
feature extraction for domain adaptation and multisource fusion. The contributions of our
study can be summarized into the following three aspects:
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(1) From the perspective of theory, compared with the classical TD and HTD, which
can only extract a compressed representation of a single tensor, the proposed C-
HTD can be considered a natural extension of the classical TD and HTD that can
extract compressed representations of multiple tensors with different dimensions
(i.e., heterogeneous tensors) in an associative manner. More importantly, by establish-
ing different coupling constraints, C-HTD can extract complementary information and
shared information from the multisource heterogeneous tensors, which dramatically
expands the practicability of the TD and HTD techniques;

(2) From the perspective of the application, compared with the existing multisource
fusion-oriented and domain adaptation-oriented feature extraction methods that can
only deal with vector or homogeneous tensors, the C-HTD is a unified framework that
can deal with multisource fusion-oriented and domain adaptation-oriented feature
extraction using multisource heterogeneous tensors directly. In addition, the proposed
C-HTD can be applied to both supervised and semi-supervised cases by establishing
a class-indicator factor matrix along with sample mode. Moreover, unlike the existing
domain adaptation methods that are susceptible to outliers, the CCT-HTD can reduce
the impact of outliers on domain adaptation results effectively using an adaptive
sample-weighing matrix along with sample mode;

(3) To ensure the effective implementation of the proposed C-HTD, the alternative opti-
mization scheme is proposed to solve the optimization problems of CFM-HTD and
CCT-HTD to obtain the optimal multisource features and the predicted class labels by
sequentially updating the core tensors and a series of factor matrices. Additionally,
the detailed theoretical analysis provides the convergence and complexity of C-HTD.

The remainder of this study is organized as follows. In Section 2, the used notations,
basic tensor algebra, and the conventional TD are introduced briefly. Then, the proposed
CFM-HTD and CCT-HTD models are described in detail. In Section 3, the experiments are
conducted to compare the proposed CFM-HTD with typical multisource fusion-oriented
feature extraction methods and compare the proposed CCT-HTD with typical domain
adaptation-oriented feature extraction methods using multiresolution and multiangle
optical images dataset, multiangle SAR dataset, and paired optical image and SAR image
dataset. Section 4 discusses the experimental results, convergence, and the complexity of
the proposed methods. Our conclusion is provided in Section 5.

2. Method
2.1. Preliminaries

Before presenting our work, the notations and fundamental tensor operations, the
traditional TD are sequentially introduced in brief.

2.1.1. Notations and Fundamental Tensor Operations

Following the convention in [28], the scalar, vector, matrix, and high-order tensor are
denoted as lowercase letters (e.g., x, y), lowercase boldface letters (e.g., x, y), uppercase
boldface letters (e.g., M), and calligraphic letters (e.g., χ), respectively. For convenience, the
ith entry of vector a, the (i, j)th entry of matrix M, and the (i, j, k)th entry of three-order
tensor χ ∈ RI1,I2,I3 are denoted as a(i), M(i, j), and χ(i, j, k), respectively. In addition, some
fundamental tensor operations used in our work are provided as follows:

Definition 1 (Frobenius norm of a tensor χ). The Frobenius norm of a tensor χ ∈ RI1,I2 ...IN is
denoted by

∥∥χ
∥∥

F, as calculated by:

∥∥χ
∥∥

F =

√
∑

i1,i2,...,iN

χ(i1, i2, . . . , iN)× χ(i1, i2, . . . , iN). (1)
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Definition 2 (Mode-k product). The mode-k product of tensor χ ∈ RI1,I2 ...IN and matrix

M ∈ RI′k ,Ik is denoted by y = χ×k M, whose results are a tensor y ∈ RI1,I2 ...I′k ...IN , and the value of
the entry is defined by:

y(i1, i2, . . . , ik−1, j, ik+1, . . . , iN) =
Ik
∑

i=1
χ(i1, i2, . . . , ik−1, i, ik+1, . . . , iN)×M(j, i).

(2)

Definition 3 (Mode-k unfolding). The mode-k unfolding of a tensor χ ∈ RI1,I2 ...IN denoted as
Mat(k)(χ) results in a matrix with dimensions Ik, ∏

j 6=k
Ij, and the value of the entry is defined by:

Mat(k)(χ)

(
ik, ∑

j 6=k
ij ×

j−1

∏
l=1,l 6=k

Il

)
= χ(i1, . . . , iN). (3)

2.1.2. Tucker Decomposition

Given a tensor χ ∈ RI1,I2 ...IN , the TD can be formulated as:

max
{Un∈S(In ,in)}N

n=1

∥∥∥χ×1 UT
1 ×2 UT

2 . . .×N UT
N

∥∥∥2

F
, (4)

where
{

UT
i
}N

i=1 and S(In, in) =
{

U ∈ RIn ,in , UTU = I
}

(in ≤ In) denote orthonormal factor
matrices and Stiefel manifold containing all rank-d orthonormal bases, respectively. Using
the HOSVD [29] or HOOI [30] algorithm, the orthonormal factor matrices can be obtained,
and then the core tensor G ∈ Ri1,i2 ...iN can be calculated by G = χ×1 UT

1 ×2 UT
2 . . .×N UT

N .
In this way, the Tucker model can be used to decompose the tensor χ into the core tensor
multiplied by a series of factor matrices along with each mode, i.e., χ ≈ G ×1 U1 ×2
U2 . . .×N UN , and the core tensor G can be considered the compressed representation of χ,
i.e., the features of χ.

2.2. Coupled Factor Matrix-Based Heterogeneous Tucker Decomposition

To develop the multisource heterogeneous data-oriented feature extraction method for
multisource fusion and domain adaptation, the C-HTD method is proposed, including two
sub-methods, i.e., CFM-HTD and CCT-HTD, of which the former is used for multisource
fusion, and the latter is used for domain adaptation. The illustration of the procedure of
the C-HTD is shown in Figure 1.

2.2.1. Motivation

For convenience and without losing the generality, the number of sources is set to
two. Given paired multisource remote sensing data, i.e., source 1 sample χ1 and source
2 sample χ2, they can be represented as heterogeneous tensors because data from different
sources always present different resolutions and physical properties. Since the existing
multisource fusion-oriented feature extraction method can only deal with data represented
as vectors or tensors, they fail to process multisource heterogeneous data directly. Due
to the complementarity of multisource heterogeneous data, straightforward extraction of
heterogeneous features from paired multisource data can mine the multisource information
in an associative manner to obtain more accurate object recognition results. In addition,
considering the samples may lack class labels, it is necessary for the multisource fusion-
oriented feature extraction method to adapt to both the labeled and unlabeled data. To this
end, the CFM-HTD method is proposed as follows.
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Figure 1. Illustration of the procedure of the proposed coupled heterogeneous Tucker decomposition.
The upper one refers to the procedure of CFM-HTD, and the lower one refers to the procedure
of CCT-HTD.

2.2.2. Formulation

Assume that there are N paired multisource samples with M classes
{

χi
1, χi

2, yi}N
i=1,

where χi
1 ∈ RI1,I2,...,IL , χi

2 ∈ RI′1 ,I′2 ,...,I′L , and yi ∈ {0, 1, . . . , M} denote the ith sample from
source 1, ith sample from source 2, and class label of the ith paired multisource sample,
respectively. When yi is equal to 0, it indicates that the corresponding label is unknown,
i.e., unlabeled sample.

Using N samples from source 1 and N samples from source 2, χ1 =
[
χ1

1, . . . , χN
1
]

and
χ2 =

[
χ1

2, . . . , χN
2
]

can be yielded by cascading them along with the L + 1 order, respectively. To ob-
tain an effective representation of χ1 and χ2, it is necessary to construct two groups of factor matrices
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{
U1

1 ∈ RI1,i1 , . . . ,U1
L ∈ RIL ,iL ,U1

L+1 ∈ RN,M
}

and
{

U2
1 ∈ RI′1 ,i′1 , . . . ,U2

L ∈ RI′L ,i′L ,U2
L+1 ∈ RN,M

}
along with different modes of χ1 and χ2. Then, similar to TD, the compressed representation
of χ1 and χ2 can be calculated by:

χ1 ≈ G1 ×1 U1
1 ×2 . . .×L+1 U1

L+1 (5)

χ2 ≈ G2 ×1 U2
1 ×2 . . .×L+1 U2

L+1, (6)

where G1 ∈ Ri1,...,iL ,M, G2 ∈ Ri1,...,iL ,M, U1
l

TU1
l = I, 1 ≤ l ≤ L, and U2

l
TU2

l = I, 1 ≤ l ≤ L
denote the core tensor for source 1, core tensor for source 2, orthonormal factor matrices
for source 1, and orthonormal factor matrices for source 2, respectively. To utilize the class
information of labeled sample, the value of entries of U1

L+1 ∈ RN,M and U2
L+1 ∈ RN,M are

defined as follows:

U1
L+1(i, j) =

{
1 i f yi = j
0 otherwise

(7)

U2
L+1(i, j) =

{
1 i f yi = j
0 otherwise

(8)

To obtain the class label of unlabeled samples, the sum-to-one constraint and nonnegative
constraint are imposed in the ith column of U1

L+1 and U2
L+1 corresponding to yi = 0, i.e.,

U1
L+1(i, j) ≥ 0 ∑

j
U1

L+1(i, j) = 1 i f yi = 0

U2
L+1(i, j) ≥ 0 ∑

j
U2

L+1(i, j) = 1 i f yi = 0.
(9)

Since the paired multisource sample shares the same class label, the coupling constraint
for U1

L+1 and U2
L+1 is constructed to enforce U1

L+1 = U2
L+1. Therefore, the variable UL+1 is

employed to replace U1
L+1 and U2

L+1, and the two Tucker decompositions can be merged as:

min
G1,G2,U1

l ,U2
l ,UL+1

∥∥∥χ1 − G1 ×1 U1
1 ×2 . . .×L+1 UL+1

∥∥∥2

F
+
∥∥∥χ2 − G2 ×1 U2

1 ×2 . . .×L+1 UL+1

∥∥∥2

F

s.t.U1
l

TU1
l = I, 1 ≤ l ≤ L

U2
l

TU2
l = I, 1 ≤ l ≤ L

UL+1(i, j) ≥ 0 ∑
j

UL+1(i, j) = 1 i f yi = 0.

(10)

Splitting G1 and G2 along with the (L + 1)th order will yield M core sub-tensors,
i.e., G1 =

[
G1

1 , . . . ,GM
1
]

and G2 =
[
G1

2 , . . . ,GM
2
]
, where the mth sub-tensor can be inter-

preted as the mth class centroid. The value of UL+1(i, j) implies the probability of the ith
sample belonging to the jth class. In addition, to enhance the separability of samples with
different classes, an intuitive idea is to construct a regularization term maximizing the
variance of core sub-tensors to encourage samples of different categories to be as far away
as possible. Therefore, Equation (10) can be revised as:

min
G1 ,G2 ,U1

l ,U2
l ,UL+1

∥∥χ1 − G1 ×1 U1
1 ×2 . . .×L+1 UL+1

∥∥2
F +

∥∥χ2 − G2 ×1 U2
1 ×2 . . .×L+1 UL+1

∥∥2
F−

c
(

∑
m

∥∥∥Gm
1 −

1
MG1 ×L+1 eM

∥∥∥2

F
+ ∑

m

∥∥∥Gm
2 − 1

MG2 ×L+1 eM

∥∥∥2

F

)
s.t.U1

l
TU1

l = I, 1 ≤ l ≤ L
U2

l
TU2

l = I, 1 ≤ l ≤ L
UL+1(i, j) ≥ 0 ∑

j
UL+1(i, j) = 1 i f yi = 0,

(11)

where eM and c denote the vector that all the entries are equal to 1 and the regularization
parameter, respectively. Equation (11) is the optimization problem of CFM-HTD. After
obtaining the optimal factor matrices, the paired multisource features can be extracted by
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yi
1 = χi

1×1 U1T
1 ×2 . . .×L U1T

L and yi
2 = χi

2×1 U2T
1 ×2 . . .×L U2T

L . Meanwhile, the outputted
class-indicator matrix UL+1 can be used to predict the class of unlabeled samples as:

yi = argmax
j

UL+1(i, j). (12)

2.2.3. Optimization

To solve the optimization problem of CFM-HTD, the alternative optimization scheme
is proposed to update

{
U1

l
}L

l=1,
{

U2
l
}L

l=1, UL+1, G1, and G2 sequentially.

(a) Updating
{

U1
l
}L

l=1 and
{

U2
l
}L

l=1.

Updating
{

U1
l
}L

l=1 and
{

U2
l
}L

l=1 is needed to solve the same sub-optimization. For

ease of writing, we only provide the updating manner of
{

U1
l
}L

l=1. When updating
{

U1
l
}L

l=1,
the sub-optimization can be obtained as:

min
U1

l

∥∥∥χ1 − G1 ×1 U1
1 ×2 . . .×L+1 UL+1

∥∥∥2

F

s.t.U1
l

TU1
l = I, 1 ≤ l ≤ L.

(13)

Equation (13) can be transformed to matrix form Equation (14):

min
U1

l

∥∥∥X(l)
1 −U1

l G(l)
1 H(l)T

1

∥∥∥2

F

s.t.U1
l

TU1
l = I, 1 ≤ l ≤ L,

(14)

where X(l)
1 = Mat(l)(χ1), G(l)

1 = Mat(l)(G1), and H(l)
1 = U1

1 ⊗ . . . U1
l−1 ⊗U1

l+1 ⊗ . . . UL+1.
The operator ⊗ denotes the Kronecker product of matrices. Then, Equation (14) can be
further revised as:

min
U1

l

− tr
(

U1
l G(l)

1 H(l)T
1 X(l)T

1

)
s.t.U1

l
TU1

l = I, 1 ≤ l ≤ L.
(15)

Equation (15) is the orthogonal Procrustes problem [31], and it can be solved by:

U1
l = V̂1Û1

T , (16)

where Û1 and V̂1 denote the left singular vectors of G(l)
1 H(l)T

1 X(l)T
1 and the right singular

vectors of G(l)
1 H(l)T

1 X(l)T
1 , respectively.

(b) Updating UL+1.
When updating UL+1, the current optimization problem can be seen as follows:

min
UL+1

∥∥∥χ1 − G1 ×1 U1
1 ×2 . . .×L+1 UL+1

∥∥∥2

F
+
∥∥∥χ2 − G2 ×1 U2

1 ×2 . . .×L+1 UL+1

∥∥∥2

F
s.t.UL+1(i, j) ≥ 0 ∑

j
UL+1(i, j) = 1 i f yi = 0.

(17)

Since each row in UL+1 is independent, the updating of UL+1(n, :) for yn = 0 can be
described as independent sub-optimization, as can be seen below:

min
UL+1(n,:)

∥∥∥Xn(L+1)
1 −UL+1(n, :)G(L+1)

1 H(L+1)T
1

∥∥∥2

F
+
∥∥∥Xn(L+1)

2 −UL+1(n, :)G(L+1)
2 H(L+1)T

2

∥∥∥2

F

s.t.UL+1(n, i) ≥ 0
∑
i

UL+1(n, i) = 1,

(18)
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where Xn(L+1)
1 = Mat(L+1)

(
xn

1
)
, G(L+1)

1 = Mat(L+1)(G1), and H(L+1)
1 = U1

1⊗ . . .⊗U1
L. For

convenience, the auxiliary variable ν ∈ RM is constructed, and the Equation (18) can be
revised as:

min
UL+1(n,:)

∥∥∥Xn(L+1)
1 −UL+1(n, :)G(L+1)

1 H(L+1)T
1

∥∥∥2

F
+
∥∥∥Xn(L+1)

2 −UL+1(n, :)G(L+1)
2 H(L+1)T

2

∥∥∥2

F

s.t.ν ≥ 0
UL+1(n, i) = ν(i)
∑
i

UL+1(n, i) = 1.

(19)

To solve this sub-optimization, utilizing alternating direction method of multipli-
ers [32], the augmented Lagrangian function can be obtained as:

min
UL+1(n,:)

∥∥∥Xn(L+1)
1 −UL+1(n, :)G(L+1)

1 H(L+1)T
1

∥∥∥2

F
+
∥∥∥Xn(L+1)

2 −UL+1(n, :)G(L+1)
2 H(L+1)T

2

∥∥∥2

F
+

µ
2

∥∥∥∥∑
i

UL+1(n, i)− 1
∥∥∥∥2

2
+ ∑

i

µ
2 ‖UL+1(n, i)− ν(i)‖2

2+

λ

(
∑
i

UL+1(n, i)− 1
)
+ ∑

i
λ′(i)(UL+1(n, i)− ν(i))

s.t.ν ≥ 0,

(20)

where µ denotes the penalty parameter. The λ and λ′ are Lagrangian multipliers. The
partial derivative with respect to UL+1(n, :) are zeros. We have:

∂L
∂UL+1(n,:) = 0⇒

UL+1(n, :)T =
(

2G(L+1)
1 G(L+1)T

1 + 2G(L+1)
2 G(L+1)T

2 + µeeT + µ× diag(e)
)−1
×

(2G(L+1)
1 H(L+1)T

1 Xn(L+1)T
1 + 2G(L+1)

2 H(L+1)T
2 Xn(L+1)T

2 + µ(e + ν)− λe− λ′ ).

(21)

According to Equation (21), UL+1(n, :) can be updated. For λ and λ′ , they can be
updated by:

λ = λ + µ

(
∑
i

UL+1(n, i)− 1
)

λ′ (i) = λ′ (i) + µ(UL+1(n, i)− ν(i)).
(22)

For ν, let the partial derivative of the objective function in Equation (20) with respect
to ν be zeros. We have:

∂L
∂ν(i) = 0⇒
ν(i) = 1

µ (µUL+1(n, i) + λ′ (i)).
(23)

Combining with the nonnegative constraint, the ν can be updated as:

ν(i) = max
(

0,
1
µ
(µUL+1(n, i) + λ′ (i))

)
. (24)

As to µ, it is updated by the following manner.

µ = min(pµ, µmax), (25)

where p and µmax denote the learning rate and the upper bound of the penalty parameter,
respectively.

(c) Updating G1 and G2.
Updating G1 and G2 is needed to solve a similar optimization problem. For ease of

writing, we only provide the updating procedure of G1. Likewise, the G2 can be updated in
the same way.

When updating G1, the following sub-optimization is needed to be solved.

min
G1

∥∥∥δ1 − G1 ×1 U1
1 ×2 . . .×L+1 UL+1

∥∥∥2

F
− c ·

(
∑
m

∥∥∥∥Gm
1 −

1
M
G1 ×L+1 eM

∥∥∥∥2

F

)
. (26)
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Converting Equation (26) to matrix form, we have:

min
G1

∥∥∥X(L+1)
1 −UL+1 ×G(L+1)

1 H(L+1)T
1

∥∥∥2

F
+ tr

(
G(L+1)T

1 LG(L+1)
1

)
(27)

where X(L+1)
1 = Mat(L+1)(x1), G(L+1)

1 = Mat(L+1)(G1), and H(L+1)
1 = U1

1 ⊗ . . .⊗U1
L. L is

the Laplacian matrix, and the detailed definition is shown below.

L = −c
(

M
∑

m=1
ẽmẽT

m

)
ẽm ∈ RM

ẽm(i) =
{

1− 1
M i f i = m

− 1
M i f i 6= m.

(28)

To update each row of G(L+1)
1 , the partial derivative of Equation (28) with respect to

G(L+1)
1 (i, :) is set with zeros. We have:

G(L+1)
1 (i, :) =

(
Û(i, i) + L(i, i)

)−1 ×
(
−UL+1(:, i)TX(L+1)

1 H(L+1)
1 − lT ×G(L+1)

1

)
, (29)

where Û = UL+1
TUL+1. The l ∈ RM defined by l = L(:, i) + Û(:, i), l(i) = 0.

Using Equation (29), the G(L+1)
1 (i, :) can be updated.

The variables
{

U1
l
}L

l=1,
{

U2
l
}L

l=1, UL+1, G1, and G2 are updated iteratively until the
iteration number exceeds the threshold or the following terminal criteria are met.

L

∑
l=1

∥∥∥∥U1
l − Û1

l

∥∥∥∥2

F
+

L

∑
l=1

∥∥∥∥U2
l − Û2

l

∥∥∥∥2

F
≤ δ, (30)

where Û1
l and Û2

l denote the factor matrices updated in the last iteration.

2.3. Coupled Core Tensor-Based Heterogeneous Tucker Decomposition
2.3.1. Motivation

For ease of writing and without losing generality, the number of sources is set to 2.
Assume that we have source 1 data {χs, ys} and source 2 data {χt, yt} acquired from dif-
ferent sensors, where χs, ys, χt, and yt denote the sample from source 1, the class label of
sample from source 1, the sample from source 2, and the class label of sample from source 2,
respectively. Often, χs and χt present different dimensions, i.e., heterogeneous tensors. Not
only that, since χs and χt present different physical properties, they obey different margin
distributions P(χs) 6= P(χt) and different class condition distributions P(χs|ys) 6= P(χt|yt).
To achieve object recognition across sources, it is necessary to construct a domain adap-
tation method to construct specific mapping ϕ(·), making P(ϕ(χs)|ys) ≈ P(ϕ(χt)|yt). In
addition, considering that the class labels of some samples are unknown, the domain
adaptation method should have the ability to predict the class label of these samples and
then use predicted labels ŷs, ŷt to make P(ϕ(χs)|ŷs) ≈ P(ϕ(χt)|ŷt). Moreover, to avoid the
occurrence of negative transfer, the constructed domain adaptation method should be able
to automatically remove outliers to improve the robustness of the extracted features.

2.3.2. Formulation

Assume that we have source domain samples
{

χi
s, yi

s
}Ns

i=1 acquired from source 1

and target domain samples
{

χi
t, yi

t
}Nt

i=1 acquired from source 2, where χi
s ∈ RI1,I2,...,IL ,

yi
s ∈ {0, 1, . . . , M}, χi

t ∈ RI′1 ,I′2 ,...,I′L , and yi
s ∈ {0, 1, . . . , M} denote the ith sample from

source domain, the class label of the ith sample from source domain, the ith sample from
target domain, the class label of the ith sample from target domain, respectively. The
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dimensions of source domain sample and target domain sample may be different, i.e.,
Il 6= I ′l . When yi

s = 0 or yi
t = 0, it implies that the corresponding sample is unlabeled.

The intention of the proposed method is to find factor matrices with different modes of

source domain data
{

Us
l ∈ RIl ,il

}L
l=1 and factor matrices with different modes

{
Ut

l ∈ RI′l ,il
}L

l=1
of target domain data to map the input of heterogeneous tensors into the shared space.
To achieve this goal, the (L + 1)th order tensor χs is constructed by cascading samples
from source domain

[
χ1

s , . . . , χNs
s

]
, and the (L + 1)th order tensor χt is constructed by

cascading samples
[
χ1

t , . . . , χNt
t

]
from the target domain. Similar to TD, the compressed

representation of χs. and χt can be obtained as follows:

χs ≈ Gs ×1 Us
1 ×2 . . .×L+1 Us

L+1 (31)

χt ≈ Gt ×1 Ut
1 ×2 . . .×L+1 Ut

L+1, (32)

where Gs ∈ Ri1,...,iL ,M and Gt ∈ Ri1,...,iL ,M denote the core tensor of the source domain and
core tensor of the target domain, respectively. The

{
Us

l
}L

l=1 and
{

Ut
l
}L

l=1 are orthogonal
factor matrices satisfying constraints Us

l
TUs

l = I, 1 ≤ l ≤ L and Ut
l
TUt

l = I, 1 ≤ l ≤ L.
The Us

L+1 ∈ RNs ,M and Ut
L+1 ∈ RNt ,M can be interpreted as the class-indicator matrix. For

labeled samples χi
s(χi

t), if yi
s = j (yi

t = j), let Us
L(i, j) = 1 (Ut

L(i, j) = 1) and Us
L(i, k) = 0, k 6=

j (Ut
L(i, k) = 0, k 6= j). For unlabeled samples, the constraints for the class-indicator factor

matrix are constructed as follows:

Us
L(i, :) ≥ 0 ∑

j
Us

L(i, j) = 1 i f yi
s = 0

Ut
L(i, :) ≥ 0 ∑

j
Ut

L(i, j) = 1 i f yi
t = 0.

(33)

To calculate the effective factor matrices and core tensor, the following objective
function is constructed:

min
Gs ,Gt ,Us

l ,Ut
l

∥∥∥χs − Gs ×1 Us
1 ×2 . . .×L+1 Us

L+1

∥∥∥2

F
+
∥∥∥χt − Gt ×1 Ut

1 ×2 . . .×L+1 Ut
L+1

∥∥∥2

F
. (34)

Note that the dimension of Gs or Gt in mode (L + 1) is equal to M. Therefore, the
Gs or Gt can be split into M sub-tensors along with mode (L + 1), i.e., Gs =

[
G1

s , . . . ,GM
s
]

and Gt =
[
G1

t , . . . ,GM
t
]
, where Gm

s and Gm
t can be interpreted as the class centroid of the

source domain and target domain, respectively. In addition, there may exist some samples
from the source domain that present poor quality and thus are not suitable for transferring,
i.e., there may exist outliers for source domain data. To solve this problem, the adaptive
sample-weighing matrix for the source domain Ws ∈ RNs ,Ns is constructed to remove
outliers automatically and embedded into the optimization problem, as shown below:

min
Gs ,Gt ,Us

l ,Ut
l ,W

s ,Wt

∥∥∥χs ×L+1 Ws − Gs ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws
∥∥∥2

F
+
∥∥∥χt − Gt ×1 Ut

1 ×2 . . .×L+1 Ut
L+1

∥∥∥2

F

s.t.∑
i

Ws(i, i)2 = (1− εs)Ns

Ws(i, j) = 0 ∀i 6= j
0 ≤Ws(i, i)2 ≤ 1,

(35)

where εs denotes a pre-established constant used to determine the ratio of outliers. It is
observed that the adaptive sample-weighing matrix Ws ∈ RNs ,Ns is a diagonal matrix, and
the value of Ws(i, j) is used to determine the weight of χi

s.
For domain adaptation problems, it is required that samples from different domains

have similar class condition distributions. Therefore, the intuitive idea is to construct the
coupled constraint for Gs and Gt, i.e., imposing G = Gs = Gt. Consequently, the objective
function is transformed as:
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min
G,Us

l ,Ut
l ,W

s ,Wt

∥∥∥χs ×L+1 Ws − G ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws
∥∥∥2

F
+
∥∥∥χt − G ×1 Ut

1 ×2 . . .×L+1 Ut
L+1

∥∥∥2

F
. (36)

To improve the separability of the domain-adapted features, it is necessary to increase the

difference between the sub-core tensor of different categories, i.e., maximizing ∑
m

∥∥∥∥∥Gm − 1
M

G ×L+1 eM

∥∥∥∥∥
2

F

, where G =
[
G1, . . . ,GM] and eM = [1, 1...1]︸ ︷︷ ︸

M

. By integrating this term, the

optimization problem of CCT-HTD can be obtained as follows:

min
G,Us

l ,Ut
l ,W

s

∥∥∥χs ×L+1 Ws − G ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws
∥∥∥2

F
+∥∥∥χt − G ×1 Ut

1 ×2 . . .×L+1 Ut
L+1

∥∥∥2

F
− c×

(
∑
m

∥∥∥∥Gm − 1
MG ×L+1 eM

∥∥∥∥2

F

)
s.t.∑

i
Ws(i, i)2 = (1− εs)Ns

Ws(i, j) = 0 ∀i 6= j
0 ≤Ws(i, i)2 ≤ 1
UsT

l Us
l = I 1 ≤ l ≤ L

UtT
l Ut

l = I 1 ≤ l ≤ L
Us

L+1(i, j) ≥ 0 ∑
j

Us
L+1(i, j) = 1i f yi

s = 0

Ut
L+1(i, j) ≥ 0 ∑

j
Ut

L+1(i, j) = 1i f yi
t = 0,

(37)

where c denotes the regularization parameter. The optimization solving method of CCT-
HTD is similar to that of CFM-HTD, with no more tautology here. The detailed optimization
solving processing can be seen in Appendix A. After obtaining the optimal factor matri-
ces, the domain-adapted features can be extracted by yi

s = χi
s ×1 UsT

1 ×2 . . .×L UsT
L and

yi
t = χi

t ×1 UtT
1 ×2 . . .×L UtT

L .

3. Results

To evaluate the performance of the C-HTD for multisource fusion and domain adapta-
tion, three datasets were built to examine the effect of proposed CFM-HTD and CCT-HTD
compared with typical multisource fusion-oriented feature extraction methods and domain
adaptation-oriented feature extraction methods, respectively.

The experiments consist of six parts. In Section 3.1, the information of the used
datasets is introduced in detail. In Section 3.2, the construction of heterogeneous tensors for
multisource data is described. The performance and parameter setting of CFM-HTD and
CCT-HTD are analyzed in Sections 3.3 and 3.4, respectively. In Section 3.5, the performance
of CFM-HTD is evaluated compared with typical multisource fusion-oriented feature
extraction methods. In Section 3.6, the performance of CCT-HTD is evaluated compared
with typical domain adaptation-oriented feature extraction methods.

All the simulations were executed on a computer with a Windows 10 operating system
equipped with a CPU of I7-7700 processor at 3.6 GHz.

Our code can be found at Supplementary Material https://github.com/supergt3/C-
HTD (accessed on 1 May 2022).

3.1. Datasets

The detailed information of the used datasets is provided below.
(1) Dataset 1 comprises optical airplane slices with different resolutions and different

angles acquired from SuperView-1 commercial satellites with 0.5-m spatial resolution and

https://github.com/supergt3/C-HTD
https://github.com/supergt3/C-HTD
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roll satellite angles less than 20◦ and Jilin-1 commercial satellites with 1 m spatial resolution
and roll satellite angles exceeding 20◦. These airplane slices were cut from four RSIs, and
the detailed information of these RSIs is provided in Table 1.

Table 1. Detailed information of used remote sensing images acquired from different satellites.

Satellite Roll Angle Resolution Acquired Time

SuperView-1 −2.79◦ 0.5 m 9 February 2020
SuperView-1 −13.62◦ 0.5 m 30 July 2020
Jilin-1 33.11◦ 1 m 7 October 2020
Jilin-1 −34.20◦ 1 m 7 November 2020

Since these airplane slices were obtained from different satellites, they were divided
into two sub-datasets for domain adaptation, where sub-dataset 1 (i.e., source domain sam-
ples) contains 36 airplane slices with three types obtained from SuperView-1 commercial
satellites, and the sub-dataset 2 (i.e., target domain samples) contains 65 airplane slices with
three types obtained from Jilin-1 commercial satellites. In addition, since the SuperView-1
satellite and Jilin-1 satellite observe the same airport area, some airplanes are observed by
both two satellites producing 28 paired multisource airplane slices with three types that
can be used for multisource fusion-oriented object recognition. The examples of image
slices in dataset 1 are displayed in Figure 2.
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(a) (b) 
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Figure 2. Examples of multiangle and multiresolution airplane slices observed by SuperView-1 and
Jilin-1 satellites in dataset 2. (a–d) Display the paired multiangle multiresolution airplanes obtained
from SuperView-1 satellites (the left one) and Jilin-1 satellites (the right one).

(2) Dataset 2 consists of SAR slices obtained from the Moving and Stationary Target
Acquisition and Recognition (MSTAR) dataset [33]. These SAR slices present the 0.3-m
spatial resolution, 17◦ of depression angle, and aspect angle ranging from 0 to 360◦, were
collected from X-band and contain five types of ground targets, i.e., 2S1-B01 rocket launcher,
BRDM2 armored personnel carriers, T62 tank, ZIL131 truck, and T72 tank. Since the MSTAR
dataset contains SAR slices with different aspect angles, we selected SAR slices with a large
difference in aspect angles to build two sub-datasets for domain adaptation and multisource
fusion, where sub-dataset 1 (i.e., source domain samples) contains 177 SAR slices with
aspect angles ranging from 0 to 45◦ and sub-dataset 2 (i.e., target domain samples) contains
177 SAR slices with aspect angle ranging from 180 to 225◦. In addition, combining the SAR
slices of the two sub-datasets in pairs, 177 paired multiangle SAR slices can be obtained for
multisource fusion tasks. The examples of target slices in dataset 2 are provided in Figure 3.
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Figure 3. Examples of samples from dataset 2. (a–e) Display the optical slices from five types of
objects. (f–j) Show objects with aspect angles 0 to 45◦ from source domain. (k–o) Show objects with
aspect angles 180 to 225◦ from target domain.

(3) Dataset 3 consists of 31 paired optical ship slices and SAR ship slices of four types,
which were collected from Google Earth images and Terra SAR satellite images observing
the same harbor region. Both the optical ship slices and SAR ship slices present 1-m spatial
resolution. When performing the domain adaptation test, the optical slices and SAR slices
were considered as source domain samples and target domain samples, respectively. The
examples of paired optical ship slices and SAR ship slices are displayed in Figure 4.

Figure 4. Examples of samples from dataset 3. (a) Displays paired optical-SAR object slices for a ship
with type 1. (b) Displays paired optical-SAR object slices for a ship with type 2. (c) Displays paired
optical-SAR object slices for a ship with type 3. (d) Displays paired optical-SAR object slices for a
ship with type 4.

3.2. Construction of Heterogeneous Tensors

The dataset used in the experiment contains optical image slices and SAR image
slices. To describe the object information contained in different sources effectively, the
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optical features tensor and SAR features tensor are constructed using the different image
descriptors, which can be used as input to examine the performance of feature extraction
methods. The detailed features tensor construction method is as follows.

Gabor features tensor: Gabor features [34], similar to the conventional image features,
can be used to describe the texture characteristics of different scales and orientations
utilizing Gabor filters, as calculated by:

Gs,d(x, y) = G→
κ

(→
x
)
=

∥∥∥→κ ∥∥∥
σ2 · e

−

∥∥∥→κ ∥∥∥2

·

∥∥∥→x ∥∥∥2

2σ2 · ei
→
κ ·→x − e−

σ2
2 , (38)

where
→
x = (x, y) and

→
κ = (π/2× 2s) ·

[
cos
(

πd
8

)
, sin

(
πd
8

)]
denote the spatial domain

coordinate and the frequency vector, respectively. In our experiments, the scale parameter s
and the orientation parameter d were set to {1, 2, 3, 4} and {1, 2, 3, 4, 5, 6, 7, 8}, respectively,
to obtain 32 Gabor filters. The Gabor features are extracted and stored to the 3rd-order
Gabor features tensor FGabor ∈ Rw×h×32.

Spectral features tensor: the raw optical image slice as the spectral features tensor is
used Fori ∈ Rw×h×3, where the third-order denotes the spectral order.

Morphology features tensor: to emphasize partial detailed information contained in
slices, the top-hat transform and bottom-hat transform [35] for morphology processing are
used to generate morphology features stored as feature tensors Fmori ∈ Rw×h×2.

The features tensor of the optical image slice can be obtained by concatenating the
Gabor feature tensor, the spectral feature tensor, and the morphological feature tensor along
with the third mode, i.e., Foptical = [FGabor,Fori,Fmori].

The scattering characteristic [36,37] of SAR images reflecting the structure and material
property of objects can be considered important parameters. To extract scattering character-
istics of SAR images effectively, the gray-level cooccurrence matrices (GLCMs) [35] with
14 different scanning directions for pair pixels are utilized to construct the SAR feature
tensor Fsar ∈ R8×8×14, where the dimensions of the first order and second order denote
the quantized gray level of the GLCM features.

3.3. Analysis of the Impact of Parameter Setting on CFM-HTD

For CFM-HTD, there are only a few manually set parameters, including the iteration
number threshold and the regularization parameter c. To analyze the impact of parameter
setting on CFM-HTD, paired multiresolution multiangle airplane slices in dataset 1 are
utilized to verify the classification results of CFM-HTD under different parameter settings.
First, the ratio of labeled samples in dataset 1 is set to 50%, and all samples in dataset 1 are
fed into CFM-HTD to learn the labels of the unlabeled samples. Then, the objective function
values and classification accuracies of CFM-HTD under different iteration numbers are
recorded, as shown in Figure 5.

From Figure 4, it is observed that the objective function value decreases and accuracy
increases as the increase in iteration numbers. Specifically, the objective function value and
accuracy change dramatically after initial iterations. When the number of iterations reaches
six or more, the accuracy and objective function value becomes stable and converge. This
finding indicates that the proposed CFM-HTD can converge and obtain better classification
results after a few iterations.
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Figure 5. The objective function value and classification accuracy of CFM-HTD under different
numbers of iterations.

In addition to regularization parameter c, considering CFM-HTD as a semi-supervised
feature extraction method, its performance is affected by the ratio of labeled samples.
To analyze the impact of regularization parameter c and the ratio of labeled samples,
experiments were conducted on dataset 1 to compare the classification accuracy under
different regularization parameters c and different ratios of labeled samples. The results
are shown in Figure 6.

Figure 6. The accuracy of CFM-HTD with different c under different ratios of labeled samples.

From the above figure, it can be found that the classification accuracy of CFM-HTD is
relatively poor when the ratio of labeled samples is less than 0.3. As the ratio of labeled
samples increases, the classification accuracy of CFM-HTD can be remarkably improved. In
particular, CFM-HTD can obtain the best classification accuracy when the ratio of labeled
samples exceeds 0.5. In addition, it can be found that different regularization parameters
have an insignificant impact on the results of CFM-HTD. With the increase in the labeled
samples, CFM-HTD can obtain the best classification results under different regularization
parameters c.

3.4. Analysis of the Impact of Parameter Setting on CCT-HTD

The optimization solving scheme of CCT-HTD is an iterative process that successively
updates the values of the factor matrix and the core tensor. To illustrate the impact of the
number of iterations on the performance of CCT-HTD, the experiments used dataset 1 to
compare the cross-domain classification ability of CCT-HTD under different numbers of
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iterations. Concretely, sub-dataset 1 and sub-dataset 2 of dataset 1 are regarded as the
source domain and target domain, respectively. Then different iteration numbers were set
for CCT-HTD to obtain domain-adapted features. To verify classification accuracy across
domains, the one nearest neighbor (1NN) classifier trained by samples from the source
domain is applied to obtain the classification accuracy of the target domain. The detailed
results are shown in Figure 7.

Figure 7. The objective function value and classification accuracy of CCT-HTD under different
numbers of iterations.

It is observed in Figure 7 that the objective function value decreases and accuracy
increases as the iteration processing. After a few iterations, the objective function value
and classification accuracy tend to be stable and converge.

In addition, the proposed CCT-HTD method as a semi-supervised domain adaptation
method is able to combine labeled samples with unlabeled samples to learn features across
domains jointly. To demonstrate the impact of the ratio of labeled samples on the domain
adaptation results, CCT-HTD was executed by adjusting the ratio of labeled samples to
obtain the domain adaptation-oriented features. Then, the 1NN classifier was trained using
the source domain samples, and the classification results of the target domain samples were
obtained, as shown in Figure 8.

Figure 8. The accuracy of CCT-HTD with different c under different ratios of labeled samples.

Figure 8 shows the accuracy of CCT-HTD with different parameters c under different
ratios of labeled samples to the total samples. It can be found that the classification
accuracy across domains increases first and then has a slight decrease as the number of
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labeled samples increases. The reason is that when the number of labeled samples is too
small, CCT-HTD cannot accurately estimate the class of unlabeled samples. When the
number of labeled samples is too large, the hard labels cannot fully reflect the category
affiliation of the data compared with the fuzzy labels learned by CCT-HTD autonomously.
It was found that the best results can be obtained when the ratio of labeled samples is
between 0.6 and 0.8. In addition, it was also found that the impact of different parameter c
on classification accuracy is slight.

For the CCT-HTD, its main pre-determined parameters include the extracted feature
dimension, the regularization parameter c, and the parameter ε that controls the ratio of
outliers. To show the impact of different parameter settings on CCT-HTD, the experiments
were conducted on dataset 1 to obtain cross-domain feature extraction results of CCT-HTD
under different parameter settings. Then, the source domain samples were used for training
the one nearest neighbor (1NN) classifier, and target domain samples were used as the test
set to obtain the classification accuracy. The results are shown in Figure 9.

Figure 9. The accuracy of CCT-HTD under different c, different dimensions of extracted features, and
different ε (a) The accuracy of CCT-HTD with different c for different dimensions of extracted features
under ε = 0.1; (b) the accuracy of CCT-HTD with different c for different dimensions of extracted
features under ε = 0.2; (c) the accuracy of CCT-HTD with different c for different dimensions of
extracted features under ε = 0.3.

The horizontal coordinate j indicates the dimension of extracted features tensor
I ′m = ceil

(
Im
j

)
. As seen in Figure 9, CCT-HTD obtains different accuracies for differ-

ent dimensions of extracted features tensor, different c, and different ε, respectively. In
detail, CCT-HTD obtains better results when I ′m = ceil

(
Im
6

)
probably because larger feature

dimensions tend to obtain redundant features and lower feature dimensions tend to lose
critical information across domains. In addition, it can be seen that the impact of different
parameters c on the classification results is not apparent. For the parameters ε, a larger
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parameter ε loses more valuable samples, while in a smaller parameter ε it is difficult to
remove outlier completely. It can be found that ε = 0.1 leads to better results.

The CCT-HTD can exploit the adaptive sample-weighing matrix to remove outliers
to reduce the occurrence of negative transfer. To demonstrate this advantage visually,
sub-dataset 1 and 2 in dataset 2 were regarded as the source domain and target domain,
respectively, and three interference samples with aspect angle ranging from 90 to 135◦

were added into the source domain. Then, the 2D-projection of original samples and
domain-adapted samples by applying the t-SNE [38] method is shown in Figure 10.

Figure 10. Visualization of original and transferred features from source domain and target domain.
(a) Visualization of original features from source domain and target domain; (b) visualization of
transferred features from source domain and target domain.

It is seen that the original samples are arranged in a more disorganized way due
to the differences between different domains and differences between different sources.
After applying CCT-HTD, it can be found that the data from two categories form two
clusters with better separability and fewer differences between samples from the same
category in the source and target domains. Observing Figure 10, it is seen that CCT-HTD
can spontaneously find outliers and remove them accurately.

3.5. Evaluation of the Performance of CFM-HTD Compared with Typical Multisource
Fusion Methods

The CFM-HTD can excavate the complementary features from paired multisource
samples and output the class labels. To evaluate the performance of CFM-HTD, two datasets
were utilized to compare CFM-HTD with typical feature extraction methods, including
PCA, LLE [39], LE [40], MPCA, HTD, GTDA, TLPP, and TDLA. For vector-based feature
extraction methods, i.e., PCA, LLE, and LE, since they can only process inputs characterized
as vectors, the constructed multisource features tensors were vectorized to meet their input
requirements. For tensor-based comparison methods, i.e., MPCA, GTDA, HTD, TLPP, and
TDLA, since they can only process homogeneous tensors, samples from different sources
were processed independently to obtain feature extraction results. To comprehensively
evaluate the performance of the proposed CFM-HTD method, the experiment verifies the
performance of different methods from the perspectives of classification and clustering.
For classification performance, we used classification accuracy (ACC) to evaluate different
methods. For cluster performance, it was evaluated using normalized mutual information
(NMI), as calculated by:

NMI
(

ŷ, y
)
=

MI
(

ŷ, y
)

max
(

H
(

ŷ
)

, H
(
y
)) (39)
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where ŷ and y denote the predicted class labels and the real class labels, respectively. The
operator MI(·) and H(·) denote mutual information and entropy, respectively.

For the comparison method, the extracted features are classified by the SVM classifier
to calculate the ACC and clustered by the KM method to calculate the NMI; for the
proposed CFM-HTD, the clustering results were obtained by the KM method to calculate
the NMI. Since CFM-HTD can output class labels, it can directly test ACC. To facilitate
a fair comparison, when evaluating the classification accuracy, the comparison method
uses half of the samples in the dataset for training and the rest samples for testing, and
the CFM-HTD method uses half of the samples in the dataset as labeled samples and the
rest as unlabeled samples. When calculating NMI, the KM method was performed five
times, and then the best results were selected as the final NMI. To obtain the best results
for different methods, all the vector-based methods set dimensions of extracted features
from {10, 20, . . . , 100} corresponding to the best results, and all the tensor-based methods
set dimensions of extracted features from I ′m = ceil

(
Im
j

)
, j ∈ {2, 3, . . . , 8} corresponding to

the best results. Utilizing three datasets, the obtained experimental results are shown in
Tables 2–4.

Table 2. ACC and NMI of different multisource fusion methods using dataset 1.

PCA LLE LE MPCA HTD GTDA TLPP TDLA CFM-HTD

NMI 0.769 0.184 0.200 0.8633 0.7981 0.8827 0.7984 0.8827 1
ACC 0.75 0.6071 0.6786 0.9286 0.8929 0.8929 0.6786 1 1

Table 3. ACC and NMI of different multisource fusion methods using dataset 2.

PCA LLE LE MPCA HTD GTDA TLPP TDLA CFM-HTD

NMI 0.2159 0.1423 0.0797 0.2556 0.3234 0.2063 0.1715 0.1598 0.3403
ACC 0.7288 0.5876 0.4832 0.7232 0.7655 0.6384 0.4520 0.4746 0.7797

Table 4. ACC and NMI of different multisource fusion methods using dataset 3.

PCA LLE LE MPCA HTD GTDA TLPP TDLA CFM-HTD

NMI 0.2496 0.1992 0.2166 0.2199 0.3365 0.2762 0.2596 0.3885 0.4052
ACC 0.7742 0.6452 0.6774 0.8065 0.8338 0.7419 0.7419 0.8710 0.8710

In general, it was found that all the methods obtain better results for dataset 1 than
for dataset 2 because optical images in dataset 1 present more obvious object structure
and geometry characteristic that is easy to be identified than SAR images in dataset 2.
In addition, it was also found that the results of different methods using dataset 1 are
better that using dataset 3 because the ship slices in dataset 3 contain more background
interferences than airplane slices in dataset 1. Moreover, it is seen that PCA obtains the
best results among vector-based comparison methods. The reason is that PCA, as the
conventional feature extraction method, can maintain the maximum energy of objects to
obtain effective results. Moreover, it is also seen that TDLA, HTD, and TDLA obtain the
best results among tensor-based comparison methods for datasets 1, 2, and 3, respectively.
Remarkably, it is worth noting that CFM-HTD obtains the best results among all the
methods for the two datasets. This is because CFM-HTD can extract coupled information
contained in heterogeneous multisource data, and its inherent classification mechanism
ensures the effectiveness of cluster and classification.

Subsequently, the experiments were further conducted to compare the performance of
CFM-HTD with tensor-based comparison methods under different dimensions of extracted
features, as shown in Figure 11.
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Figure 11. The accuracies and NMIs of CFM-HTD and the comparison methods under different
dimensions of extracted features using two datasets. (a) The accuracies of CFM-HTD and the
comparison methods using dataset 1; (b) the NMI of CFM-HTD and the comparison methods using
dataset 1; (c) the accuracies of CFM-HTD and the comparison methods using dataset 2; (d) the NMI
of CFM-HTD and the comparison methods using dataset 2.

The horizontal coordinate j denotes the dimension of extracted features I ′m = ceil
(

Im
j

)
.

From these figures, it is observed that ACC and NMI will vary as the change in dimensions
of extracted features. For dataset 1 and dataset 2, the performance of the TLPP method is
weaker than other methods, and the TDLA and HTD methods can achieve the second-best
results in dataset 1 and dataset 2, respectively. It is observed that the proposed CFM-HTD
outperforms all comparison methods under different dimensions of extracted features,
which further implies the effectiveness of the proposed CFM-HTD method for feature
extraction using paired multisource data.

3.6. Evaluation of the Performance of CCT-HTD Compared with Typical Domain
Adaptation Methods

To evaluate the effectiveness of the proposed CCT-HTD for domain adaptation, two
datasets were applied to compare the classification accuracy of CCT-HTD with typical do-
main adaptation-oriented feature extraction methods, including PCA, HTD, TCA, CORAL,
JDA, ATL, CMMS [41], and JFSSS-HFT [42]. For three datasets, source domain samples
and target domain samples are denoted as S and T, respectively. In addition, two domain
adaptation tasks were built, i.e., S→ T and T → S , where S→ T denotes samples from
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the source domain and target domain are regarded as training set and test set, respectively.
Since dataset 3 contain optical and SAR slices that present large characteristic difference, we
used the same features tensors (i.e., morphology features) to describe both the optical and
SAR slices to reduce the distribution discrepancy. Except for the JFSSS-HFT and CMMS
methods, all the comparison methods can only handle homogeneous data. To meet their
input requirements, the bilinear interpolation technique was used to adjust the image slices
in source domain to the same sizes as the image slices in target domain. In addition, since
the comparison methods can only handle input represented as a vector, the constructed
feature tensors are vectorized to meet their input requirements. For dataset 1, due to the
high dimensionality of the extracted features tensors, the vectorization results in CORAL,
ATL, CMMS, and JFSSS-HFT exceeding the storage limitation of the computer. Therefore,
CORAL, ATL, CMMS, and JFSSS-HFT were performed combined with PCA methods to
reduce the storage requirement. To ensure a fair comparison, the grid-search method was
utilized to obtain the best results for all the methods. For TCA, JDA, and CMMS, we
chose either a linear kernel or a Gaussian kernel. For all comparison methods, the optimal
dimensional parameters were {10, 20, . . . , 100}. For TCA, ATL, CMMS, and JFSSS-HFT,
the optimal regularization parameters were {0.1, 0.2, . . . , 2}. For JFSSS-HFT, optimal ws
and wt were {0.05, 0.1, 0.2, 0.3}. The PCA method, TCA method, CORAL method, and JDA
method are unsupervised feature transfer methods and do not require sample labels. The
ATL method, CMMS method, and JFSSS-HFT method, are supervised methods and they
need labeled samples. For HTD and the proposed CCT-HTD, the optimal dimensional
parameters were from I ′m = ceil

(
Im
j

)
, j ∈ {2, 3, . . . , 8}. In addition, since the proposed

CCT-HTD is a semi-supervised feature transfer method, half labeled samples and half
unlabeled samples were used together in the experiments. The obtained classification
results using 1NN and support vector machine (SVM) [43] across domains are shown in
Tables 5–7.

Table 5. Classification accuracies of different domain adaptation methods with 1NN and SVM using
dataset 1.

Classifier Task PCA HTD TCA CORAL JDA ATL CMMS JFSSS-HFT CCT-HTD

1NN
S→ T 47.2% 52.78% 77.8% 50% 63.89% 52.78% 52.78% 83.3% 86.1%
T → S 47.7% 53.85% 49.3% 47.7% 49.2% 46.2% 52.3% 83.1% 84.62

SVM
S→ T 58.33% 50% 80.56% 55.56% 69.44% 55.56% 55.56% 86.1% 86.1%
T → S 49.3% 50.77% 67.7% 46.2% 55.4% 49.2% 49.2% 78.5% 83.08%

Table 6. Classification accuracies of different domain adaptation methods with 1NN and SVM using
dataset 2.

Classifier Task PCA HTD TCA CORAL JDA ATL CMMS JFSSS-HFT CCT-HTD

1NN
S→ T 59.89% 49.15% 61.58% 58.19% 68.93% 59.89% 72.88% 66.67% 73.45%
T → S 59.89% 51.41% 59.32% 20.90% 59.32% 40.68% 68.30% 61.02% 71.19%

SVM
S→ T 52.54% 51.41% 62.15% 24.29% 55.37% 48.02% 80.79% 51.89% 81.92%
T → S 44.63% 48.59% 51.97% 16.38% 52.54% 42.94% 78.53% 51.97% 80.79%

Table 7. Classification accuracies of different domain adaptation methods with 1NN and SVM using
dataset 3.

Classifier Task PCA HTD TCA CORAL JDA ATL CMMS JFSSS-HFT CCT-HTD

1NN
S→ T 38.71% 35.48% 41.94% 48.39% 32.26% 48.39% 54.84% 58.06% 61.29%
T → S 45.16% 41.94% 54.84% 32.26% 54.84% 51.61% 58.06% 51.61% 61.29%

SVM
S→ T 48.39% 48.39% 41.94% 29.03% 48.39% 48.39% 58.06% 61.29% 64.62%
T → S 54.84% 48.39% 54.84% 25.81% 51.61% 51.61% 51.61% 58.06% 67.74%
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From the above tables, it can be found that the classification accuracy of dataset 1 and
dataset 2 is higher than that of dataset 3 in general because the optical images and SAR
images share limited information leading to difficulties in obtaining better domain adapta-
tion results. Since the PCA and HTD do not belong to domain adaptation technologies, it is
observed that the direct application of PCA and HTD methods produces poor classification
accuracy for both datasets due to the large distribution discrepancy between source and
target domains. After applying domain adaptation methods, the classification accuracy
is changed to various results. Specifically, the CORAL method obtains poor results for
different domain adaptation tasks because it only considers the second-order statistical
alignment of the samples without considering the category information of the samples. For
the CMMS as well as the JFSSS-HFT method, their classification accuracies are higher than
the other comparison methods due to their ability to utilize the labeling information of the
samples as supervised methods. For dataset 1 and dataset 3, JFSSS-HFT obtains the best
results among the comparison methods because it is a heterogeneous features extraction
method that avoids the interpolation of images and jointly considers the sample weighting
of the sample space and the feature transformation of the feature space to ensure the valid-
ity of the transferring results. For dataset 2, the CMMS method has the best performance
among the comparison methods. It is worth noting that the proposed CCT-HTD achieves
the best classification results across domains for the two datasets because CCT-HTD is the
unique domain adaptation method that can handle heterogeneous feature tensors. Not only
that, CCT-HTD can excavate class information and be robust to the outliers, thus ensuring
better classification results. It indicates that the proposed CCT-HTD outperforms typical
domain adaptation methods for feature extraction of heterogeneous remote sensing data
from different sources.

To further validate the robustness of CCT-HTD, dataset 1 and dataset 2 were added
with interference samples respectively to further examine the domain adaptation results.
Specifically, seven slices of other types of aircraft were added to the source domain of
dataset 1, and nine slices of other types of tanks or trucks were added to the source domain
of dataset 2. Some of the interference samples are shown in Figure 12. By transferring
the source domain mixed with interference samples to the target domain, the obtained
experimental results are shown in Tables 8 and 9.

Figure 12. Examples of interferences samples. (a,b) Display the interference samples of other type of
airplanes. (c–e) Show the interference samples of other type of tanks.

Table 8. Classification accuracies of different domain adaptation methods by adding interference
samples with 1NN and SVM using dataset 1.

Classifier Task PCA HTD TCA CORAL JDA ATL CMMS JFSSS-HFT CCT-HTD

1NN
S→ T 30.56% 47.22% 77.8% 44.4% 50% 50% 47.22% 66.67% 83.3%
T → S 47.7% 47.69% 33.85% 47.7% 44.62% 69.27% 64.62% 76.92% 84.62

SVM
S→ T 41.67% 50% 80.56% 41.67% 55.56% 55.56% 52.78% 72.2% 83.3%
T → S 49.3% 46.15% 67.7% 46.2% 55.4% 52.3% 52.31% 78.5% 83.08%
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Table 9. Classification accuracies of different domain adaptation methods by adding interference
samples with 1NN and SVM using dataset 2.

Classifier Task PCA HTD TCA CORAL JDA ATL CMMS JFSSS-HFT CCT-HTD

1NN
S→ T 39.25% 45.76% 59.02% 56.83% 56.83% 48.63% 65.57% 49.18% 73.45%
T → S 24.19% 45.20% 56.99% 19.35% 63.98% 27.96% 69.35% 57.53% 70.43%

SVM
S→ T 30.11% 46.89% 49.46% 20.90% 50.82% 44.26% 78.53% 38.79% 80.79%
T → S 25.27% 45.76% 58.60% 15.59% 52.35% 24.19% 67.74% 46.77% 79.66%

Comparing the results with the addition of interference samples, it is found that the
results of comparison methods change significantly after adding interference samples; most
of them become worse. This is because the interference samples change the distribution of
the source domain data and thus affect the cross-domain classification results. In contrast,
since the CCT-HTD can utilize the adaptive sample-weighing matrix to remove outliers,
the CCT-HTD can obtain similar results whether the dataset is mixed with interference
samples or not. This further indicates that our CCT-HTD outperforms the typical domain
adaptation-oriented feature extraction methods for object classification across sources.

4. Discussion
4.1. Discussion of the Experimental Results of the Proposed Methods

From the experimental results, it is seen that the proposed CFM-HTD and CCT-HTD
can obtain high recognition accuracy for multisource fusion and domain adaptation using
optical multiangle images and multiangle SAR images. However, it is worth noting that the
accuracy of CCT-HTD using dataset 3 is not high. The reason is probably that the optical
images and SAR images share limited information, causing a difficult domain adaptation.
Nevertheless, the accuracy of CCT-HTD using dataset 3 is higher than the comparison
methods. Consequently, it implies the proposed CFM-HTD and CCT-HTD outperform the
typical multisource fusion-oriented and domain adaptation-oriented methods for different
datasets, respectively.

4.2. Discussion of the Relationship between Coupled Heterogeneous Tucker Decomposition and the
Existing Methods

To express the relationship between two types of C-HTD clearly, CFM-HTD and
CCT-HTD are simplified as follows by ignoring the adaptive sample-weighing matrix.

min
G1 ,G2 ,U1

l ,U2
l ,UL+1

∥∥χ1 − G1 ×1 U1
1 ×2 . . .×L+1 UL+1

∥∥2
F +

∥∥χ2 − G2 ×1 U2
1 ×2 . . .×L+1 UL+1

∥∥2
F−

c×
(

∑
m

∥∥∥Gm
1 −

1
MG1 ×L+1 eM

∥∥∥2

F
+ ∑

m

∥∥∥Gm
2 − 1
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∥∥∥2

F

) (40)
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m

∥∥∥Gm − 1
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∥∥∥2

F

)
.

(41)

It is observed that the CFM-HTD and CCT-HTD have a symmetric structure. For
CFM-HTD, it requires that the category indicator factor matrix corresponding to different
sources is identical. For CCT-HTD, it requires that the core tensor corresponding to different
sources is identical.

In addition, when the input is the single-source data, the current C-HTD is degraded
to HTD. When the input is the single-source data without the constraints of UL+1, the
C-HTD is degraded to standard TD. Furthermore, when the input is the single-source data,
and its representation is a vector, then the C-HTD is degraded to the constrained matrix
decomposition used for the cluster [44].

4.3. Discussion of the Convergence and Complexity

For the two types of C-HTD, it is found that the optimization problem is the uncon-
strained quadratic programming with respect to core tensor. To ensure the convexity of
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quadratic programming, the second-order derivative of the objective function with respect
to the core tensor should be positive, i.e., Û(i, i) + L(i, i) > 0 for each i (see Equations (29)
and (59)). Therefore, the regularization parameter c should not be overly large. When
the regularization parameter c is suitable, the optimal core tensor can be expressed as the
analytical expression of the other variables. In addition, since the feasible region of the
optimization problem of coupled heterogeneous Tucker decompositions is bounded, the
value of the objective function is bounded. Applying the proposed alternative optimization
scheme will generate the monotonically non-increasing sequence. Therefore, there exists a
limit, and the iteration updating may converge to the optimal solution.

To evaluate the computational complexity of the proposed CFM-HTD and CCT-HTD
conveniently, let εs = 0 and assume the dimensions of used samples RI1,I2,...,IL and the
optimal core tensors Ri1,i2,...,iL (set i1 = i2 = . . . = iL+1, I1 = I2 = . . . = IL+1) are the same
for both the CFM-HTD and CCT-HTD. In this way, both the CFM-HTD and CCT-HTD
consist of three main optimization solving parts, i.e., (1) optimize the orthonormal factor
matrix; (2) optimize the class-indicator factor matrix; (3) optimize the core tensor, and thus
present the similar computational complexity. For convenience, we used CFM-HTD as an
example to analyze the computational complexity.

When optimizing the orthonormal factor matrix, it is needed to calculate G(l)
1 H(l)T

1 X(l)T
1 .

Since G(l)
1 H(l)T

1 = Mat(l)

(
G1 ∏

j 6=l
×jU1

j

)
, the main computational complexity produced by mul-

tiplications is O

(
∑

k 6=l
(ik)

2 Ik ∏
j 6=k

ij + il Il ∏
j 6=l

(
Ij
)2
)

. When optimizing the class-indicator factor

matrix, the time consumption is produced by calculating Equation (21), i.e., the multiplications
in G(L+1)

1 G(L+1)T
1 , G(L+1)

2 G(L+1)T
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. When optimizing the core tensor, the time consumption is pro-

duced by the multiplications UL+1(:, i)TX(L+1)
1 H(L+1)

1 in Equation (29). Since X(L+1)
1 H(L+1)
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. Therefore, for each iteration of the proposed method, the total computa-

tional complexity is nearly:
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5. Conclusions

To extract useful information from heterogeneous multisource remote sensing data,
the coupled heterogeneous Tucker decomposition method as a unified framework is pro-
posed for multisource fusion-oriented and domain adaptation-oriented feature extraction.
It consists of two versions of sub-methods according to different coupled constraints,
i.e., CFM-HTD and CCT-HTD, where the former is used to extract complementary features
for multisource fusion and the latter is used to mine shared features for domain adaptation.
Compared with typical TD, HTD, as well as the other multisource fusion-oriented and
domain adaptation-oriented feature extraction methods that can only handle vector or
homogeneous tensors as input, the CFM-HTD and CCT-HTD can accept heterogeneous
tensors as input to excavate complementary or shared information from multisource re-
mote sensing data in an associative manner. In addition, the CFM-HTD and CCT-HTD can
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adapt to supervised and semi-supervised situations using the class-indicator factor matrix.
Moreover, in contrast to the existing domain adaptation-oriented feature extraction meth-
ods that are susceptible to outliers, the CCT-HTD can remove outliers using the adaptive
sample-weighing matrix to reduce the occurrence of negative transfer.

The future work focuses on extending coupled heterogeneous Tucker decomposi-
tion to cope with remote sensing image change detection and developing the coupled
heterogeneous CP decomposition method.

Supplementary Materials: The code of C-HTD can be found at https://github.com/supergt3/C-
HTD (accessed on 1 May 2022).

Author Contributions: Methodology, T.G.; Project administration, H.C.; Data curation, J.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was in part by the Natural Science Foundation of Heilongjiang Province under
Grant YQ2021F005, and in part by the National Key Laboratory of Science and Technology on Remote
Sensing Information and Image Analysis Foundation Project under Grant 6142A010301.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

To solve the optimization problem of CCT-HTD, the alternative optimization scheme
is constructed to update Us

l , Ut
l , G, and Ws sequentially as the solving process of CFM-HTD.

(a) Updating Us
l and Ut

l 1 ≤ l ≤ L.
Since the updating process of Us

l and Ut
l is almost the same, we only provide the

updating process of Us
l . The Ut

l can be updated in the same way. When updating Us
l , the

current sub-optimization is provided as:

min
Us

l

∥∥∥χs ×L+1 Ws − G ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws
∥∥∥2

F

s.t.UsT
l Us

l = I 1 ≤ l ≤ L.
(A1)

Convert Equation (A1) to matrix form. We obtain:
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F
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where X(l)
s = Mat(l)(χs ×L+1 Ws), G(l) = Mat(l)(G), and H(l)
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L+1 ×Ws). Further, Equation (A2) can be revised as follows:

min
Us

l

− tr
(

Us
l G

(l)H(l)T
s X(l)T

s

)
s.t.UsT

l Us
l = I 1 ≤ l ≤ L.

(A3)

Equation (A3) is the orthogonal Procrustes problem, and it can be solved by:

Us
l = V̂sÛs

T , (A4)

where Ûs and V̂s denote the left singular vectors of G(l)H(l)T
s X(l)T

s and right singular vectors
of G(l)H(l)T

s X(l)T
s , respectively.

(b) Updating Us
L+1 and Ut

L+1.

https://github.com/supergt3/C-HTD
https://github.com/supergt3/C-HTD
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The updating processing of Us
L+1 and Us

L+1 is almost the same. For ease of writing,
we only provide the updating processing of Us

L+1. When updating Us
L+1, the current

sub-optimization is shown below.

min
Us

L+1,Ut
L+1

∥∥∥χs ×L+1 Ws − G ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws
∥∥∥2

F

s.t.Us
L+1(i, j) ≥ 0 ∑

j
Us

L+1(i, j) = 1i f yi
s = 0.

(A5)

To solve this sub-optimization, the auxiliary variable ν ∈ RM is constructed, and then
Equation (A5) is revised as:

min
Us

L+1

∥∥∥χs ×L+1 Ws − G ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws
∥∥∥2

F

s.t.ν ≥ 0
Us

L+1(i, j) = ν(j) ∑
j

Us
L+1(i, j) = 1 i f yi

s = 0.
(A6)

Since each row in Us
L+1 is independent, the updating of Us

L+1(n, :) for yn
s = 0 can be

described as independent sub-optimization, as can be seen:

min
Us

L+1(n,:)

∥∥∥Xn(L+1)
s −Us

L+1(n, :)G(L+1)H(L+1)T
s

∥∥∥2

F

s.t.ν ≥ 0
Us

L+1(n, :) = ν(n) i f yn
s = 0

∑
j

Us
L+1(n, j) = 1 i f yn

s = 0,

(A7)

where Xn(L+1)
s = Mat(L+1)(χ

n
s ), G(L+1) = Mat(L+1)(G), and H(L+1)

s = Us
1 ⊗ . . .⊗Us

L.
To solve this sub-optimization, utilizing alternating direction method of multipliers,

the augmented Lagrangian function can be obtained as:

min
Us

L+1(n,:)

∥∥∥Xn(L+1)
s −Us

L+1(n, :)G(L+1)H(L+1)T
s

∥∥∥2

F
+

µ
2

∥∥∥∥∑
i

Us
L+1(n, i)− 1

∥∥∥∥2

2
+ µ

2 ∑
i

∥∥Us
L+1(n, i)− ν(i)

∥∥2
2+

λ

(
∑
i

Us
L+1(n, i)− 1

)
+ ∑

i
λ′ (i)

(
Us

L+1(n, i)− ν(i)
)

s.t.ν ≥ 0,

(A8)

where µ denotes the penalty parameter. The λ and λ′ are Lagrangian multipliers. Let the
partial derivative with respect to Us

L+1(n, :) be zeros. We have:

∂L
∂Us

L+1(n,:) = 0⇒

Us
L+1(n, :)T =

(
2G(L+1)G(L+1)T + µeeT + µ× diag(e)

)−1(
2G(L+1)H(L+1)

s Xn(L+1)T
s + µ(e + ν)− λe− λ′

)
.

(A9)

According to Equation (A9), US
l+1(n, :) can be updated. For λ and λ′ , they can be

updated by:

λ = λ + µ

(
∑
i

Us
L+1(i, n)− 1

)
λ′ (i) = λ′ (i) + µ

(
Us

L+1(n, i)− ν(i)
)
.

(A10)
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For ν, let the partial derivative of the objective function in Equation (A8) with respect
to ν be zeros. We have:

∂L
∂ν(i) = 0⇒
ν(i) = 1

µ

(
µUs

L+1(n, i) + λ′ (i)
)
.

(A11)

Combining with the nonnegative constraint, the ν can be updated as:

ν(i) = max
(

0,
1
µ

(
µUs

L+1(n, i) + λ′ (i)
))

. (A12)

As to µ, it is updated in the following manner:

µ = min(pµ, µmax), (A13)

where p and µmax denote the learning rate and the upper bound of penalty parameter,
respectively.

(c) Updating G.
When updating G, it is needed to solve the following sub-optimization.

min
G

∥∥∥χs ×L+1 Ws − G ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws
∥∥∥2

F
+∥∥∥χt − G ×1 Ut

1 ×2 . . .×L+1 Ut
L+1

∥∥∥2

F
− c

(
∑
m

∥∥∥∥Gm − 1
MG ×L+1 eM

∥∥∥∥2

F

)
.

(A14)

Transform Equation (A14) to matrix form as follows:

min
G

∥∥∥X(L+1)
s −

(
Us

L+1 ×Ws)×G(L+1)H(L+1)T
s

∥∥∥2

F
+∥∥∥X(L+1)

t −Ut
L+1 ×G(L+1)H(L+1)T

t

∥∥∥2

F
+ tr

(
G(L+1)TLG(L+1)

)
,

(A15)

where X(L+1)
s = Mat(L+1)(χs ×L+1 Ws), X(L+1)

t = Mat(L+1)(χt), G(L+1) = Mat(L+1)(G),
H(L+1)

s = Us
1 ⊗ . . . ⊗Us

L, and H(L+1)
t = Ut

1 ⊗ . . . ⊗Ut
L. The L denotes Laplacian matrix

detailed as:

L = −c
M
∑

m=1
ẽmẽT

m

ẽm ∈ RM

ẽm(i) =
{

1− 1
M i f i = m

− 1
M i f i 6= m

.

(A16)

For ease of calculation,
{

G(L+1)(i, :)
}M

i=1
is updated in turn. In this way, set the

partial derivative of objective function in Equation (A15) with respect to G(L+1)(i, :) be zero.
We have:

G(L+1)(i, :) =
(
Û(i, i) + L(i, i)

)−1 × (−
(
Us

L+1(:, i)×Ws(i, i)
)TX(L+1)

s H(L+1)
s

−Ut
L+1(:, i)TX(L+1)

t H(L+1)
t − lTG(L+1)),

(A17)

where Û =
(
Us

L+1 ×Ws)T(Us
L+1 ×Ws)+ UtT

L+1Ut
L+1. The l = L(:, i) + Û(:, i) and l(i) = 0.

Using Equation (A17), G(L+1)(i, :) can be updated.
(d) Updating Ws.
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When updating Ws, the following sub-optimization is needed to be solved.

min
Ws

∥∥χs ×L+1 Ws − Gs ×1 Us
1 ×2 . . .×L+1 Us

L+1 ×L+1 Ws∥∥2
F

s.t.∑
i

Ws(i, i)2 = (1− εs)Ns

Ws(i, j) = 0 ∀i 6= j
0 ≤Ws(i, i)2 ≤ 1.

(A18)

Convert Equation (A18) to matrix form as follows:

min
Ws

Ws(i, i)2 ×
∥∥∥X(L+1)

s (i, :)−Us
L+1(i, :)G(L+1)H(L+1)T

s

∥∥∥2

F
s.t.∑

i
Ws(i, i)2 = (1− εs)Ns

Ws(i, j) = 0 ∀i 6= j
0 ≤Ws(i, i)2 ≤ 1.

(A19)

Equation (A19) is linear programming, and it can be solved conveniently using the fol-

lowing manner. Sort
{∥∥∥X(L+1)

s (i, :)−Us
L+1(i, :)G(L+1)H(L+1)T

s

∥∥∥2

F

}Ns

i=1
, and set Ws(i, i) = 1

that corresponds ceil((1− εs)Ns) largest
∥∥∥X(L+1)

s (i, :)−Us
L+1(i, :)G(L+1)H(L+1)T

s

∥∥∥2

F
and set

the rest entries of Ws be zeros, where operator ceil(·) denotes the round-up operation.
The Us

l , Ut
l , G, and Ws is updated iteratively until the iteration number exceeds the

threshold or the following criteria are met.

L

∑
l=1

∥∥∥∥Us
l − Ûs

l

∥∥∥∥2

F
+

L

∑
l=1

∥∥∥∥Ut
l − Ût

l

∥∥∥∥2

F
≤ δ, (A20)

where Ûs
l and Ût

l denote the factor matrices updated in the last iteration.
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