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Abstract: Archaeological research is increasingly embedding individual sites in archaeological con-
texts and aims at reconstructing entire historical landscapes. In doing so, it benefits from technological
developments in the field of archaeological prospection over the last 20 years, including LiDAR-
based Digital Terrain Models, special visualizations, and automated site detection. The latter can
generate comprehensive datasets with manageable effort that are useful for answering large-scale
archaeological research questions. This article presents a highly automated workflow, in which a
Convolutional Neural Network is used to detect burial mounds in the proximity of remotely located
hollow ways. Detected mounds are then analyzed with respect to their distribution and a possible
spatial relation to hollow ways. The detection works well, produces a reasonable number of results,
and achieved a precision of at least 77%. The distribution of mounds shows a clear maximum in the
radius of 2000–2500 m. This supports future research such as visibility or cost path analysis.

Keywords: landscape archaeology; LiDAR; automated detection; CNN; burial mound; hollow way

1. Introduction

Archaeological research is constantly evolving, especially considering the influence
of relatively new techniques such as LiDAR-derived Digital Terrain Models (DTM) and
computer-assisted visualization and detection approaches. The past was characterized by
dating records and establishing typological development series. Nowadays, it is about
understanding historical contexts and landscapes [1–5]. How did humans used to live,
influence, and interact with their environment? How were settlement clusters (Siedlungskam-
mern, early settlements in small, cleared areas in forests) structured internally and how
were they related to each other? Where were farms or settlements located, where was
agricultural land located, where were the deceased buried, and how was the unsettled en-
vironment used? Reconstruction of settled landscapes is becoming increasingly important
to understand how humans and their environment influenced each other.

At this point, it is worth investigating ancient pathways as they connected farms,
settlements, and settlement clusters. However, detecting these is difficult as they often used
the same routes as modern roads due to non-changing topographical conditions. They used
to run, as they do today, where the distance between start and destination is the easiest to
overcome. Especially in mountainous areas, there is often hardly any variation.

One aspect of historic landscape reconstruction is to analyze possible spatial relations
of different archaeological objects [6], such as pathways and burial mounds. Up to now, only
in some cases, researchers could verify that burial mounds were located near and directly
related to pathways [7]. The difficulty is to find proof of whether routes were already used
when nearby burial mounds were built. In general, pathways are difficult to date. Even if
such a structure is excavated according to most modern archaeological methods, often only
finds from the last phase of use are recovered. Finds from the time when a route was first
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used are not to be expected. In some lucky cases, hoards are discovered along pathways.
They were hidden by travelers in dangerous situations and were intended to be picked up
later. This sometimes did not happen and today, hoards therefore allow to date pathways
to a certain time or to prove that they have been used for a long period.

Automated detection approaches can produce extensive data sets of archaeological
records on regional scales and therefore allow investigations of spatial distributions of
different monument types. Research on automation in archaeological prospection using air-
borne LiDAR-derived DTM applied different classifiers such as Template Matching [8–10],
Object-based Image Analysis (OBIA) [11–14] or Convolutional Neural Networks (CNN).
In recent years, CNNs have proven to be powerful tools for detecting different kinds of
archaeological objects [15–22]. They repeatedly apply different kernel filters to input images
(convolution), that have been known in remote sensing for a long time, e.g., from the field
of edge detection. In this aspect, they are related to Template Matching, which only applies
one kernel filter in the form of the desired structure. While training, a CNN observes, which
filters intensify or weaken certain structures in the training images and assigns given class
names to unique signatures of positively and negatively triggered filters (neurons). An
unknown image will then be classified into the class with the most similar signature.

This study presents a scalable, automated workflow for investigating spatial relations
of different monument types. The first part of which is a burial mound detection using
a CNN to investigate if these also work well with Westphalian monument types and
terrain data (1). The second part integrates automated detection approaches into current
research to investigate how automation can assist research on archaeological sites within
their respective historical contexts (2). In this study, the suspected spatial relation of burial
mounds and pathways is evaluated using basic measurements to estimate, within which
distance from pathways human activities are to be expected. This will be the basis for
further research.

1.1. Study Area

Pathways do not necessarily leave relief imprints, which is impeding their detection
from DTMs. However, in mountainous areas, where topology determined available routes
ever since, hollow ways developed along frequently used routes, which were also possibly
used longer than pathways in flatlands. This would increase the chance that hollow ways
date to the same time as possible mounds in their proximity and make results more reliable.
Furthermore, mountainous areas are often forested, which preserves the relief from leveling.
Under those conditions, hollow ways, burial mounds, and other relief structures are well
visible in a DTM (Figure 1) [23,24].

The eastern part of North Rhine-Westphalia, called Westfalen-Lippe, is the area of re-
sponsibility of the LWL archaeological institute (Landschaftsverband Westfalen-Lippe, Archäolo-
gie für Westfalen, Figure 2). Within this region, several aspects were considered in choosing
an adequate study area for this specific study.

1. Hollow ways usually appear in mountainous regions as they require certain relief energy.
2. Repetitive plowing levels relief features, including above-terrain monuments.
3. Only regions that were populated during the Bronze and Iron Age, where most

mounds in Westphalia and Lippe date to, are of interest.
4. Areas with modern infrastructure are to be rejected as monuments are usually de-

stroyed and new detections probably correspond to modern relief features.
5. Forests have a relief-preserving character. Therefore, monuments are most likely to

be intact.
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Figure 1. A large burial mound cluster in direct proximity to hollow ways. Data source: [25]. 
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Figure 1. A large burial mound cluster in direct proximity to hollow ways. Data source: [25].

Considering all criteria, foremost forests in three regions in East Westphalia and Lippe
remain suitable for investigation (Figure 2). The northeastern and central, flat Westphalian
Basin (Westfälische Bucht) is unsuitable due to its agricultural character and flat terrain. The
same applies to the mountainous area of South Westphalia (Sauerland). According to the
current state of research, it was poorly populated in the relevant periods [26].
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For training the CNN, a training area of 168 km2 was defined (Figure 2) for which
reliable reference data are available. It is located directly south of the city of Paderborn in
the transition from a rather flat terrain to the Paderborn Plateau, whose surface is cut by
river valleys.

1.2. Data

The LiDAR data sets were acquired in 2018 and 2019 and are provided online by
the provincial government as filtered last pulse point data in an interpolated regular grid
of 1 pt/m2 [25]. These data can be converted into a DTM without interpolation and are
sufficient for this purpose.

Confusions with modern structures affect both manual and automated classifications
of archaeological objects, which is in particular true for simple relief structures such as
mounds and pits [12,14,17]. Mounds in forests are more interesting than those in settled
areas as they are less likely to be related to modern infrastructure. Location-based ranking
is a suitable method for differentiating morphologically identical structures [14,20,28]. This
is implemented via the Positive Layer from previous work [29] (Figure 3). During generation,
relief imprints of modern infrastructure were estimated and removed from the area of
Westphalia and Lippe. Finally, this data set contains areas that are probably not affected
and therefore archaeologically relevant. It is used to select hollow ways and to reduce false
positives in the classification. Additionally, a governmental forest data set is used to further
estimate the remoteness of hollow ways [25].
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Figure 3. A typical landscape overlaid by the Positive Layer. Only archaeologically relevant areas
such as fields and forests are included, while modern infrastructure, e.g., settlements, streets, and
windmills, were removed. Data source: [25].

Data concerning hollow ways and burial mounds were extracted from the LWL
database of archaeological records as point vector data. As this database grew over decades
and automated detection tools were not available until recently, its data cannot directly
serve as a reference for automated detection approaches. Mound clusters are often recorded
as a whole. Therefore, the authors ensured that every single mound was represented
individually by a centered point geometry. Records of destroyed or completely eroded
mounds were removed. After visual inspection, 194 reference mounds were used for
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training the CNN. This number is not ideal for CNN training. However, access to very
high-quality reference data in terms of the issues addressed above is limited.

2. Methodology

Software-wise only ArcGIS Pro 2.9 by ESRI was used as it includes a deep learning
infrastructure, whose user-friendly tools grant easy access to deep learning. For time and
efficiency reasons, the automated workflow was not run as a whole but was split into a
few parts such as preparation and classification. Each of which was automated using the
ArcGIS Pro ModelBuilder as that could be used to visualize the workflow at the same time.
Unlisted parameters in the corresponding figures were left on default.

To fulfill conditions 4 and 5 of the list above and to estimate the remoteness of hollow
ways, the geometric intersection of the Positive Layer and forests was calculated. For every
known hollow way in the study area, the portion of archaeologically relevant forests within
500 m was calculated. Only those monuments were considered, that are surrounded by
archaeologically relevant forests to an extent of at least 90% and are located in the region
described above, leaving a total of 43 monuments. Terrain data were then acquired for
circular zones of a 3 km radius around these hollow ways (Figure 4) as well as for the
training area.

The acquired terrain point data were directly converted into a raster DTM as the points
are already distributed evenly in a 1 m grid and therefore do not require interpolation.
From the DTM including absolute height, the following steps generated a 3-band input
DTM that the CNN mound classification was based on (Figure 5).

1. The initial DTM was smoothed using a circular filter of a 1 m radius to reduce noise.
2. Sinks were removed. In slope maps, mounds and sinks look alike as slope values are

not indicating upwards or downwards trends. Filling sinks should ease the training
process of the CNN.

3. The purged DTM was then used to calculate three visualizations that describe mounds
in their respective way:

a. Aspect: mounds are represented by a unique composition of all available aspects
in one place, looking like an umbrella if classified conventionally in 8 cardinal
directions (D8).

b. Slope: mounds appear as ring-shaped slope anomalies.
c. Difference Map: mounds are described as round local maxima. It is based on

trend removal using a circular filter of a radius of 10 m, which corresponds to
most known burial mounds. The smoothed DTM including the macro relief
was then subtracted from the initial one to extract micro relief features [30].

4. These visualizations were finally composed into a 3-band DTM.

Working with CNNs and other deep learning techniques in this environment consists
of three steps: training data generation, training, and detection. A point data set consisting
of 194 reference mounds and 219 randomly placed non-mound points was generated. For
all points, buffer zones of 12 m radius were calculated. The resulting areas were then used
to clip image chips of 30 × 30 pixels from the 3-band DTM using a stride of 15 pixels. To
increase the number of chips, a rotation angle of 45◦ was used, increasing the number of
mound samples drastically. In the next step, a Faster R-CNN was trained using a frozen
RESNET50 backbone model, a chip size of 175, and an epoch limit of 50 (training stopped
after 25 epochs as the model did not further improve). Finally, the CNN was applied to the
training area using a threshold of 50%. This is unusually low on purpose to allow a deeper
evaluation of the model’s performance (Figures 6 and 7).
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On a modern mid-range computer with a Ryzen 3100 8-thread CPU @ 3.90 GHz, 16 GB
of RAM, and a GTX 1660 Super (6 GB), the export step took 13 h and 16 min to complete.
The authors exaggerated in this case on purpose to investigate the influence of the number
of training chips (exports with an angle of 180◦ only took around 1 h, reducing training time
as well). Training then took 2 h and 18 min and detection 1 h and 46 min. The batch_size
parameter was maxed out in each step to use available resources as efficiently as possible.

Without post classification (Figure 8), the CNN generated 17,993 results and was able
to find 191 of 194 reference mounds (recall: 98.45%). After removing non-mound results,
7210 results were left, including 190 reference mounds (recall: 97.94%). One mound was
misclassified, although it served for the generation of image chips. At this stage, precision
(true positives/(true positives + false positives)) was not yet reasonable (1.06%/2.64%).
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The positive layer removed all results whose center was not located within, as these
usually do not represent mounds. This left 3549 results and 186 reference mounds (recall:
95.87%). Some mounds located very close to or crossed by modern infrastructure were
removed as well (Figure 9). Raising the confidence threshold to 99% leaves 161 results
and 138 detected reference mounds (recall: 71.13%) and produces a reasonable precision
of 85.71%. Closer analysis revealed that some results are not false but rather new positives.
These are mounds, that the authors did not consider to be suitable for training as they are
eroded or damaged and are therefore not representative enough to be part of the training
data set. Including them in the calculation would raise precision to 90.68%. It shows that
the CNN is generally working well.
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CNNs were trained with far less data. The CNNs only performed slightly worse (precision:
88.66%, recall: 44.33%) and using less training data will be considered in future applications,
as the extensive 45◦ data set was generated anyway. Second, the size of training image chips
was altered, resulting in worse measurements as well (precision: 68.88%, recall: 69.59%).
Mask R-CNNs were tested as well, however, the best performing CNN had an output of
only 66 detected mounds at a threshold of 90%. Precision was at only 77.27% and recall
at 26.29%.

For the application in unknown regions, the authors consider a high precision to
be more important than detecting lots of structures as results should still be interpreted
manually. For this specific workflow, the quality therefore is sufficient, as the goal is to
produce a manageable number of results that have a high probability to be archaeologically
relevant. Therefore, the CNN was applied to a subset of six hollow ways to evaluate
transferability and estimate the performance on the whole area(s) of interest (Figure 4).
This revealed that additional post classification steps would improve results.

Referring to the principles of OBIA, the output rectangles of the CNN were interpreted
as objects, for each of which, the mean and minimum Difference Map pixel values were
calculated. Only those were further considered whose mean was ≥0 and ≤0.15 and
whose minimum was ≥−0.36 and ≤0.09. These thresholds were determined by manual
interpretation of all 348 detections in this area (as reliable reference data are not available).
Applying these thresholds only left 12 detections, 9 of which were already included in the
database of archaeological records. Three represent probable new detections, meaning that
precision is at least 75% while producing a manageable number of results.

Including post classification, the CNN was applied to the whole DTM (Figure 4).
Detected mounds were analyzed regarding their spatial distribution around hollow ways.
In an iterative process, mounds in areas defined by radii of 500 m to 3000 m were selected
and their numbers assigned to the hollow ways (Figure 10).
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3. Results

Applied to the whole DTM, the CNN generated 184 output rectangles (Figure 11).
About 77 of which were already included in the database of archaeological records. As
data for the areas around the hollow ways are probably not complete, the results were
interpreted manually to calculate precision at least. This revealed a total of 141 mounds
that are to be considered as true positives. The corresponding precision of 77% is already
known from the subset. Further, the 43 false positives were investigated regarding the
reason for the respective false alarm of the classification. Three of them could be identified
as structures that the CNN should not have detected as they are sinks, the exact opposite
of mounds. Another eight should have been removed by the Positive Layer as they are
modern structures. Some of these are missing in the DLM, others belong to construction
sites and are not yet included. The remaining 32 are in fact morphologically identical to
burial mounds, e.g., dunes or hilltops. The latter furthermore used to be a welcome location
for burial mounds, impeding their isolation even more. The authors observed the same
difficulties in another investigation area using OBIA [14].
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Figure 11. Detected burial mounds in direct proximity to a hollow way (top). Green polygons
represent true positives. Yellow polygons represent detections that were filtered out during post
classification as their confidence was too low. Lowering the confidence threshold would have included
them, however, too many false positives would have been included as well. Data source: [25].

Finally, the number of detected mounds in areas defined by radii of 500 m to 3000 m
around each hollow way was calculated (Figure 12 and Table 1).
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Figure 12. Detected mounds around each hollow way. The colors correspond to the zone, in which
the mounds are located, and are also to be found in Table 1.
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Table 1. Detailed list of all results. Numbers that are referenced in the text are highlighted.
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3 95 0 0 1 1 5 20 0 0 1 0 4 15
4 95 1 1 7 9 12 14 1 0 6 2 3 2
5 94 0 0 0 0 0 0 0 0 0 0 0 0
6 94 0 2 8 15 15 15 0 2 6 7 0 0
7 94 2 4 4 7 18 19 2 2 0 3 11 1
8 94 0 0 1 1 1 2 0 0 1 0 0 1
9 93 0 1 7 8 11 14 0 1 6 1 3 3

10 93 0 0 0 0 0 0 0 0 0 0 0 0
11 93 0 1 2 2 3 6 0 1 1 0 1 3
12 93 0 0 0 0 1 1 0 0 0 0 1 0
13 93 1 1 7 10 12 13 1 0 6 3 2 1
14 93 0 0 0 0 0 0 0 0 0 0 0 0
15 93 0 0 0 1 1 1 0 0 0 1 0 0
16 93 0 1 1 1 2 3 0 1 0 0 1 1
17 93 6 27 33 38 46 47 6 21 6 5 8 1
18 93 0 0 0 0 3 4 0 0 0 0 3 1
19 92 0 0 0 1 3 4 0 0 0 1 2 1
20 92 0 3 7 10 13 14 0 3 4 3 3 1
21 92 0 1 1 2 4 5 0 1 0 1 2 1
22 92 0 0 3 9 12 14 0 0 3 6 3 2
23 92 0 0 0 0 0 0 0 0 0 0 0 0
24 92 0 0 0 2 7 13 0 0 0 2 5 6
25 92 1 1 1 1 3 3 1 0 0 0 2 0
26 92 0 1 3 7 15 20 0 1 2 4 8 5
27 91 0 0 0 0 3 4 0 0 0 0 3 1
28 91 0 0 0 1 2 3 0 0 0 1 1 1
29 91 0 0 6 10 14 20 0 0 6 4 4 6
30 91 0 0 0 1 3 4 0 0 0 1 2 1
31 91 0 1 1 3 3 3 0 1 0 2 0 0
32 91 0 0 1 1 1 1 0 0 1 0 0 0
33 91 0 1 2 2 3 4 0 1 1 0 1 1
34 91 0 1 4 9 14 17 0 1 3 5 5 3
35 91 1 1 1 1 3 3 1 0 0 0 2 0
36 90 0 1 3 9 15 19 0 1 2 6 6 4
37 90 1 1 2 6 8 8 1 0 1 4 2 0
38 90 3 4 7 18 19 20 3 1 3 11 1 1
39 90 1 2 2 4 9 18 1 1 0 2 5 9
40 90 1 1 3 5 14 18 1 0 2 2 9 4
41 90 1 1 3 5 14 18 1 0 2 2 9 4
42 90 2 3 3 7 7 8 2 1 0 4 0 1
43 90 0 1 4 7 8 8 0 1 3 3 1 0

Sum 26 85 153 243 357 438 26 59 68 90 114 81 0 5 8 10 12 4
Mean 0.6 2 3.6 5.7 8.3 10.2 0.6 1.4 1.6 2.1 2.7 1.9 0% 13% 21% 26% 31% 10%
% >0 33 60 72 84 91 91 33 44 53 65 74 65

The combination of the presented hollow way selection and classification allows the
following insights and measurements regarding possible spatial relations.

1. On the one hand, only 33% of the hollow ways are surrounded by mounds within
a radius of 500 m and only 91% within 3000 m. As only very remote locations
were considered and archaeological objects should still be existent, the results are
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probably reliant and hollow ways apparently do not necessarily have mounds around,
especially considering that those in a distance of 3000 m are rather unlikely to relate
to the observed hollow way. An alternative interpretation is that these hollow ways
do not date to an epoch in which burial mounds were built but are younger (Table 1).

2. On the other hand, already 72% of the hollow ways have mounds within a distance of
1500 m and 84% within 2000 m. Taking the strict parameters of the (post) classification
and weaknesses of the CNN into account, the percentage might actually be higher,
which would rather confirm a positive spatial relation. Within this distance, hollow
ways are surrounded by two mounds on average (Table 1).

3. Corresponding to the basic geographical convention that objects are more related to
each other, the closer they are located to one another, the area of investigation around
each hollow way should be limited. Furthermore, detections of even larger areas
than here require above-average computing resources. As for this study no limit is
predefined by archaeological aspects such as visibility or soil type, it is interesting if a
meaningful limit can be derived from the data itself.
In general, the absolute number of detected mounds increases along with the size
of the area around each hollow way. However, the additional (ring-shaped) area
compared to the next smaller one also increases due to growing diameters. Thus, the
number of additionally detected mounds must also increase to justify larger areas. As
long as this is true, increasing the observed area is reasonable. If not, the sweet spot
is achieved. Beyond this point, the classification will possibly suffer from including
unnecessarily large areas without generating suitable amounts of results and the
workflow will become inefficient and unreliable. Here, this is the case at 2500 m as
additional detections significantly drop afterward (Figure 13). In some cases, this
distance represents the end of forests, which would explain less detections.
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4. Analyzing detected mounds around hollow ways as a whole is potentially affected
by single hollow ways with large numbers of detections (such as No.17, Table 1).
However, considering detected mounds per hollow way allows the same conclusion.
No hollow way has its maximum number of mounds within 500 m. For most hollow
ways (31%), the area including most mounds is from 2000–2500 m radius, followed by
1500–2000 m (26%) (Figure 14).
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5. The percentage of hollow ways with a least one mound confirms this as well, as
beyond 2500 m, no additional hollow ways appear (91%). In other words: No hollow
way has its closest mound within a distance of 2500 m or more (Table 1).

4. Conclusions

The CNN presented useful and reliable performance metrics in the training area. It
did not only detect reference mounds but destroyed and eroded mounds as well, which the
authors did not consider being part of the reference data set or did not see in the first place.
This probably would not have been possible with OBIA as the required object homogeneity
is very low.

The application outside the training area revealed that transferability is not naturally
given and post classification might be needed. Additionally, the number of detections
should be considered when adjusting post classifications parameters. The CNN finally
produced useful results, which allow basic insights into spatial relations of hollow ways
and burial mounds. Although it was not the focus of this article, the systematic test of
different CNNs revealed that Faster R-CNNs outperform Mask R-CNNs by far.

As expected, the Positive Layer also removed some true positives, which is unwanted
but is still better than not applying location-based ranking. The amount of training data
used here was not necessary, as a significant reduction did not result in equivalently
worse results.

The detected mounds could be used for basic spatial relation analysis. To compensate
for missed mounds, not only the number of mounds was calculated, but also the distance
in which the closed mound is located. This revealed that detection should be limited to
2500 m. Only considering the basic measurements presented above, a spatial relation is far
from obvious. Assuming that the results are reliable, not all hollow ways from the Bronze
and Iron Age are near burial mounds. An alternative explanation is that not all paths date
to these periods.

5. Discussion and Outlook

This study presented a workflow for investigating the spatial relation of hollow ways
and burial mounds under rather ideal conditions, under which the workflow itself works
well. However, a spatial relation could neither be proven nor denied. More comprehensive
and precise applications will be beneficial as the results are dependent on a variety of
parameters. Nevertheless, the results reveal guidelines for future applications such as
visibility or cost path analysis.

First of which is the selection of hollow ways in terms of the general area of interest
as well as regarding the threshold of 90%. The workflow generated useful results and
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insights under such near-ideal conditions. Future applications of this workflow will reveal
its potential under less ideal conditions, and it will be interesting to see, how much of the
historic landscape can be reconstructed in such a densely populated region as Westphalia.
This will also require more resources in terms of time and computational power. The south
of Westphalia was left aside as it was rarely populated in the questionable time. However,
this workflow could also be used to verify this. Additionally, the first appearance of hollow
ways should be investigated as possibly hollow ways without mounds around date to
younger epochs.

The distance categories, in which the number of mounds was counted, are rather
arbitrary for now to investigate general trends. Adjusting these to real ancient landscapes,
once these become clearer, would be beneficial as the spatial correlation changes within
the course of growing radii. The area, in which people used to live and interact, or the
visible area around a settlement or hollow way could serve as starting points. The results
could also be compared to those of a visibility analysis to investigate, how many mounds
in certain proximity can be seen from a specific hollow way. Alternatively, detection could
be limited to visible areas.

In technological terms, insights would become more reliable if the CNN would achieve
higher precision and recall as then, post classification, if still necessary, could use wider
thresholds to detect more results. As the number of training samples was quite low, conse-
quent and repeated generation of training data at locations where the CNN misclassified
relief features would be one possible solution. Another parameter is the 3-band DTM, on
which this classification is based. E.g., instead of filling the sinks in the original DTM, this
could be (additionally) done in the Difference Map as it would consider pseudo structures
that are generated by the lowpass filter. For this study, the authors were skeptical about
this, as it would have significantly changed the DTM.

Although the application of the Positive Layer not only rejected false positives, it is
nevertheless beneficial. Alternatively, only results that are completely within the Positive
Layer could be considered (instead of have their center in), which equals stricter class borders.
It is possible that more true than false positives are removed. Therefore, the center option
was favored in this study as it considers the individual position of a detection. Using the
Positive Layer to crop the DTM before detection would probably cut off some archaeological
structures but would reduce processing time, especially in situations where hollow ways
are close to built-up areas. Rather unsuitable is changing the areas of the Positive Layer (e.g.,
by buffering) as the resulting areas would be larger than the corresponding relief imprints.

The workflows grew step by step with intermediate performance checks. For reasons
of time and efficiency, the workflow was not automated completely as this would have
meant reproducing results that were already available. One possible way to apply the
workflow to even larger regions would be to iterate over an input data set, investigating one
hollow way at once. This would work; however, it would be potentially highly inefficient
as the detection would be run multiple times on regions in the proximity of multiple hollow
ways. A Python script would serve as a powerful tool that could only iterate over important
parts of the input data set, which is not easily possible using the Model Builder—this was
used as workflows are easy to generate within models and they can serve for workflow
visualization at the same time.
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