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Abstract: The accurate and rapid estimation of the aboveground biomass (AGB) of rice is crucial to
food security. Unmanned aerial vehicles (UAVs) mounted with hyperspectral sensors can obtain
images of high spectral and spatial resolution in a quick and effective manner. Integrating UAV-
based spatial and spectral information has substantial potential for improving crop AGB estimation.
Hyperspectral remote-sensing data with more continuous reflectance information on ground objects
provide more possibilities for band selection. The use of band selection for the spectral vegetation
index (VI) has been discussed in many studies, but few studies have paid attention to the band
selection of texture features in rice AGB estimation. In this study, UAV-based hyperspectral images
of four rice varieties in five nitrogen treatments (N0, N1, N2, N3, and N4) were obtained. First,
multiple spectral bands were used to identify the optimal bands of the spectral vegetation indices,
as well as the texture features; next, the vegetation index model (VI model), the vegetation index
combined with the corresponding-band textures model (VI+CBT model), and the vegetation index
combined with the full-band textures model (VI+FBT model) were established to compare their
respective rice AGB estimation abilities. The results showed that the optimal bands of the spectral
and textural information for AGB monitoring were inconsistent. The red-edge and near-infrared
bands demonstrated a strong correlation with the rice AGB in the spectral dimension, while the green
and red bands exhibited a high correlation with the rice AGB in the spatial dimension. The ranking
of the monitoring accuracies of the three models, from highest to lowest, was: the VI+FBT model,
then the VI+CBT model, and then the VI model. Compared with the VI model, the R2 of the VI+FBT
model and the VI+CBT model increased by 1.319% and 9.763%, respectively. The RMSE decreased by
2.070% and 16.718%, respectively, while the rRMSE decreased by 2.166% and 16.606%, respectively.
The results indicated that the integration of vegetation indices and textures can significantly improve
the accuracy of rice AGB estimation. The full-band textures contained richer information that was
highly related to rice AGB. The VI model at the tillering stage presented the greatest sensitivity to
the integration of textures, and the models in the N3 treatment (1.5 times the normal nitrogen level)
gave the best AGB estimation compared with the other nitrogen treatments. This research proposes a
reliable modeling framework for monitoring rice AGB and provides scientific support for rice-field
management.
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1. Introduction

Rice (Oryza sativa L.) is one of the most important grains in the world [1]. Aboveground
biomass (AGB) plays a fundamental role in crop management and yield estimation [2].
Real-time AGB estimations provide the basis for field nitrogen control [3]. The timely and
nondestructive monitoring of rice AGB is a prerequisite for ensuring rice production [4].
Conventional rice AGB estimation approaches, such as field campaigns, are not only time-
consuming, costly, and destructive, but also ineffective for achieving large-scale monitoring
in farmyard management [5]. By contrast, applications of remote sensing techniques have
indicated great potential for estimating AGB due to their large-scale coverage, periodic
dynamic monitoring, and non-destructiveness [6,7].

Using the vegetation indices (VIs) extracted from remote-sensing images to monitor
biomass is the most commonly applied method [8,9]. VIs are usually constructed by
mathematical operations on remotely sensed bands to take full advantage of spectral
information and enhance vegetation characteristics [10]. Considerable attention has been
paid to the application of VIs in estimating AGB due to their simplicity and easy use [11].
Nonetheless, it was proven that the vegetation index was easily disturbed by environmental
factors, such as noise and soil [9]. Relying on VIs alone may not generate promising
results. In addition to spectral information, remotely sensed images can also offer spatial
information [12]. The texture feature is a vital presentation of spatial information, which
represents the neighborhood characteristics of image pixels [13]. Integrating vegetation
indices with textures can further reduce noise and background disturbance, helping to
overcome the saturation problem at high biomass levels and improve model performance.

Some studies have already calculated vegetation indices and textures from satellite
remote sensing data to estimate the forest leaf area index [14], forest biomass [15], grassland
carbon [16], etc. However, the texture analyses of these studies were mostly based on
large-scale ecosystems, such as forests and grasslands. Few studies have used the texture
features of satellite remote-sensing images to monitor farmland ecosystems. This is mainly
because satellite remote-sensing platforms featuring coarse resolution, long access periods,
and weather influence cannot measure the spatial changes in field crops accurately [17].
Although satellite remote sensing with high spatial resolution offers sub-meter data, it does
not easily provide detailed crop phenotypic information or meet the requirements of field-
scale crop-growth monitoring [18]. In recent years, the emerging unmanned aerial vehicle
(UAV) technology, which features low costs, high spatial and spectral resolution, and easy
availability, has compensated for the disadvantages of satellite platforms [19]. UAV hyper-
spectral platforms that are capable of obtaining crop canopy images with abundant spatial
and spectral information are gradually being applied in farmland ecosystems [12]. The
textures of crops can reflect the dynamic changes in crop organs, plants, and backgrounds,
which represent the spatial information of crop growth [20].

UAV remote sensing can be divided into two groups: hyperspectral remote sensing
and multispectral remote sensing [21]. Multispectral images can be operated easily [22],
but multispectral sensors only capture discrete spectral regions centered on specific wave-
lengths, making the bandwidths large (10–40 nm on average) [23]. The limited bands
of multispectral images impede the band selection of the vegetation index to a certain
extent [24]. Additionally, multispectral images contain less spectral information compared
with hyperspectral images [25]. Board bands do not easily respond to the narrow spectral
features of ground objects, hindering the band selection and influencing the accuracy and
stability improvement of crop-growth models [26]. In contrast to multispectral data, hyper-
spectral images offer more continuous spectral and spatial information on objects through
visible-to-near-infrared wavelengths [22]. Hyperspectral images have more and narrower
bands (their bandwidth is typically less than 10 nm); therefore, they can offer more possibil-
ities to the band selection of vegetation indices and texture features. Using hyperspectral
information to build the vegetation index can further reduce noise and soil interference
and describe vegetation canopy reflectance in greater detail [23,27]. The integration of
spectral-spatial information from UAV hyperspectral data has been successfully applied
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in crop disease monitoring [28], yield estimation [29], nitrogen monitoring [30], etc., and
demonstrated reliable outcomes. Previous studies proved that UAV hyperspectral images
with high spectral and spatial resolution had great potential for crop-growth monitoring [4].
Relatively few studies have investigated the feasibility of integrating spectral and spatial
information from UAV hyperspectral images to monitor rice AGB.

Selecting appropriate spectral and textural bands from hyperspectral images plays
a central role in AGB estimation [31]. Previous studies mostly explored the influence
of band selection on the vegetation index, such as narrowband and broadband [24,32].
However, the effect of the band selection of texture features on model performance was
not considered. At different stages of growth, the nutrition absorption and environmental
impact factors are diverse. The sizes and shapes of rice plants are different, even at the
same growth stage. Studies showed that the establishment of multi-temporal models
that included the characteristics of multiple growth stages were crucial for rice-growth
management [33]. Studies focused on using multi-growth models to estimate rice yield [33],
leaf area index [34], nitrogen [20], etc. have been carried out, but no attempt has been made
to examine rice AGB estimates.

In this study, hyperspectral information was used to build vegetation indices and
the spatial information of the textures extracted by the gray-level co-occurrence matrix
(GLCM) was tested for improving VI-based models. Three kinds of the tillering–jointing–
booting model, including the vegetation index combined with the full-band textures model
(VI+FBT model), the vegetation index combined with the corresponding-band textures
model (VI+CBT model), and the vegetation index model (VI model) were constructed by
linear regression and multiple linear regression. The main objectives of this study were:
(1) to determine the sensitive bands of the vegetation indices in the spectral dimension and
the sensitive bands of the texture features in the spatial dimension, and identify the optimal
form of integration of spectral-spatial information to improve rice AGB estimation; (2) to
explore whether the integration of spectral-spatial information can increase the accuracy
of rice AGB estimations, and analyze the improvements in the VI+FBT model and the
VI+CBT model compared with the VI model; and (3) to compare the models’ performances
according to various nitrogen levels and growth stages.

2. Materials and Methods
2.1. Study Area

The field experiment was conducted in Xiashe Village, Deqing County, Zhejiang
province, China (120◦10′51.20′′E, 30◦34′21.00′′N) (Figure 1a). The study site is located in
the western part of Hangjiahu Plain, which has a long history of rice production. Xiashe
Village is a demonstration area for precision agriculture in Deqing County, which is charac-
terized by a typical subtropical monsoon climate. The warm and humid climate favors the
cultivation of rice.

2.2. Field Experiments

The experimental field was about 81 m wide in the east–west direction and 101 m long
in the north–south direction, with a total area of 0.82 hectares and an average elevation of
5 m (Figure 1b,c). The total field was divided into twenty plots, of which eighteen had a
total area of 81 m × 7 m, while the remaining two plots had a total area of 81 m × 21 m.
Two rice varieties were adopted during each experimental year, in accordance with the most
widely planted rice cultivars in local farmland. The selected varieties were: Zhejing 99 (S1)
and Jia 67 (S2) in 2018, and Nanjing 9108 (S1) and Nanjing 46 (S2) in 2019. Considering the
interaction of the general environment with water, nitrogen treatments were prevented from
seeping into other plots. Five nitrogen rates were set to grant varied rice AGB, including
N0 (0 kg ha−1), N1 (112.5 to 142.5 kg ha−1, 0.5 times the nitrogen application level of the
local farmers), N2 (225 to 285 kg ha−1, the normal level used by the local farmers), N3
(337.5 to 427.5 kg ha−1, 1.5 times the normal level), and N4 (450 to 570 kg ha−1, twice the
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normal level) [35]. The phosphate and potash fertilizers were 75 kg ha−1 and 150 kg ha−1,
respectively. All treatments contained two or more repeated plots.
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Figure 1. Field experiments. (a) Geographical location, (b) remote-sensing image, (c) experimental plots.

2.3. UAV-Based Hyperspectral Image Acquisition and Preprocessing

A six-rotor UAV (DJI M600 Pro) equipped with a Rikola hyperspectral camera (Figure 2b)
was used to acquire remote-sensing images of rice (Figure 2a). The number of bands was
62, ranging from 500–900 nm. The acquisitions of UAV images were conducted between
10:00 a.m. and 14:00 p.m. on sunny and cloudless days (Figure 2c). Each flight had a fixed
route and a fixed altitude of 200 m, with a ground spatial resolution of 13 cm. The exposure
time of the hyperspectral camera was adjusted according to the lighting conditions.
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flight experiments.

Rikola hyperspectral camera can finish imaging of the same band at once and the data
of all pixels are real radiance values without interpolation [36]. The images taken by the
Rikola camera during the flight were stored on the memory card. The hyperspectral images
were preprocessed to obtain field canopy reflectance. The raw data were preprocessed
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through dark-current correction, halo correction, and distortion correction to convert DN
values into radiation values in Rikola hyperspectral imager V2.1.4 (Rikola Ltd., Oulu,
Finland) and band registration by RegMosaic (Rikola, Ltd.). Radiometric correction was
performed using the reference board with fixed reflectance on the ground. The equation of
radiometric correction (Equation (1)) was used to calculate the reflectance of images:

Refimg =
Radimg × Refgrey

Radgrey
(1)

Radimg represents the radiation of the image. Radgrey represents the radiation of the
reference board, and Refgrey represents the reflectance of the reference board. Radgrey
could be obtained by setting a diffuse reflectance area in the UAV images. Refgrey could be
obtained by choosing a standard curve corresponding to the spectralon cloth.

2.4. AGB Measurement

At the tillering stage, jointing stage, and booting stage, rice plants in an area of
2 × 2 plots with uniform growth were sampled from south to north for AGB measurement
(Figure 3). The rice roots were cut off and the aboveground parts of the leaves and stems
were separated; then, they were weighed to obtain the fresh weight of leaves and stems.
After weighing, all samples were put into paper bags and placed in an oven at 105 ◦C for
40 min, and oven-dried at 65 ◦C until reaching constant weight. The AGB per unit area
was calculated as follows:

AGB =
Dry leaf weight + Stem weight

Number of sampled plants
× Stems per hectare (2)
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2.5. Calculations of Vegetation Index and Texture Features
2.5.1. Calculations of Vegetation Index

Vegetation indices are different types of remote sensing variants composed of mul-
tiple spectral bands with different reflection characteristics through linear and nonlinear
calculations. They can indicate changes in plant growth parameters such as chlorophyll
content [37], leaf area index [38], biomass [4], etc. They have been used as reliable indicators
of AGB to evaluate vegetation coverage and growth vitality [10]. The main advantages of
hyperspectral remote sensing are the strong band continuity and abundant spectral bands,
which can monitor crop group information in a more refined manner [4]. The normalized
difference vegetation index (NDVI), ratio vegetation index (RVI), and difference vegetation
index (DVI) are widely used in crop growth monitoring, and were proven to be highly cor-
related to AGB. These three indices also represent the combination characteristics of most
vegetation indices. Pairwise combinations of 62 bands from UAV hyperspectral images
were used to construct all possible NDVI, DVI, and RVI results in this study (Table 1).
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Table 1. The calculation formulae for vegetation indices.

Vegetation Indices Formulas Reference

Normalized difference vegetation
index, NDVI

NDVI =(
ρλ − ρµ

)
/
(
ρλ + ρµ ) [39]

Ratio vegetation index, RVI RVI = ρλ/ρµ [40]
Difference vegetation index, DVI DVI = ρλ − ρµ [41]

Note: λ and µ are the wavelengths of 62 bands in the range of 500–900 nm.

2.5.2. Calculations of Spatial Features

There are many methods for describing image spatial features, including statistical
methods, model methods, geometric methods, structural analysis methods, etc. [42]. The
grey-level co-occurrence matrix (GLCM) is one of the most widely used texture extraction
methods: it was proposed by Haralick in 1973 [43]. Many scholars use GLCMs, due to their
ability to ensure the non-deformation, multiscale features of rotation and the low complexity
of calculations [44]. In this study, eight commonly used texture features were extracted from
the UAV hyperspectral images (Table 2). Choosing appropriate window sizes helped reflect
the changes in spatial information between rice plants in the experimental plot. Windows
which were too small increased the amount of calculation and computational complexity,
whereas windows which were too large led to a loss of detailed texture information [45].
Taking the average value could synthesize the functions of different window sizes. Through
a trial and error approach, the texture features were calculated using the average values of
two window sizes (3 pixels × 3 pixels and 5 pixels × 5 pixels) with four directions (0◦, 45◦,
90◦, and 135◦) rotating clockwise along the x-coordinate axis.

Table 2. Calculation formula of texture features.

Texture Formula Meaning

Mean (MEA) ∑
i

∑
j

x(i, j)p(i, j) The overall grey level in the
GLCM window.

Variance (VAR) ∑
i

∑
j
(i− u)2 p(i, j)

The change in grey level
variance in the GLCM
window.

Homonity (HOM) ∑
i

∑
j

1
1+(i−j)2 p(i, j)

The homogeneity of grey level
in the GLCM window.

Contrast (CON)
Ng−1

∑
n=0

n2

{
Ng

∑
i=1

Ng

∑
j=1

p(i, j)

}
|i−j|=n

The clarity of texture in the
GLCM window, as opposed to
HOM.

Dissimilarity (DIS)
Ng−1

∑
n=1

n

{
Ng

∑
i=1

Ng

∑
j=1

p(i, j)2

}
|i−j|=n

The similarity of the pixels in
the GLCM window, similar to
CON.

Entropy (ENT) −∑i ∑j p(i, j)log(p(i, j))

The diversity of the pixels in
the GLCM window,
proportional to the complexity
of the image texture.

Secondary moment (SEM) ∑
i

∑
j

p(i, j)2 The uniformity of greyscale in
the GLCM window.

Correlation (COR) ∑i ∑j p(i,j)(ij)−µxµy

σxσy

The ductility of the grey value
in the GLCM window.

Note: i and j represent the row and column number, respectively. x(i, j) represents the value of the matrix at
the corresponding row and column. p(i, j) represents the ratio of the value of the matrix at the corresponding
row and column to the sum of all values in the matrix. Ng represents the length (width) of the matrix. µx and µy
represent the mean of the matrix in the x and y directions, respectively. σx and σy represent the variance of the
matrix in the x and y directions, respectively [44].
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2.6. Model Construction and Evaluation

Previous research has shown that integrating spectral–spatial information could alle-
viate the saturation phenomenon as compared with using spectral information alone [12].
Three phenology stages before the flowering stage were considered: the tillering stage,
the jointing stage, and the booting stage. The workflow for model construction included
the following steps (Figure 4): (1) Correlation analysis was used to select the top ten veg-
etation indices highly correlated to AGB in each kind. Stepwise multiple regression was
subsequently applied to extract the optimal textures and VIs; (2) Quantitative relationships
between the optimal vegetation indices, texture features, and AGB were analyzed, and the
multiple regression method was used to establish the VI, VI+CBT, and VI+FBT models;
and (3) Accuracy assessments were conducted to evaluate the effect of each model.
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2.6.1. Model Construction

This research focused on the improvement effects of integrating texture features and
vegetation indices in AGB monitoring, rather than the comparison of different complicated
artificial intelligence methods. Consequently, simple empirical methods were used to
construct the models. Interpretable empirical models can explain the role of each variable
in rice AGB models.

Redundancy and multicollinearity are two key aspects of hyperspectral data proces-
sion [46]. Multiple stepwise regression is an empirical method of variable selection with
easy operability. The processes are: (1) calculate the sum of squares of partial regression
for the variables that have been introduced into the regression equation, and then select a
variable with the smallest sum of squares of partial regression; (2) a significance test at a
predetermined level is performed. If a variable is significant, it is not necessary to exclude
it from the regression equation. If a variable is not significant, it needs to be removed and
other variables in the equation will be put through significance tests in order of the sum
of squares of partial regression from small to large. The method can ascertain the most
notable independent variables from many independent variables and remove the least
influential variables through the test. Utilizing this method can eliminate multi-collinearity
between the independent variables to achieve a more rational estimation effect [35,47].
Multiple linear regression is one of the most commonly used methods in empirical models.
It calculates the best-fit equation by minimizing the sum of squares of vertical deviations
from each data point to the diagonal to combine multiple explanatory variables [48]. The
multiple stepwise regression method was employed to optimize vegetation indices and
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texture features which were highly correlated with AGB; then, multiple linear regression
method was used to combine these optimal variables. The model expression was as follows:

y = k0 + k1x1 + k2x2 + k3x3 . . . . . . knxn (3)

where y is the model-dependent variable, x1 . . . xn are all model-independent variables,
and k0 . . . kn are all model coefficients.

2.6.2. Model Evaluation

All 120 AGB data values and corresponding spectral and spatial variables were ran-
domly divided into three equal groups, with two-thirds of the dataset (n = 80) as the
calibration dataset and one-third of the dataset (n = 40) as the validation dataset. To en-
sure that the two datasets were completely independent and the AGB estimation models
were reliable, the greatest value of the validation dataset needed to fall in the range of the
calibration dataset. The accuracy of the AGB model was evaluated using three indicators:
the coefficient of determination (R2), the root-mean-square error (RMSE), and the relative
root-mean-square error (rRMSE). R2 reflects how well the AGB equation fits. RMSE shows
the numerical difference between the estimated AGB and the actual AGB. The penalty
coefficient is increased in the form of a square term when there is a large gap between the
predicted and the true values. The prediction sensitivity of RMSE to outliers is relatively
high. Therefore, the parameter is sensitive to over- and under-estimations of AGB. More-
over, rRMSE was used to prevent the RMSE from being affected by the dimension of the
variables and compare different regression models with varied data amounts. The model
with smaller rRMSE and RMSE values and a higher R2 would have higher monitoring
accuracy [4]. The formulae of these indicators are defined as:

R2 = 1− ∑i(y− y′)2

∑i(y− y)2 (4)

RMSE =

√
∑n

i=1(y− y′)2

n
(5)

rRMSE =
RMSE

y
(6)

where y is the actual AGB data, y′ is the estimated AGB data, y is the average value of the
AGB data, and n is the sample size.

3. Results and Analysis
3.1. AGB Data Statistical Analysis

The average AGB of the three growth stages of the samples was 4960.117 kg ha−1 and
the overall coefficient of variation was 0.607 (Table 3). The minimum was 498.667 kg ha−1,
at the tillering stage, while the maximum was 12,707.840 kg ha−1, at the booting stage. The
most rapid accumulation of rice AGB occurred from the tillering stage to the booting stage.
The average AGB at the tilling stage was 1869.305 kg ha−1, while the average AGB at the
booting stage increased to 7909.396 kg ha−1. The tillering stage generated larger coefficient
of variation values compared with the other stages.
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Table 3. Statistical analysis of AGB values at different growth stages.

Growth Stage AVG * MIN. MAX. SD. VAR. CV(%)

Tillering stage 1869.305 498.667 6069.429 972.093 944,965.520 52.0
Jointing stage 5101.651 1900.444 9112.444 1884.780 3,552,394.162 36.9
Booting stage 7909.396 3424.667 12,707.840 2093.530 4,382,866.921 26.5

Tillering–jointing–booting stages 4960.117 498.667 12,707.840 3008.570 9,051,493.766 60.7

* AVG, MIN, MAX, SD, VAR, and CV(%) represent the average value, the minimum value, the maximum value,
the standard deviation, the variance, and the coefficient of variation of the AGB, respectively.

3.2. Vegetation Index Selection and Vegetation-Index-Based AGB Model Construction
3.2.1. Vegetation Index Selection

The R2 between the vegetation indices and the AGB were plotted onto two-dimensional
distribution maps (Figure 5). The abscissa and ordinate of each pixel in the image corre-
sponded to the construction bands of the vegetation index. The pixel value was the R2

between the vegetation index and the rice AGB. The sensitive bands of the DVI, NDVI,
RVI in the rice AGB estimation were concentrated in three spectral regions, respectively:
(1) band 1, located at 700–800 nm, and band 2, located at 800–900 nm; (2) band 1,2 located
around 680–700 nm; and (3) band 1, at 850–900 nm and band 2 at 800–820 nm. Additionally,
these indices denoted some different spectral regions highly correlated with the rice AGB,
respectively: band 1, at 500–600 nm, and band 2, at 650–660 nm, with both two bands were
located around 520–600 nm (NDVI, RVI); band 1, at 750–900 nm, and band 2, at 500–700 nm
(RVI); band 1, at 590–600 nm, and band 2, at 670–680 mn (DVI).
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Pairwise combinations of 62 bands built a large number of vegetation indices. To
reduce the workload of the data processing, the ten vegetation indices that correlated the
most strongly with the rice AGB were selected (R2 ≥ 0.7) (Table 4). The indices in the DVI
type were constructed through the combination of the near-infrared band and the red-edge
band, except those of DVI(776,840), which were constructed by two near-infrared bands. The
combination bands in the NDVI type were always near-infrared and red bands (such as 664
nm, 685 nm, and 700 nm). The RVI indices consisted of near-infrared and red-edge bands.
In summary, the wavelength ranges of these vegetation indices were mostly concentrated
in the red and near-infrared wavelength ranges.

Table 4. Selected vegetation indices and their corresponding bands.

Index Selected Band Combination

DVI (520,536) (600,685) (650,588) (752,800) (776,840) (752,888) (688,704) (679,712) (808,748) (848,744)
NDVI (528,685) (568,760) (696,768) (691,879) (760,699) (768,664) (784,700) (800,504) (800,685) (888,504)
RVI (504,568) (551,671) (584,536) (685,576) (744,800) (776,720) (792,848) (800,724) (824,728) (840,744)
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3.2.2. Vegetation Index AGB Model Construction

The principle of the model’s establishment was to achieve the highest monitoring
accuracy with the smallest number of independent variables. Vegetation indices can
extract useful AGB-related information from original images, decreasing the complexity
of hyperspectral-data processing [49]. The thirty selected vegetation indices were used
as independent variables, while the AGBs were used as dependent variables in multiple
stepwise multiple regression. The selected optimal indices were used to construct a VI
model of rice AGB (Equation (7)):

AGB = 74367.154− 108433.135×DVI(808,748) − 79694.926× RVI(744,800) (7)

The model was constructed by a DVI type and an RVI type of vegetation index, both of
which were composed of red-edge and near-infrared bands. The NDVI type of vegetation
index was not involved in the model. The potential explanation for this was that the density
of the AGB was large at the booting stage, leading to the saturation of the plant coverage,
which reduced the sensitivity of the NDVI to the AGB [50]. DVI and RVI vegetation indices
are comparatively insensitive to the saturation phenomenon at high AGB [51]. The RVI
vegetation index has a high correlation with AGB, which is a sensitive indicator parameter
of green plants and high vegetation coverage [52].

3.3. Texture-Feature Selection and Coupled AGB Model Construction
3.3.1. Texture Features Selection

The hyperspectral image had 62 bands, and each band had eight texture features,
resulting in a total of 62 × 8 = 496 texture features in every image. This inevitably caused
the problems of enormous calculation and redundant information [46]. To alleviate the
heavy computing task and eliminate the useless information, multiple stepwise regression
(MSR) was used to select the optimal texture features (confidence interval = 95%). With
the vegetation index corresponding-band textures (CBT) as inputs, three texture features
(SEM748, MEA800, and MEA808) were identified; they consisted of red-edge and near-
infrared wavelengths. As for the full-band textures (FBT), five texture features were
identified: COR504 and ENT536 in the green spectral region, ENT584 in the yellow spectral
region, and COR650, COR632, and COR635 in the red spectral region (Table 5).

Table 5. Selection of the possible texture features.

Bands Filtered Textures

Vegetation index corresponding bands SEM748 MEA800 MEA808
Full bands COR504 ENT536 COR650 COR632 ENT584 COR635

3.3.2. Construction of Coupled Model Integrating Vegetation Indices with
Corresponding-Band Textures

Due to the abundant textures and bands of the UAV hyperspectral images, the data
computation posed many difficulties [46]. It was essential to determine the optimal band
combination before the modeling. The CBT obtained both spectral and spatial information
simultaneously, which can reduce the pressure of data processing and reduce the demand
for spectral information. Therefore, the corresponding bands of the optimal vegetation
index were first selected. The vegetation indices and corresponding-band textures were
used as independent variables, while the AGB was used as the dependent variable in the
modeling process. The model was as follows:

AGB = 76025.147− 107650.575×DVI(808,748) − 79953.278× RVI(744,800) − 8226.269× SEM748
+389.704×MEA800 − 406.731×MEA808

(8)

DVI(808,748) and RVI(744,800) were the parameters of the original vegetation index model,
while the texture features SEM748, MEA800, and MEA808 were selected as the optimal texture
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features for the rice AGB monitoring. The addition of the texture features improved the
validation R2 of the AGB model from 0.758 to 0.768 and of the testing R2 from 0.769 to 0.782.
The validation RMSE of the VI+CBT model decreased from 1307.733 to 1280.666, while
the rRMSE decreased from 0.277 to 0.271. The test results using the validation dataset had
similar trends to those obtained with the calibration dataset (Table 6). The results showed
that although the added textural information of the VIs per se improved the accuracy, the
improvement was not very obvious.

Table 6. Comparisons of the accuracy of three AGB models.

Models
Calibration Dataset Validation Dataset

R2 RMSE rRMSE R2 RMSE rRMSE

Vegetation index model (VI model) 0.758 1307.733 0.277 0.769 1155.680 0.263
Vegetation index combined with

corresponding-band texture model (VI+CBT model) 0.768 1280.666 0.271 0.782 1127.031 0.256

Vegetation index combined with full-band textures
model (VI+FBT model) 0.832 1089.101 0.231 0.800 1086.920 0.247

Note: The presented values were rounded to three decimals for the sake of simplicity.

3.4. Construction of Coupled Model Integrating Vegetation Indices with Full-Band Textures

In order to achieve higher accuracy in the rice AGB estimation, full-band textures were
used in the modeling process. The VI+FBT model was as follows:

AGB = 38762.457− 20041.283×DVI(808,748) − 45243.297 ∗ RVI(744,800) + 4376.107×COR504+

2554.066× ENT536 − 4311.195×COR632 + 5419.598×COR650
(9)

Compared with the VI model, the calibration and validation R2 of the VI+FBT model
increased by 9.763% and 4.031%, respectively, the RMSE decreased by 16.718% and 5.950%,
respectively, and the rRMSE decreased by 16.606% and 6.084%, respectively. Compared
with the VI+CBT model, the calibration and validation R2 of the VI+FBT model increased by
8.333% and 2.302%, respectively, the RMSE decreased by 14.958% and 3.559%, respectively,
and the rRMSE decreased by 14.760% and 3.516%, respectively. Unlike the VI+CBT model,
this model used two new texture features (COR, ENT). The four bands were 504 nm and
536 nm in the green band and 632 nm and 650 nm in the red band. Although there were no
green or red bands in the construction of the vegetation indices, the addition of full-band
textures in these spectral regions could further enhance the ability to monitor rice AGB.

The AGB at tillering, jointing and heading stages were estimated using Equation (9),
and subsequently the spatial distributions of AGB were mapped at plot scale in 2018 and
2019 (Figure 6). Considerable differences in AGB can be observed in the different growth
stages and plots. The comparison between Figures 6 and 1c showed that there was a
certain amount of correlation between the nitrogen application level and the AGB. The
AGB accumulated with the increase in nitrogen in a certain range. The AGB map intuitively
expressed the spatial distribution of the AGB under three models and provided a scientific
basis for future fertilization management [53].

3.5. Effects of Growth Stages on Model Performance

The growth stage and nitrogen are two essential factors affecting rice AGB [54]. When
developing three-period AGB estimation models utilizing VIs and texture features, it is nec-
essary to fully consider the accuracy difference in each model, caused by the varied growth
stage [55]. The AGB estimation model constructed in this research was a comprehensive
model of three growth stages. The performances of each model at different growth stages
were compared to explore the influences of the growth stages on the AGB estimations
(Figure 7).
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The rRMSE at the tillering stage was the largest, followed by the jointing stage and the
booting stage, in the three models. These results indicated that the accuracy of the AGB
estimation at the booting stage was highest, followed by the jointing stage and the tillering
stage (Figures 7 and 8). The VI model had the lowest AGB estimation accuracy and VI+CBT
model improved the accuracy at each growth stage. The rRMSE was reduced by 4.094%,
4.238%, and 0.806% at the tillering stage, jointing stage, and booting stage, respectively.
These results suggested that the corresponding-band textures had a good effect on the
tillering and jointing stages, while their effect on the booting stage was not significant.
When the band range was expanded to 500–900 nm, the rRMSE was reduced by 21.316%,
11.888%, and 11.957% at the tillering stage, jointing stage, and booting stage, respectively.
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Figure 8. Scatter plot of AGB estimation with three models in each growth stage. (a) Tillering stage,
(b) jointing stage, (c) booting stage. Green: vegetation index model (VI model); blue: vegetation
index combined with corresponding-band textures model (VI+CBT model); yellow: vegetation index
combined with full-band textures model (VI+FBT model).

Figure 8 shows that the period from the tillering stage to the jointing stage was when
the nitrogen absorption was the fastest, and the range of the AGB changed markedly. The
nutrient accumulation of the rice essentially ended at this point, and the AGB reached
its peak at the booting stage [56]. The addition of the texture features made the scattered
AGB-value points more concentrated.

3.6. The Performance of Different Models under Various Nitrogen Gradients

Nitrogen management is a fundamental factor that must be regulated in field environ-
ments [57]. Fertilization can be guided by AGB monitoring [12,54]. This section provides an
example of selecting the optimal model for monitoring rice AGB under different nitrogen
levels, helping to reduce the input of manpower and material resources. The method
improved the efficiency of the AGB monitoring and prevented the excessive application of
nitrogen fertilizers from polluting the field environment.

The best estimation model was the VI+FBT model under N3 (rRMSE = 0.146), whose
rRMSE was 21.482% lower than that of the VI model. The VI model under N1 responded
the most sensitively to the integration of the textures, followed by N3 and N4 (Figure 9).

The overall AGB estimation error of the N3 and N1 was the smallest, and the AGB
estimation effect of the N4 and N0 was slightly lower than that of the N3 and N1. The
accuracy of the AGB estimation under the N0 was relatively low, and the AGB distribution
of the N3 and N4 was the most consistent with the expected effect of the gradient design.
Figure 10 shows that the AGB of the N4 had multiple overestimations and the AGB of
the N1 had multiple underestimations. The data points were the most scattered, with
multiple values deviating far from the 1:1 line, under the N2, indicating that the estimation
accuracy was low. These results illustrated that higher nitrogen concentrations may not
lead to greater AGB accumulation. If excessive nitrogen is applied to fields, it destroys crop
growth. If crops lack nitrogen, their roots are unable to absorb enough nutrition, and the
plants grow poorly [58].
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4. Discussion
4.1. The Sensentive Bands of the Vegetation Indices and Texture Features for Rice AGB Estimation

The rich spectrum of UAV hyperspectral data laid a good foundation for the band
selection of the vegetation index and texture features [32]. The vegetation indices in the
DVI, NDVI, and RVI types for rice AGB estimation in this research were mainly composed
of near-infrared (such as 800 nm, 808 nm, etc.) and red-edge (such as 748 nm, 744 nm,
etc.) bands, which were slightly different from the conventional VIs constructed by the
near-infrared and red bands. Some studies showed that VIs constructed by red-edge
bands performed well at estimating rice [59], potato [60], and grass [8] biomass. This
improvement can be traced back to the strong correlation between the red-edge spectral
region and agronomic parameters, such as AGB. The red-edge spectral region was also
proven to be closely related to the photosynthesis and dry-matter accumulation of rice [12].
The reason for the promising performance of the red-edge spectral region in the AGB
estimation was that when the canopy structure gradually stabilized and the leaf area of the
rice plant reached the maximum level at the booting stage, the near-infrared and red-edge
spectral region was always sensitive to the reflection of the vegetation, but the red band
began to show a dull response in the canopy [4]. Additionally, the red-edge band had a
smaller difference from the visible bands compared with the near-infrared band [61]. From
the perspective of the formula composition of the NDVI, saturation could easily occur in the
NDVI formula because the reflectance of the red bands was too small. The reflectance of the
red-edge was large, which helped to weaken the saturation [8]. Therefore, the vegetation
index built by the red-edge spectral region was more resistant to saturation at high levels
of AGB.

In the VI+CBT model, the bands of the textures were located in the red-edge and
near-infrared spectral region, while the red and green bands appeared in the VI+FBT
model. The reason for the appearance of the green bands was that the textures of the UAV
images appeared not only on the rice canopy structure, but also on the soil and water
background [62]. Although green bands play a small role in rice photosynthesis, they are
important in the monitoring of background materials [21]. The results proved that texture
features with different wavelengths have varied effects on AGB monitoring. The red-edge
and near-infrared had advantages in the spectral dimension, while the green and red bands
were useful in the textural dimension in rice AGB monitoring.

4.2. Comparison of AGB Estimation Accuracy of Combined Vegetation Indices with Texture Features

The use of UAV hyperspectral imagery provided an efficient and reliable method
for AGB estimation. Previous agronomic parameter inversion studies mostly focused on
spectral information, ignoring the textural information of UAV images. The integration of
spectral and textural information from UAV images provided a new method for monitoring
crop growth [63]. The best model, which used the new method constructed by Liu [64]
and Zheng [12], reduced the RMSE by 17.10% and 26.12%, respectively, compared with
the RMSE in the pure vegetation index model. Integrating texture features and vegetation
indices to build a potassium accumulation model of rice helped to increase the R2 by 11.11%
and lower the RMSE by 7.5% [65]. These results suggested that the integration of texture
features and VIs in the estimation of agronomic parameters could lead to greater accuracy.
In this research, a similar method was used, and more desirable results were achieved in
rice AGB estimation. Compared with the VI model, the rRMSE was reduced by 2.070%
and 16.718% in the VI+CBT model and the VI+FBT model, respectively. Unlike previous
studies, this research not only considered the band selection of the vegetation index, but
also concentrated on the band selection of the textures. The series of accuracy indicators
revealed that the full-band textures contained more multi-dimensional and valuable spatial
information related to the rice AGB.

Texture refers to repeated sequence patterns and their regular arrangement and distri-
bution in images [44]. The reasons why the addition of spatial information can improve the
estimation of AGB during the multi-growth period of rice are as follows. Firstly, texture fea-
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tures can express the phenotypic information of crops [35]. Textures not only measured the
difference in crop growth between fields, but also expressed the growth detail changes on
the plant surface [66]. The integration of the vegetation index with textures provides spatial
information on crop growth, compensating for the lack of spectral information provided
by vegetation indices only. Secondly, compared with the vegetation index, textures were
less affected by noise, soil, and other influencing factors, which reduced the interference of
phenomena such as weather conditions and different rice varieties [62]. Thirdly, the change
rate of the rice canopy structure from the tillering stage to the booting stage slowed down
(Table 3), and the texture characteristics of the rice field tended to be stable. These changes
were closely related to the accumulation of the rice AGB. These stable textures led to less
unchangeable spatial information for the AGB estimation, which benefited the accuracy of
the rice AGB models [66].

Yang found that ASM and ENT were highly correlated with wheat AGB before the
overwintering stage, and the effects of CON and COR were prominent at the jointing
stage [67]. Liu found that texture features, such as MEA, CON, ENT, and DIS, had a
positive influence on winter wheat AGB monitoring [68]. Zheng used MEA800 and MEA550
in coupled models to improve the monitoring effect of rice AGB [12]. The texture features
used in these studies were similar to those used in this study. The SEM and MEA can
represent the average value of the image, amplifying the overall grayscale of the field and
minimizing the influences of the background [12]. Such macro-textures reflected the spatial
characteristics of the communities of the rice plants, which played a prominent role in
the VI+CBT model, which had less spatial information. FBT in multiple bands provided
abundant spectral and spatial information. The integration of micro-texture features, such
as ENT and COR highlighted the detailed spatial information of the plant canopy and
the randomness of the rice growth [65], which further improved the monitoring accuracy
of the model. It can be concluded that the integration of the macro- and micro-texture
features offers great potential for describing the spatial information of rice growth more
comprehensively.

4.3. Comparison of Different Growth Stages in Rice AGB Estimation

The various growth stages responded differently to the integration of the spectral-
spatial information model in this research.

The rice leaves covered each other and the leaf area index (LAI) reached its peak [34].
The rice morphology tended to be stable in the late stage of its growth, and the canopy
reflectance at this time was hardly affected by the water–soil mixture background and
noise [69]. The changes made the canopy textures of the rice simple. The information
extracted from hyperspectral images can fully express the biological characteristics of
crop canopy structures at this time [70]. These reasons could explain why the accuracy
improvement was less obvious than in the early stage of the rice growth, while integrating
the textures with VIs.

In the early stage of the rice growth, the crop community was immature: the plants
showed obvious differences and the spacing between the rice plants was still large, with
an absence of fully stretched leaves. Therefore, the soil and water background had a
negative influence on the canopy reflectance [71]. The spectral reflectance at the tillering
stage contained significant amounts of interference information, making it difficult to
express the rice AGB accumulation process by only using VIs. This interference made the
accuracy of the rice AGB estimation low. From another perspective, the amount of AGB was
small. The canopy reflectance at the tillering stage was easily affected by the background
information, which made the textures more obvious. The background information exerted
a positive effect on the AGB estimation at this time. Therefore, the integration of the
textures generated a higher accuracy in the models at the tillering stage. The rice plants
grew vigorously, with quick AGB accumulation, during the jointing stage; therefore, the
textures were unable to effectively capture the spatial information of the rapidly changing
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in canopy structure [72]. At this stage, the rRMSE was between the tillering stage and the
booting stage.

4.4. Potential Improvements on the Research

Further concerns should be addressed in future studies. This experiment involved
the textural and spectral information of 62 bands, which made the data processing more
complex. In terms of methods, only conventional empirical methods were examined.

Other data reduction techniques, such as principle component analysis (PCA) [73],
partial least squares regression (PLSR) [46], Gaussian process regression (GPR) [74], etc.,
should be investigated. Big-data algorithms, such as machine learning and deep learning,
have higher fault tolerance rates, which could help solve non-linear fitting problems [75,76].
Therefore, future studies should consider applying more methods, such as random forest
(RF) [77] and support vector machine (SVM) [62] into building rice AGB models to obtain a
higher level of accuracy.

Additionally, the use of UAV images to estimate the AGB limited the study to a small
area, and it was relatively difficult to apply over large areas [78]. The large volume of
information in multiple bands also posed challenges to the band selection, processing, and
data analysis [79]. The discovery of more portable models with easier operability will
be undertaken.

More vegetation indices, such as the combination of three or four bands, their product,
higher-order polynomials, etc., will be considered. Some texture indices, such as the
normalized difference texture index (NDTI), ratio texture index (RTI), and difference texture
index (DTI) were proven to be useful in rice AGB estimation [80]. Fusing textures and VIs
into one parameter weakened the saturation problem caused by high vegetation density
and achieved better AGB monitoring results [81]. Future research could attempt the use of
these new paramaters and explore the influence of different window sizes [45], calculation
directions [66], and image resolutions [82] in rice AGB estimations.

5. Conclusions

Hyperspectral images provided diverse possibilities for band selection in the vegeta-
tion index and textures, which proved to have great potential for estimating rice AGB. In
this research, we extracted VIs and textures from UAV hyperspectral data and integrated
these VIs and textures to estimate rice AGB. The sensitive bands in the spectral and spatial
dimensions were also discussed. The accuracy order of the rice AGB models, from highest
to lowest, was as follows: the VI+FBT model (R2 = 0.832, RMSE = 1089.101, rRMSE = 0.231),
then the VI+CBT model (R2 = 0.768, RMSE = 1280.666, rRMSE = 0.271), and then the
VI model (R2 = 0.758, RMSE = 1307.733, rRMSE = 0.277). Different spectral regions had
different functions when estimating the rice AGB. The VIs in the AGB estimation models
were mainly constructed by near-infrared and red-edge wavelengths, while the textures
involved in the VI+FBT model consisted of green and red bands. Integrating textures in
green and red bands with vegetation indices of red-edge and near-infrared wavelengths
significantly improved the performance of the rice AGB models. The integration of the
textures with the vegetation indices improved the AGB estimation at the tillering stage
markedly, and all the models performed best in the monitoring of the rice AGB under N3.
This framework could improve the efficiency of rice AGB estimation and will hopefully be
extended to the monitoring of a wider range of crop agronomic parameters.
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