
Citation: Rotter, P.; Klemiato, M.;

Skruch, P. Automatic Calibration of a

LiDAR–Camera System Based on

Instance Segmentation. Remote Sens.

2022, 14, 2531. https://doi.org/

10.3390/rs14112531

Academic Editor: Giuseppe Scarpa

Received: 5 April 2022

Accepted: 23 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Automatic Calibration of a LiDAR–Camera System Based on
Instance Segmentation
Pawel Rotter * , Maciej Klemiato and Pawel Skruch

Department of Automatic Control and Robotics, AGH University of Science and Technology,
Al. A. Mickiewicza 30, 30-059 Krakow, Poland; mkl@agh.edu.pl (M.K.); skruch@agh.edu.pl (P.S.)
* Correspondence: rotter@agh.edu.pl

Abstract: In this article, we propose a method for automatic calibration of a LiDAR–camera system,
which can be used in autonomous cars. This approach does not require any calibration pattern,
as calibration is only based on real traffic scenes observed by sensors; the results of camera image
segmentation are compared with scanning LiDAR depth data. The proposed algorithm superimposes
the edges of objects segmented by the Mask-RCNN network with depth discontinuities. The method
can run in the background during driving, and it can automatically detect decalibration and correct
corresponding rotation matrices in an online and near real-time mode. Experiments on the KITTI
dataset demonstrated that, for input data of moderate quality, the algorithm could calculate and
correct rotation matrices with an average accuracy of 0.23◦.

Keywords: LiDAR camera calibration; instance segmentation; Mask-RCNN; autonomous driving;
KITTI dataset

1. Introduction

Apart from GPS/INS, LiDAR and cameras are the basic types of sensors used in
autonomous cars. In the current systems, their calibration requires a calibration pattern
and this should be done before autonomous driving. However, during operation, a small
rotation of a sensor can remain unnoticed, and even rotation by a fraction of degree affects
data quality until the next calibration. Automatic calibration can be of particular importance
during data collection, as changes of sensor parameters with time may render the logged
data worthless. In practical applications, calibration is usually performed at the beginning
of the data collection campaign, with further sensor calibration possible after several weeks
(which means after the car has driven thousands of kilometers).

Currently, calibration of the sensors of autonomous vehicles is performed manually
and off-line, based on the calibration pattern. In the literature, there is some research
reported whereby extrinsic calibration of a LiDAR-camera system can be done on-line, but
this requires specific calibration objects, which must appear in the image. For example,
in [1,2], a chessboard was used; in [3,4], calibration was based on planar patterns with circles;
and in [5], triangle or diamond-shaped boards were used. There are also methods where
calibration is based on spatial objects in the field of view, for example trihedrons [6–8]
or spheres [9]. Moreover, several methods were proposed for LiDAR–camera system
calibration that do not require any calibration pattern. For example, the approach described
in [10] exploits the natural scenes observed by both sensors, and the matching of data from
both sensors is based on maximizing the correlation between the laser reflectivity and the
camera intensity. The shortcoming of this approach is that, apart from depth information,
it requires reflectivity data from LiDAR. Another method, presented in [11], is based on
sensor fusion odometry and requires a specific rotational motion of the sensors in the
horizontal and vertical directions.

Our approach is only based on the camera image and depth data from LiDAR, without
using any additional information. Automatic calibration of a LiDAR–camera system can be

Remote Sens. 2022, 14, 2531. https://doi.org/10.3390/rs14112531 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112531
https://doi.org/10.3390/rs14112531
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1556-6539
https://orcid.org/0000-0003-0052-7083
https://orcid.org/0000-0002-8290-8375
https://doi.org/10.3390/rs14112531
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112531?type=check_update&version=2

Remote Sens. 2022, 14, 2531 2 of 18

performed on-line, during vehicle driving. In contrast to existing methods, our method is
based on semantic segmentation of objects that appear in real traffic scenes. The borders of
objects segmented in the camera image are superimposed with discontinuities of depth
on LiDAR data. This approach recently became feasible, when the quality of automatic
pixel-wise semantic segmentation rose to a sufficient level, as the result of deep neural
network development. This method can detect situations where the current calibration
parameters, particularly yaw, pitch, and roll angles, do not ensure the proper alignment
of data, and it automatically corrects corresponding rotation matrices during driving, in
near real-time.

This paper is organized as follows: in Section 2 we describe the state of the art of
object segmentation, which is crucial for our algorithm. We discuss features of Detectron2,
which we used for the segmentation of cars, and we review the literature on using depth
information for facilitating segmentation. Section 3 is related to our input data, taken from
the KITTI dataset. In Section 4, we present the concept of our method, and in Section 5
preliminary experiments, which allowed us to set the parameters of the goal function and
to adjust the optimization procedure, to properties of the goal function. In Section 6, we
describe details of the algorithm and present the results. Finally, Section 7 contains our
conclusions and plans for future work.

2. Segmentation

Segmentation is an important part of image analysis and one of the most difficult
problems in computer vision. The results of classical segmentation methods, based on
properties of image sub-areas such as color or texture, often are inconsistent with the
semantics of the image. However, recent deep convolutional neural networks, apart from
the classification of image objects, can yield a relatively high quality semantic segmentation
of an image. For an exhaustive survey on image segmentation using deep convolutional
networks, see [12]. One of the most popular architectures of this type is Mask RCNN, pro-
posed in 2017 [13], and included in the Detectron2 [14] network system. The architecture
of Mask RCNN, similarly to Faster RCNN [15], is based on a region proposal network
(RPN); a subnetwork which indicates regions that potentially may contain an object. It has,
however, one more output, and apart from the class labels and bounding boxes, it returns
the object masks. In our method, we used the pretrained Mask R-CNN model, based
on a ResNet+FPN backbone (mask_rcnn_R_50_FPN_3x). We chose this model because,
according to the literature, it is currently the most effective network that, besides object
detection, provides high quality pixel-wise segmentation, while most other detectors, such
as YOLO or classical Faster-RCNN, only retune the bounding boxes of detected objects.
It is, however, worth noting that for detection tasks, where pixel-wise segmentation is not
required, the highest performance in road object detection is achieved by the YOLOv4
architecture [16]. Moreover, Detectron2 is available along with a set of weights trained
for detection of relevant objects that appear in traffic scenes, such as vehicles or pedes-
trians. This is particularly important, because convolutional networks with an instance
segmentation capability require pixel-wise segmentation of training data, so preparation
of a database for training is much more difficult than for networks that merely return
bounding boxes of the detected objects. Segmentation in the deep network is performed
in parallel with detection and classification of objects; thus, it is based on the borders of
semantic objects, rather than on local differences of image features. The output, apart from
the boundaries of objects, contains their classification. The reliability of segmentation using
Detectron2 is very high compared to the classical methods, which are imperfect because
they are not based on the semantic meaning of the image. By classical methods, we mean
approaches based on color, texture, and phase features, which are used as the input for
such techniques as region-growing and split and merge, or to more complex algorithms,
such as iterative propagation of edge flow vector fields [17] or methods based on random
Markov fields [18]. On the other hand, it is worth mentioning that methods based on deep
learning return rough borders of objects, and that their accuracy of localization of object

Remote Sens. 2022, 14, 2531 3 of 18

boundaries is generally lower than in the case of classical segmentation methods, where
the edge is detected at the location that separates two image areas with different properties.

If depth information is available, it can be used to solve or to improve segmentation;
for example, by using depth as an additional input to the network. In [19], Mask RCNN
was modified by adding an additional pipeline for depth image processing, and feature
maps from RGB and from depth images were concatenated at a certain stage. The results
were marginally better than for Mask RCNN, based on a RGB image. In [20], the depth
image was triplicated, to adjust it to the architecture of Mask RCNN, which accepts a three-
channel input. Segmentation based on this approach outperformed existing point cloud
clustering methods. Several networks that operate on 3D images have been developed.
Examples of such networks include VoxelNet [21], YOLO 3D [22], and point pillars [23].
There are also simple algorithms where depth discontinuity is used to detect the border
between the foreground object and the background [24]. For some specific applications,
when the distance range to the object and to the background do not overlap, easy methods
based on depth histogram thresholding are sufficient; as for example in [24], where this
approach was successfully used to segment the car driver from the background. However,
the method failed to segment a standing person, since in the bottom part of the object,
the distance to the background and to the foreground object overlapped. In our method,
however, depth information is not used for segmentation, but for verification of whether
a depth image from LiDAR is precisely superimposed with the camera image. We can,
therefore, only use a part of the object, for example the upper part of the car, where the
background is far behind the object.

3. Input Data

In our experiments we used the KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) dataset [25], which contains data from a Velodyne HDL-64E rotating
3D laser scanner and four PointGray Flea2 cameras (two color and two grayscale cameras).
Sensors were calibrated and synchronized (timestamps are available). Intrinsic and extrinsic
camera calibration was performed based on chessboard calibration patterns, and Velodyne
was calibrated with respect to the reference camera, by minimizing disparity error using
Metropolis–Hastings sampling [1]. Calibration includes both rotation and translation, so
that data from all sensors are transformed to the common coordinate system. Data from
the inertial and GPS navigation systems are also included; but in this article, we focused on
the detection of objects observed by LiDAR and cameras, so we did not use any location
data. LiDAR parameters and the quality of output data are rather low compared to more
recent datasets such as nuScenes [26]. Velodyne HDL-64E contains 64 rotating lasers, data
are taken with a horizontal resolution of 0.08◦ and vertical resolution of 0.4◦. However,
we will demonstrate that we can match the LiDAR output with camera images with a
relatively high accuracy, by using statistical data from many frames. The resolution of
the cameras is 1392 × 512. For this study, we used all 7481 images from the “3D Object
Detection Evaluation 2017” dataset included in the KITTI Vision Benchmark Suite, as well
as the corresponding Lidar point clouds.

In order to more closely examine the quality of LiDAR data, we developed a piece of
software that presents LiDAR points together with car masks returned by the Detectron
network. LiDAR points are shown only in the vicinity of the upper edge of car masks. They
are presented in the form of triangles, which point up (N) if they are located below the edge
of the detected mask (so they are in the mask area), or down (H) if they are located above
the mask edge; see Figure 1. The color represents the distance, with the scale adjusted for
each object separately. The most distant pixels are blue and the closest are red. Browsing
the KITTI dataset, we can see that the LiDAR data are imperfect.

Remote Sens. 2022, 14, 2531 4 of 18

Figure 1. Examples of location errors in data provided by LiDAR. The color represents the distance.

In Figure 1, depth is measured correctly, and in the top image the LiDAR data seem
correct. However, in a close-up of the bottom image, we can see that near the object, border
points are reported as a close (object points) and far (background points) interlace. This can
be attributed to the inaccuracy of beam directions from neighboring lasers in the LiDAR.
The result is that a beam from a higher laser hits the lower points of the image, but its
location is assigned on the basis of the assumed (and not actual) direction of the beam.

In some scenes, the distance to some objects is incorrectly measured, as in the example
in Figure 2. This can be attributed to the limitations of the Velodyne range and to reflections
of the light.

Figure 2. Example of incorrect measurements provided by Velodyne LiDAR. The color represents the
distance, with the scale adjusted for each object separately.

Therefore, the proposed method must be robust to these types of error. We will achieve
this with operation on a number of recent frames, so that errors from single frames will
compensate.

4. Outline of the Method

Our method is based on the fact that, if the parameters that describe mutual position
and orientation of the camera and LiDAR are precisely estimated, the distance of LiDAR
points that are located within the object mask detected by Detectron (from the camera image)
should be smaller than for LiDAR points located in the vicinity, but in the background,
outside the mask area. As already noted, the depth difference between the object and the
background is large in the neighborhood of the upper part of the object, while in the bottom
part, where an object touches the ground, the object border may not coincide with the
depth discontinuity. This is why, in typical scenes, a depth map can be used for simple
and faultless segmentation, but only of the upper part of objects [24]. Our method is based

Remote Sens. 2022, 14, 2531 5 of 18

on the comparison of image depth in the upper part of the object mask and in the zone
directly above the mask. Detectron2 has been trained for detection of vehicles, pedestrians,
and bicycles. In our method only vehicles are used, because they are the most common in
traffic scenes, their segmentation is almost faultless and the upper part of the mask is wide
and smooth. The details on how these two zones are calculated from the mask returned
by Detectron2 are presented in Figure 3. For the calculation of zones, two parameters are
used: η—relative width of the vertical range margins (in relation to the width of the object),
and ε—relative horizontal range of zones (in relation to the height of the object). In the
algorithm, η = 0.1 and ε = 0.15.

Figure 3. Calculation of the zone above the mask upper edge and the zone below the mask upper edge.

Masks are calculated from the camera image, and depth is based on LiDAR data, so
correct calibration of the LiDAR–camera system should ensure the maximum difference
between the average distance of points above and below the upper edge of object masks.
If any inaccuracy of calibration appears, perhaps resulting from a physical movement of
the LiDAR or camera, this will result in a decrease of this difference. By maximizing this
difference over the calibration parameters, it is possible to correct the calibration matrix in
the event of an undesired rotation of the camera or LiDAR.

Automatic calibration of the LiDAR–camera system cannot be based on a single traffic
scene, and it is necessary to take into consideration a series of frames. There are several
reasons for this:

• Many LiDAR points have incorrect depth values, and location data of LiDAR points
are inaccurate (see Figure 1)

• Object masks calculated by Detectron are usually relatively exact, but for some object
instances the accuracy is insufficient for automatic calibration

• Some frames do not contain relevant objects, or they only contain small objects, insuf-
ficient for optimization

• Our method is based on an assumption that the distance to the car is smaller than to
the background above the car, which is generally true; although there are exceptions,
for example, when the top part of the car is obstructed by a tree branch

We optimize the goal function F, defined in the next part of this chapter, over rotation
of LiDAR in all possible directions, but we do not include a correction of translation. The
reason is that, even small, unnoticeable rotation of the sensor, e.g., by one or two degrees,

Remote Sens. 2022, 14, 2531 6 of 18

results in a loss of calibration. For example, the pitch displacement in Figure 4b is only 3◦

and alignment of images is completely lost. Such rotation may result from external force,
deformation of mounting, etc. In contrast, unintended translation of the sensor is practically
impossible, due to the way the sensors are mounted. Moreover, unnoticeable translation of
sensor, even by several millimeters, in practice does not affect the alignment of images of
distant objects. Moreover, our procedure does not include calibration of intrinsic camera
parameters, which do not change suddenly by large values, and we assume that they are
calibrated off-line, using standard procedures.

Figure 4. Roll (a), pitch (b), and yaw (c) introduced to the LiDAR–camera system. The color represents
the distance. Subfigure (d) presents roll, pitch and yaw in the car coordinate system.

The goal function F is defined as the mean value over relevant objects (i.e., objects
that meet conditions of inclusion in the goal function) of the differences between average

Remote Sens. 2022, 14, 2531 7 of 18

distance to the object in the zone above the mask upper edge and the average distance to
the object in the zone below the mask upper edge:

F(αr, αp, αw) = mean
ob∈I

(
mean

a∈A(ob)
d(a)− mean

b∈B(ob)
d(b)

)
(1)

where

αr, αp, αw—roll, pitch, and yaw of LiDAR rotation (see Figure 4).
I—the set of frames taken into consideration for calculations
ob—the set of relevant objects, i.e., objects identified as cars, which meet conditions of
inclusion in the goal function
A—the set of LiDAR points located in the zone above the object mask upper edge. A is
defined for each object and depends on the rotation of the image, so A = A(ob, αr, αp, αw)
B—the set of LiDAR points located in the zone below the object mask upper edge. B is
defined for each object and depends on the rotation of the image, so B = B(ob, αr, αp, αw)
D—distance to a LiDAR point

Conditions of object inclusion in the goal function include:

• The number of LiDAR points in sets A and B must exceed the threshold (at least five
points in each zone are required)

• The average distance of LiDAR points must be in a specified range (in our case,
between 5 m and 100 m). This ensures that the size of vehicles in the camera image is
the most suitable for automatic semantic segmentation.

We expect a maximum value of the goal function F when LiDAR data are correctly
aligned with the camera image.

5. Preliminary Experiments

The goal of the experiments presented in this section was to examine the properties of
the goal function; whether is it continuous, differentiable, does it have many local extrema,
etc. These properties are relevant for the choice of optimization algorithm and optimization
parameters, especially how many frames should be taken into consideration for the goal
function calculation.

5.1. Properties of the Goal Function

In the first series of experiments, we examined how the goal function depends on loss
of calibration of the LiDAR–camera system, separately for roll, pitch, and yaw (see Figure 4).
The properties of the goal function are important for the choice of optimization procedure.

From the point of view of the optimization algorithms, it is important to note that F is
not differentiable and, moreover, not continuous as a function of roll, pitch, and yaw. It is a
multidimensional step function (piecewise constant function), which changes value when,
as a result of rotation, at least one LiDAR point changes its membership of the sets A(ob)
and B(ob) of any object ob in the set I.

To confirm this, we plotted F(0, 0, αw) for different ranges of yaw. In Figure 5a, yaw
varies from −5◦ to 5◦. Only 10 frames were taken into consideration for the calculation;
thus, fluctuations are very strong, but no staircase property can be observed because, when
rotating in this range, many LiDAR points change membership to A and B. In Figure 5b,
function F is presented with a 100-times zoom (for the range −0.05◦ to 0.05◦). Figure 5c
shows a 10,000-times zoom (range from −0.0005◦ to 0.0005◦), and here the step character of
F is noticeable.

Remote Sens. 2022, 14, 2531 8 of 18

Figure 5. When zooming, it becomes clear that the goal function F is a piecewise constant function.
Range [−5, 5] (a) zoomed in 100 times (b) and 10,000 times (c).

In the next experiments, we examined the behavior of F in the whole range of angles
of roll, pitch, and yaw, from −180◦ to 180◦. In Figure 6, we present the intersection of F
when one of these three angles varies and other two are set to 0. As expected, if the absolute
value of pitch is too high, F is undefined. This is because the cloud of LiDAR points is
shifted out of the area where the objects appear. In contrast, F is defined in the whole range

Remote Sens. 2022, 14, 2531 9 of 18

of yaw, from −180◦ to 180◦, because LiDAR data are provided for the whole environment
around the car. Similarly, F is defined in the whole range of roll because the LiDAR cloud,
even rotated upside down, stays in the camera field of view.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 19

range of yaw, from −180° to 180°, because LiDAR data are provided for the whole envi-
ronment around the car. Similarly, F is defined in the whole range of roll because the Li-
DAR cloud, even rotated upside down, stays in the camera field of view.

Figure 6. The intersection of goal function F in the whole range of angles of roll, pitch, and yaw,
from −180° to 180°. For each chart, one angle is presented on the axis X and other two angles are
set to 0. (a) Roll for 50 frames, (b) Pitch for 50 frames (c) Yaw for 50 frames.

The conclusion from the above experiments was that, when optimizing F, the opti-
mization method must be appropriate for non-continuous functions, with many local ex-
trema and fluctuations of value. The function domain is limited, so the search area should
be constrained. For the experiments, we chose a pattern search algorithm. This method is
based on comparing the values of the goal function at the grid nodes. When a point with

Figure 6. The intersection of goal function F in the whole range of angles of roll, pitch, and yaw, from
−180◦ to 180◦. For each chart, one angle is presented on the axis X and other two angles are set to 0.
(a) Roll for 50 frames, (b) Pitch for 50 frames (c) Yaw for 50 frames.

The conclusion from the above experiments was that, when optimizing F, the optimiza-
tion method must be appropriate for non-continuous functions, with many local extrema
and fluctuations of value. The function domain is limited, so the search area should be
constrained. For the experiments, we chose a pattern search algorithm. This method is

Remote Sens. 2022, 14, 2531 10 of 18

based on comparing the values of the goal function at the grid nodes. When a point with a
lower value of the goal function is found, compared to the current point, it becomes the
new current point and the grid size is doubled, otherwise it is halved. This method is
appropriate for constrained optimization of non-continuous functions. For details of the
pattern search algorithm see [27]. Technically, the optimization procedure is looking for the
global minimum, so we maximize F by minimizing −F.

5.2. Influence of the Number of Frames on the Goal Function Shape

The shape of the goal function is crucial to the difficulty of optimization, especially
because our goal function F contains fluctuations similar to noise (see Figure 6), caused by
the discrete number of LiDAR points that fall into zones above and below the mask upper
edge, presented in Figure 3 (see Section 5.1 and Figure 5 for more detailed explanation and
illustration). In Figure 7, we present how the goal function F depends on roll (Figure 7a),
pitch (Figure 7b), and yaw (Figure 7c), when the other two angles are set to zero. We created
separate charts for roll, pitch, and yaw, because the behavior of F is slightly different for
each of these angles:

• F as a function of pitch F(0, αp, 0) has relatively small fluctuations. This is because
non-zero roll causes a direct shift of some LiDAR points, from the zone above the
mask upper edge, to the zone below (see Figure 3), or vice versa.

• Fluctuations of F are the most visible for the variable yaw, i.e., in chart of F(0, 0, αw).
The reason is that the upper part of the car mask is usually horizontal rather than
vertical, so the background LiDAR points in the zone above the mask upper edge
are only replaced by other background points, and the foreground points in the zone
below the mask upper edge are replaced by background points much more slowly
than in the case of pitch, because the horizontal range of this zone is much higher than
the vertical range. Thus, a small LiDAR yaw has a small influence on mean d(a) and
mean d(b) in (1).

• Fluctuations of F(αr, 0, 0) have an intermediate magnitude compared to F(0, αp, 0)
and F(0, 0, αw). The influence of roll on F depends on where the object is located: for
objects located at the sides of the image, roll has an influence on F similar to pitch;
while for objects in the center, the influence can be different for different parts of the
object (similar to positive pitch on the left and to negative pitch on the right).

Figure 7. Cont.

Remote Sens. 2022, 14, 2531 11 of 18

Figure 7. The goal function F as a function of roll (a), pitch (b), and yaw (c), with the other two angles
set to zero. All angles are in degrees.

The most important part of this experiment was exploring how F depends on the
number of frames used for calculating the mean value in Equation (1). As we can see in
Figure 7, for a small number of frames, F has strong fluctuations, so optimization is difficult,
and moreover location of the goal function global extremum can be accidental. On the other
hand, considering too many frames increases the delay of automatic calibration. Based on
the charts, we could say that using fewer than 50 frames could lead to random results.

5.3. Local Extrema Avoidance

In order to verify the ability of the optimization procedure to find the global maximum
of F, we simulated 100 cases of decalibration. For each decalibration, we ran the pattern

Remote Sens. 2022, 14, 2531 12 of 18

search algorithm S times (in this experiment S = 10), each time from a different starting
point, in order to avoid falling into a local optimum. Starting roll, pitch, and yaw were
chosen randomly, between −5◦ and 5◦ from uniform distribution. Let ε be the Euclidean
distance between the minimum found by the algorithm and the point corresponding to the
actual value of decalibration:

ε =

√
(αr − αr)

2 +
(
αp − αp

)2
+ (αw − αw)

2 (2)

where αr, αp, and αw are simulated LiDAR raw, pitch, and yaw, and αr, αp, and αw are the
corresponding values of raw, pitch, and yaw calculated by our method. The goal function
is very irregular, with a large number of local minima close to the global one. Therefore, we
accept certain error, and when the distance ε given by (2) is below a threshold th = 1, we
assume that the global minimum was found successfully. We performed the optimization
100 times, each time for different LiDAR decalibration, and the global minimum was
found in 47% of optimizations when the goal function was calculated from the 50 most
recent frames, and in 59% of optimizations when the goal function was calculated from the
100 most recent frames. We could, therefore, roughly estimate the probability p of falling
into a local extremum in a single optimization, which is 0.53 and 0.41, respectively. In
Figure 8 we present a histogram of distances ε for this experiment, the value for each bin
represents the number of optimizations, where the distance ε given by (2) falls into the bin.

Figure 8. Histogram of distances between the minimum found by the algorithm and the point
corresponding to the actual value of decalibration. The goal function was calculated from 50 (a) and
from 100 (b) frames.

Remote Sens. 2022, 14, 2531 13 of 18

If we perform a series of optimizations of the same goal function F (calculated from
the same set of frames), consecutive optimizations are independent. The result of a single
optimization only depends on the starting point, which we chose randomly from a uniform
distribution. Consequently, the probability of missing the global extremum every time in a
series of k optimizations is pk, where p is the probability of falling into a local extremum in
a single optimization.

6. Automatic Calibration; Algorithm Details and Results

In this section we describe the experiments that simulated the loss of calibration of a
LiDAR–camera system while a car is in motion. We verify the ability of the algorithm to
detect and automatically correct LiDAR angular displacement based on images captured
during driving. We carried out 10 experiments. In each, we simulated accidental rotation
of LiDAR by introducing additional yaw, pitch, and roll to the calibration matrices, and
for each experiment, F was optimized 10 times with a pattern search algorithm from
different staring points, using the 50 most recent frames. The probability of falling into a
local extremum is 0.53, so the risk of missing the global extremum in all 10 optimizations
is 0.0017 (0.53 to the power of 10). In Table 1, each row corresponds to one simulated
decalibration of LiDAR during the car movement. Columns labelled Actual decalibration
present simulated decalibration of LiDAR in degrees, decomposed to roll, pitch, and yaw.
Angles were sampled from the 3D uniform distribution, with roll, pitch, and yaw ∈ [−5, 5].
The calculated corrections are values of roll, pitch, and yaw that correspond to the optimal
value of the goal function; and in the ideal case, the calculated correction should be the
negative of the actual decalibration. Columns marked Errors present the sum of the actual
decalibrations and calculated corrections, for roll, pitch, and yaw separately. The column
Distance is the square root of the sum of squares of errors for roll, pitch, and yaw. The
average error for 10 decalibration experiments was 0.37, and the standard deviation was
0.18. The last column is the value of the goal function.

Table 1. Simulation of 10 decalibration experiments during car movement. Each row of the table
corresponds to one experiment: F was optimized using the 50 most recent frames (different for each
decalibration); 10 times, from 10 starting points.

Actual Decalibration Calculated Correction Errors
Distance F

Roll Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw

3.011 −2.004 2.756 −2.647 2.045 −2.823 0.364 0.041 −0.067 0.37 −8.827
−3.859 0.408 −0.836 3.847 −0.410 0.685 −0.013 −0.001 −0.150 0.15 −7.838
0.891 −0.203 −3.013 −0.731 0.246 2.911 0.160 0.044 −0.103 0.20 −8.084
0.163 2.070 3.136 0.564 −1.926 −3.090 0.727 0.145 0.046 0.74 −7.586
−3.080 2.770 3.645 3.436 −2.476 −3.749 0.356 0.293 −0.104 0.47 −8.271
2.646 −2.563 1.821 −2.371 2.548 −1.930 0.275 −0.015 −0.109 0.30 −8.244
−3.902 3.321 4.716 4.096 −2.982 −4.944 0.194 0.339 −0.228 0.45 −8.328
4.509 3.826 −0.626 −4.703 −3.761 0.862 −0.194 0.065 0.237 0.31 −8.606
1.465 −3.718 −4.187 −0.921 3.847 4.151 0.544 0.128 −0.036 0.56 −8.757
3.802 1.245 1.240 −3.653 −1.291 −1.140 0.149 −0.046 0.100 0.19 −8.936

Mean value: 0.374 −8.347
Standard deviation: 0.187 0.439

In each experiment, the global minimum was found with the assumed accuracy. How-
ever, as already mentioned, there is some probability (0.17% when using these parameters)
that the global minimum will be omitted. This problem can be solved by additional
verification when decalibration is detected.

Three-Step Procedure

Below we propose three steps for verification of calibration correction and increasing
the accuracy of the calculated decalibration (calibration refinement). The second step ver-

Remote Sens. 2022, 14, 2531 14 of 18

ifies whether the minimum found in the first step is the global minimum, and whether
calculations on another set of frames yield the same results. The third step refines cal-
culations by using more frames than the previous steps. A diagram of the procedure is
presented in Figure 9.

Figure 9. Diagram of the three-step procedure for decalibration detection, verification, and refinement.

Step 1. Decalibration detection
During autonomous driving, the algorithm is running continuously on latest N1 frames.

Optimization is repeated S times from different starting points. The minimum found during
this series of S optimizations is denoted min1 and the corresponding argument α1 (αi is a 3D
vector αr, αp, αw). If the norm of the calculated correction |α1| = |(αr1, αp1, αw1)| does not
exceed the threshold δ1, the current calibration is correct and the detection step is repeated.
Otherwise, the decalibration is verified in Step 2.

Step 2. Decalibration verification
If |α| > δ1 (decalibration is detected), the algorithm loads the next N1 frames for

optimization of F, to check whether the first result was the global minimum, independently

Remote Sens. 2022, 14, 2531 15 of 18

from a specific set of frames. As before, S starting points are used. The number of frames
is the same, but the set of frames is different. The minimum found during this series of
optimizations is denoted min2, and the corresponding argument (3D vector) is α2. If the
distance between α1 and α2 does not exceed the threshold δ2, decalibration is confirmed.
Calibration matrices are modified according to the value α12 = (αr12, αp12, αw12) that corre-
sponds to min12 = minimum(min1, min2), and then the next N2 frames, N2 > N1 are loaded
to refine the correction in Step 3. Otherwise, if |α1 − α2| ≥ δ2, the results are inconsistent.
This means that either in Step 1 or in Step 2, the global minimum was missed. Such a
situation may also result from an insufficient number of relevant objects in scenes captured
by the camera.

Step 3. Correction refinement
If |min1 − min2| ≥ δ2, the algorithm loads the next N2 frames for optimization of F.

This time the set of frames is larger (N2 > N1), to provide a better accuracy. The optimization
procedure runs only once, from the starting point α12 found in Step 2. If the location α3 of
the new minimum is close enough to α12, the calibration matrices are updated according
to α3.

In Tables 1 and 2, we present the results of 10 experiments, where the preliminary
correction of decalibration was calculated from latest 50 frames, and later refined based on
1000 frames. The average distance between actual decalibration introduced to the system
and correction calculated by the algorithm decreased from 0.37◦ to 0.23◦, compared to the
algorithm without correction refinement, and the standard deviation dropped from 0.18
to 0.10.

Table 2. Simulation of 10 decalibration experiments during a car movement, using correction
refinement. Each row of the table corresponds to one experiment. Parameters: N1 = 50, S = 10,
N2 = 1000.

Actual Decalibration Calculated Correction Errors
Distance F

Roll Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw

3.778 0.824 −4.293 −3.836 −0.532 4.234 −0.058 0.292 −0.059 0.30 −8.764
0.975 3.840 4.437 −0.737 −3.932 −4.461 0.238 −0.092 −0.024 0.26 −8.684
−0.453 −2.533 2.844 0.551 2.614 −2.878 0.099 0.081 −0.034 0.13 −8.582
3.844 2.209 −4.814 −3.877 −1.865 4.878 −0.033 0.344 0.064 0.35 −9.006
3.593 4.742 0.708 −3.434 −4.681 −0.431 0.159 0.061 0.277 0.33 −8.814
2.202 −1.531 0.170 −2.095 1.571 −0.282 0.106 0.040 −0.112 0.16 −8.764
0.716 −3.778 1.712 −0.656 3.825 −1.746 0.060 0.047 −0.034 0.08 −8.763
−3.290 4.386 0.905 3.385 −4.336 −1.237 0.096 0.050 −0.333 0.35 −8.922
2.064 −2.564 2.851 −2.145 2.489 −2.989 −0.081 −0.075 −0.139 0.18 −9.107
0.523 −2.819 2.724 −0.655 2.774 −2.820 −0.132 −0.045 −0.096 0.17 −9.393

Mean value: 0.231 −8.879
Standard deviation: 0.098 0.236

The accuracy of our algorithm is higher compared to other methods which operate
without a calibration pattern; for example, in [10], the angle error was 0.31◦ and in [11]
0.62◦. Both methods used data from the same LiDAR Velodyne HDL-64E. The accuracy
of methods based on calibration patterns was still higher; for example, the angle error
reported in [2], where a chessboard pattern was used, was between 0.05 and 0.1, depending
on the number of poses.

The overall error may result from several factors:

• LiDAR errors, which are significant in some frames, as shown in Figure 1. These errors
are compensated by a large number of frames being taken into consideration.

• Errors of adjustment (imperfect optimization), which are reduced thanks to multiple
starting points and enlarging the set of frames in the last step of the three-step proce-
dure. With an increasing number of frames, the goal function becomes smoother and
it has less local minima.

Remote Sens. 2022, 14, 2531 16 of 18

• Errors of segmentation. These errors should asymptotically decrease to zero. Even
if the semantic segmentation performed by Mask-RCNN has some systematic error,
for example, masks of cars returned by the network are on average larger or smaller
than the actual masks, undoubtedly this would not be biased between the left and
right side of the mask; therefore, the resulting errors of estimation of roll and yaw
would be compensated for by a large number of frames. Estimation of pitch can
remain uncompensated, since it is based on the upper edge of the mask. However,
we can observe that errors for all three angels are at the same level (in the three-step
procedure: 0.106 for roll, 0.112 for pitch, and 0.117 for yaw); therefore, we deduce that
segmentation errors do not influence of the accuracy of our method.

• Errors introduced by the camera, such as an imperfect focal length or radial distortion.
As a result, the global minimum of the goal function corresponds to the best match of
LiDAR data and camera image but a perfect match does not exist.

The optimization algorithm ran on average for 118 s on our PC (i7-9700KF, 3.60 GHz).
This time is sufficient to avoid collecting incorrect data for hours or days in the case of
accidental sensor decalibration. Since the computations can be parallelized, implementation
on dedicated hardware could substantially reduce calculation time. However, regardless
of computational complexity, the algorithm needs some time to collect data. From the
moment when decalibration occurs, 1050 de-calibrated frames are collected after 35 s (at
30 fps). Therefore, the method cannot be used for preventing an incorrect action in the case
of a sudden decalibration during autonomous driving.

7. Conclusions and Future Work

In this paper, we presented a method for the automatic correction of the LiDAR–
camera systems of autonomous cars. The algorithm is based on superimposition of LiDAR
data with the segmentation results of the camera image. We defined the goal function that
reflects the quality of alignment between the camera image and LiDAR data. We performed
a number of experiments, where the alignment was optimized for a different number of
frames, varying from 10 to 1000.

An important feature of our method is the operation in the background, based on
scenes captured during driving. The algorithm detects accidental rotation of the LiDAR or
camera and automatically corrects the calibration matrices.

We tested the proposed method on the KITTI dataset, proving that it can be used even
when the quality of the input data is relatively low. Our average accuracy of automatic
calibration was around 0.37◦ and the standard deviation 0.19 when the 50 most recent
frames were used for one-step optimization, and it dropped to 0.23◦ and a standard
deviation 0.10 for the three-step procedure. Errors may in some part be caused by the
inaccuracy of the calibration matrices provided with the KITTI database, which we used as
the ground truth.

In the future, we plan to test the method on higher quality data, such as the nuScenes
dataset. We used the KITTI database because it is very popular; thus, it is easier to compare
the results with other research, and because the relatively low quality of data allowed us
to test the robustness of our methods. On the other hand, by testing the algorithms on
nuScenes we could check how data quality influences the accuracy of correction.

We also plan to increase the segmentation accuracy, which is relevant for the precision
of our calibration algorithm. The segmentation calculated by Detectron is very reliable.
On the other hand, in classical segmentation methods, the location of the object edge is
calculated precisely based on local features of the image areas, and such algorithms can
locate the edge with higher accuracy than a deep network. In recent literature works, some
methods for correcting borders returned by MaskRCNN have been proposed; for example,
in [28], the GrabCut algorithm was used for this purpose. Incorporating such methods into
our algorithm could increase the accuracy of automatic calibration.

Remote Sens. 2022, 14, 2531 17 of 18

Author Contributions: Conceptualization, P.R.; methodology, P.R., M.K. and P.S.; software, P.R. and
M.K.; validation, P.R.; writing, P.R., M.K., P.S.; data curation, M.K.; funding acquisition, P.S. All
authors have read and agreed to the published version of the manuscript.

Funding: The project was partially supported by Aptiv Technical Center Krakow.

Acknowledgments: The authors would like to thank the researchers of the Advanced Engineering
Artificial Intelligence group at Aptiv for the discussions and their helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geiger, A.; Moosmann, F.; Car, Ö.; Schuster, B. Automatic camera and range sensor calibration using a single shot. In Proceedings

of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3936–3943.
2. Zhou, L.; Li, Z.; Kaess, M. Automatic Extrinsic Calibration of a Camera and a 3D LiDAR Using Line and Plane Correspondences.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 5562–5569.

3. Alismail, H.; Baker, L.D.; Browning, B. Automatic Calibration of a Range Sensor and Camera System. In Proceedings of the 2012
Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland, 13–15
October 2012; pp. 286–292.

4. Martin, V.; Španěl, M.; Materna, Z.; Herout, A. Calibration of RGB Camera with Velodyne LiDAR. In Proceedings of the 21st
International Conference on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, 2–6 June 2014;
pp. 135–144.

5. Park, Y.; Yun, S.; Won, C.S.; Cho, K.; Um, K.; Sim, S. Calibration between Color Camera and 3D LIDAR Instruments with a
Polygonal Planar Board. Sensors 2014, 14, 5333–5353. [CrossRef] [PubMed]

6. Gong, X.; Lin, Y.; Liu, J. 3D LIDAR-Camera Extrinsic Calibration Using an Arbitrary Trihedron. Sensors 2013, 13, 1902–1918.
[CrossRef] [PubMed]

7. Pusztai, Z.; Hajder, L. Accurate calibration of lidar-camera systems using ordinary boxes. In Proceedings of the IEEE International
Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 394–402.

8. Pusztai, Z.; Eichhardt, I.; Hajder, L. Accurate calibration of multi-lidar-multi-camera systems. Sensors 2018, 18, 2139. [CrossRef]
[PubMed]

9. Tóth, T.; Pusztai, Z.; Hajder, L. Automatic LiDAR-Camera Calibration of Extrinsic Parameters Using a Spherical Target. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 23–27 May 2010; pp. 8580–8586.

10. Pandey, G.; McBride, J.R.; Savarese, S.; Eustice, R.M. Automatic Extrinsic Calibration of Vision and Lidar by Maximizing Mutual
Information. J. Field Robot. 2014, 32, 696–722. [CrossRef]

11. Ishikawa, R.; Oishi, T.; Ikeuchi, K. Lidar and camera calibration using motions estimated by sensor fusion odometry. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 7342–7349.

12. Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning:
A Survey. arXiv 2020, arXiv:2001.05566v4. [CrossRef] [PubMed]

13. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the International Conference of Computer Vision
(ICCV), Venice, Italy, 22–29 October 2017.

14. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 17 March 2022).

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Proceedings of the 28th International Conference on Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC,
Canada, 7–12 December 2015.

16. Haris, M.; Glowacz, A. Road Object Detection: A Comparative Study of Deep Learning-Based Algorithms. Electronics 2021,
10, 1932. [CrossRef]

17. Ma, W.Y.; Manjunath, B.S. Edge Flow—A framework of boundary detection and image segmentation. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17–19 June 1997.

18. Panda, S.; Nanda, P.K. Color Image Segmentation Using Markov Random Field Models; Lambert Academic Publishing: Saarbrücken,
Germany, 2018.

19. Masoud, M.; Sood, R. Instance segmentation using depth and mask RCNN. In CS230: Deep Learning Project Reports and Posters;
Stanford University: Stanford, CA, USA, 2018. Available online: https://cs230.stanford.edu/projects_spring_2018/reports/8285
407.pdf (accessed on 17 March 2022).

20. Danielczuk, M.; Matl, M.; Gupta, S.; Li, A.; Lee, A.; Mahler, J.; Goldberg, K. Segmenting Unknown 3D Objects from Real
Depth Images using Mask R-CNN Trained on Synthetic Data. In Proceedings of the International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019.

http://doi.org/10.3390/s140305333
http://www.ncbi.nlm.nih.gov/pubmed/24643005
http://doi.org/10.3390/s130201902
http://www.ncbi.nlm.nih.gov/pubmed/23377190
http://doi.org/10.3390/s18072139
http://www.ncbi.nlm.nih.gov/pubmed/29970844
http://doi.org/10.1002/rob.21542
http://doi.org/10.1109/TPAMI.2021.3059968
http://www.ncbi.nlm.nih.gov/pubmed/33596172
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://doi.org/10.3390/electronics10161932
https://cs230.stanford.edu/projects_spring_2018/reports/8285407.pdf
https://cs230.stanford.edu/projects_spring_2018/reports/8285407.pdf

Remote Sens. 2022, 14, 2531 18 of 18

21. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

22. Ali, W.; Abdelkarim, S.; Zidan, M.; Zahran, M.; El Sallab, A. YOLO3D: End-to-end real-time 3D Oriented Object Bounding
Box Detection from LiDAR Point Cloud. In Proceedings of the ECCV 2018: Computer Vision–ECCV 2018 Workshops, Munich,
Germany, 8–14 September 2018; pp. 716–728.

23. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection from Point Clouds.
arXiv 2019, arXiv:1812.05784.

24. Dinh, T.H.; Pham, M.T.; Phung, M.D.; Nguyen, D.M.; Hoang, V.M.; Tran, Q.V. Image segmentation based on histogram of depth
and an application in driver distraction detection. In Proceedings of the 13th International Conference on Control Automation
Robotics & Vision (ICARCV), Singapore, 10–12 December 2014.

25. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

26. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

27. Audet, C.; Dennis, J.E. Analysis of Generalized Pattern Searches. SIAM J. Optim. 2002, 13, 889–903. [CrossRef]
28. Wu, X.; Wen, S.; Xie, Y.-A. Improvement of Mask-RCNN Object Segmentation Algorithm. In Intelligent Robotics and Applications;

Springer: Berlin/Heidelberg, Germany, 2019; pp. 582–591.

http://doi.org/10.1177/0278364913491297
http://doi.org/10.1137/S1052623400378742

	Introduction
	Segmentation
	Input Data
	Outline of the Method
	Preliminary Experiments
	Properties of the Goal Function
	Influence of the Number of Frames on the Goal Function Shape
	Local Extrema Avoidance

	Automatic Calibration; Algorithm Details and Results
	Conclusions and Future Work
	References

