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Abstract: Extrinsic calibration on a LiDAR-camera system is an essential task for the advanced
perception application for the intelligent vehicle. In the offline situation, a calibration object based
method can estimate the extrinsic parameters in high precision. However, during the long time
application of LiDAR-camera system in the actual scenario, the relative pose of LiDAR and camera
has small and accumulated drift, so that the offline calibration result is not accurate. To correct
the extrinsic parameter conveniently, we present a deep learning based online extrinsic calibration
method in this paper. From Lambertian reflection model, it is found that an object with higher LiDAR
intensity has the higher possibility to have salient RGB features. Based on this fact, we present a
LiDAR intensity attention based backbone network (LIA-Net) to extract the significant co-observed
calibration features from LiDAR data and RGB image. In the later stage of training, the loss of
extrinsic parameters changes slowly, causing the risk of vanishing gradient and limiting the training
efficiency. To deal with this issue, we present the structural consistency (SC) loss to minimize the
difference between projected LiDAR image (i.e., LiDAR depth image, LiDAR intensity image) and
its ground truth (GT) LiDAR image. It aims to accurately align the LiDAR point and RGB pixel.
With LIA-Net and SC loss, we present the convolution neural network (CNN) based calibration
network LIA-SC-Net. Comparison experiments on a KITTI dataset demonstrate that LIA-SC-Net
has achieved more accurate calibration results than state-of-the-art learning based methods. The
proposed method has both accurate and real-time performance. Ablation studies also show the
effectiveness of proposed modules.

Keywords: LiDAR-camera system; extrinsic calibration; mutual information; deep learning

1. Introduction

The system that consists of Light Detection and Ranging (LiDAR) and optical camera
has played an important role in the recent years [1]. This system is called a LiDAR-camera
system, which is the core multi-sensor system for the intelligent vehicle [2]. The main
advantage of LiDAR-camera system is that it provides both structural (3D LiDAR point
cloud) and textural (2D RGB image) information of the surrounding [3], which can be used
to improve the performance of the advanced perception tasks (i.e., 3D object detection [4],
3D point cloud semantic segmentation [5]) for the autonomous driving car.

To utilize LiDAR point cloud and RGB image efficiently [6], it is essential to find
the alignment of point p in LiDAR point cloud and its corresponding pixel I in RGB
images, to make sure that p and I satisfy the projection constraint [7]. Theoretically, this
alignment problem can be solved by point cloud and image registration [8]. Considering the
background of autonomous driving, the mechanical structure of LiDAR and camera is fixed.
In the ideal condition, the relative pose of LiDAR and camera is also constant. It means
that point cloud and image registration can be simplified and solved via calibrating the
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LiDAR-camera system. This task aims to calibrate all the parameters of the LiDAR-camera
system, such as (i) the intrinsic parameters of camera, (ii) the intrinsic parameters of LiDAR,
and (iii) the extrinsic parameters of LiDAR-camera system. At first, the intrinsic parameters
of camera consist of intrinsic matrix K and lens distortion parameters D. In the offline
situation, using the rectangular board with the chessboard patterns as a calibration object,
the user can place the camera at the different positions to observe the calibration object, and
exploit the nonlinear optimization to estimate K and D via minimizing the reprojection
errors of observed corner points extracted from the chessboard patterns [7]. K and D of the
camera are basically constant during the online application. Second, the intrinsic parameters
of LiDAR are more complex than the camera because they are related with the mechanical
structure of LiDAR. These parameters are generally carefully calibrated by the LiDAR
manufacturer. The intrinsic parameters of LiDAR are also constant in the actual application.
Third, the extrinsic parameters of LiDAR-camera system are the rigid transformation of the
LiDAR coordinate system and the camera coordinate system, represented by the rotation
matrix R and the translation vector T. Thanks to the rapid development of computer
vision and LiDAR manufacturing technique, the intrinsic parameters of LiDAR and camera
can be calibrated with high precision. However, due to the limited resolution angle of
LiDAR, the LiDAR point cloud is sparse, causing the extrinsic parameter calibration on the
LiDAR-camera system to be a challenging problem, for the co-observed feature is difficult
to find from the sparse LiDAR point cloud and dense RGB image [9,10]. Therefore, we
mainly discuss the extrinsic calibration on the LiDAR-camera system in this paper.

The key of extrinsic calibration on LiDAR-camera system is to find the co-observed
constraints from both LiDAR point cloud and RGB image [11]. To resist the sparsity
of LiDAR point cloud, a simple and effective approach is to design a specific target or
calibration object [12]. The calibration object has a salient structure, and its contour and
edge features can be clearly found in the sparse LiDAR point cloud and RGB image.
These features serve as the co-observed constraints for calibration. This kind of method is
called the calibration object based calibration method. The man-made calibration object
is convenient to find [13] in the offline case. However, in the online situation (i.e., the
intelligent vehicle drives in the open scene), there is nearly no specific calibration object
so that the calibration object based extrinsic calibration method cannot work. Due to the
complexity of object contour and the sparsity of LiDAR point cloud, it is a challenging task
to find the co-observed constraint in the open scene [10]. Therefore, it is difficult to calibrate
the extrinsic parameters of LiDAR-camera system in the online situation.

With the background of intelligent driving, one may wonder whether it is necessary
to calibrate the LiDAR-camera system in the online situation. Ref. [14,15] points out that,
in the long time application of LiDAR-camera system, the extrinsic parameter has small
but accumulated drift (represented by ∆R and ∆T) due to the mechanical vibrations or
temperature changes. This issue causes extrinsic calibration results R0 and T0 in the offline
case to not be accurate at this time. Online extrinsic calibration aims to estimate ∆R and
∆T, and obtain the accurate extrinsic parameters R and T as:(

R T
0T 1

)
=

(
R0 T0
0T 1

)
·
(

∆R ∆T
0T 1

)
(1)

In this paper, we present a novel convolution neural network (CNN) based calibration
network with a LiDAR intensity attention based backbone network (LIA-Net) and structural
consistency (SC) loss. The proposed calibration network is called LIA-SC-Net, which aims
to solve the problem of online extrinsic calibration on the LiDAR-camera system. From
the Lambertian reflection model [16], it is found that the object with high LiDAR intensity
has the higher possibility with the salient texture feature in the RGB image. This kind of
object has the potential co-observed constraint. As the object in the open scene has complex
contour, it is difficult to extract the robust primary co-observed features [17]. We exploit
the technique of deep learning [18], and attempt to learn the co-observed calibration (CoC)
feature via the deep CNN architecture. As the object with the higher LiDAR intensity has
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more potential information for calibration, we refer the visual attention mechanism [19] in
deep learning, and then propose LIA-Net to learn the salient CoC feature. In the later stage
of training, the regression loss of extrinsic parameters tends to be stable and close to zero.
On the one hand, it has the risk of vanishing gradient [20], which limits the efficiency of
supervised learning. On the other hand, according to the camera pinhole model [7], even if
the rotation error is smaller than 1 deg, the alignment pixel error of the projected LiDAR
point and its corresponding pixel in the RGB image might be larger than 10.0 pixels. To
deal with this issue, we present SC loss to reduce the alignment pixel error by minimizing
the difference between a projected LiDAR image (i.e., LiDAR depth image, LiDAR intensity
image) and its GT projected LiDAR image. With combining the advantages of LIA-Net and
SC loss, we then propose LIA-SC-Net to estimate the extrinsic parameters. To evaluate the
performance of the proposed method, extensive experiments are both conducted in the
public dataset KITTI [2] collected by the self-made LiDAR-camera system. Ablation studies
are also provided to show the effectiveness of LIA-Net and SC loss. We believe that the
proposed method benefits the advanced application of the LiDAR-camera system.

In conclusion, three main contributions are provided in this paper:

(i) Considering that the object with higher LiDAR intensity has more salient co-observed
constraint, LIA-Net is proposed to utilize LiDAR intensity as the attention feature map
to generate the salient CoC features;

(ii) To prevent the risk of vanishing gradient in the later training stage, SC loss is presented
to approximately reduce the alignment error from LiDAR point cloud and RGB image
by minimizing the difference of the projected and its GT projected LiDAR images;

(iii) Taking the advantages of both LIA-Net and SC loss, deep learning based extrinsic cali-
bration method LIA-SC-Net is presented to estimate the accurate extrinsic parameters
of a LiDAR-camera system.

The remainder of this paper is organized as follows: At first, related works of extrinsic
calibration on LiDAR-camera system are provided in Section 2. In the next, the proposed
online extrinsic calibration method is illustrated in Section 3. After that, experimental
results in the public dataset are shown in Section 4. Discussions of the proposed method
and its performance in the actual application are presented in Section 5. Finally, our work
is concluded in Section 6.

2. Related Works

As for the calibration technique, current extrinsic calibration methods can be classified
as three categories: (i) calibration object based extrinsic calibration method, (ii) informa-
tion fusion based extrinsic calibration method, and (iii) deep learning based extrinsic
calibration method.

2.1. Calibration Object Based Extrinsic Calibration Method

The key of calibration object based method is to design the specific target with the
significant structure. The corner point of the calibration object can be measured from the
LiDAR point cloud and RGB image, and 3D-2D, 3D-3D point corresponding constraints
can be established from the corner point [9]. From a 3D-2D point corresponding constraint,
perspective-n-point (PnP) algorithm [21,22], direct linear transformation (DLT) method [23],
and bundle adjustment (BA) algorithm [24] can be used to estimate R and T. From a
3D-3D point corresponding constraint, the iterative closest point (ICP) method [25,26]
can be exploited to calibrate the extrinsic parameters. A common calibration object can
be classified as three groups: (i) 2D calibration object; (ii) 3D calibration object; and (iii)
combined calibration object. 2D calibration objects are the polygonal planar board [11,12],
the planar board with circular holes [27], or chessboard patterns [28,29]. Chessboard
patterns are useful in the extrinsic calibration on the LiDAR-camera system, for the corner
points of chessboard patters are easily extracted from RGB image [28]. As LiDAR intensity
values of chessboard patterns change regularly, this fact can be utilized to extract the
corner points of chessboard patters from LiDAR point cloud [28,30]. If the relative position
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of chessboard patterns and the planar board is known, the corner points of chessboard
patterns can also provide 3D-2D point corresponding constraints [31]. 3D calibration
objects are the trihedron [32], the spherical ball [33], the cubic box [13,34], and the cubic box
with patterns [35]. Corner point of the trihedron and cube, or center point of the sphere
can be used to establish the point corresponding constraint. To extract more calibration
constraints, researchers try to combine the 2D and 3D calibration objects, and propose
the combined calibration object. An et al. [9] proposed a combined calibration object that
consists of the main and auxiliary calibration objects. Kummerle and Kuhner [36] combined
the spherical ball and the planar board with patterns. As time goes by, the structure of
calibration object tends to be complex. In fact, from the viewpoint of actual application, it
is an interesting question to balance the calibration accuracy and the production cost of the
calibration object.

2.2. Information Fusion Based Extrinsic Calibration Method

As discussed in Section 1, under the background of the intelligent vehicle, it is essential
to calibrate the LiDAR-camera system in the target-less open scene [14,15]. Before the rise
of deep learning in the area of computer vision, the information fusion based extrinsic
calibration method is presented to automatically find the co-observed calibration features
from camera image and LiDAR data. This so called co-observed calibration feature can be
(i) corresponding edge feature [14], (ii) corresponding point cloud [37], and (iii) correspond-
ing odometry [38]. To make use of the corresponding edge feature, researchers converts the
extrinsic calibration as the multi-source image registration problem [14]. With the initial
extrinsic parameters R0 and T0, the LiDAR point cloud can be projected into the image
plane as the projected LiDAR depth image D0 and the projected LiDAR intensity image I0.
∆R and ∆T can be estimated via solving the image registration of D0 or I0 and RGB image
R. Mutual information (MI) is a useful tool to measure the similarity of two multi-source
images, which has been successfully used in the field of remote sensing [39]. With the MI
based calibration loss, Pandey et al. [14] established the nonlinear optimization problem to
estimate ∆R and ∆T in an iterative scheme. To obtain the robust registration result, Wolcott
and Eustice [40] exploited the normalized MI for registration, and Irie et al. [41] proposed
bagged least-squares MI (BLSMI) as the calibration loss. Zhu et al. [42] considered that
the edge feature in the RGB image is sensitive to color variations and noise, and they
used the semantic segmentation map predicted from RGB image for registration. Xiao
et al. [43] obtained ∆R and ∆T by minimizing the image feature errors of LiDAR points in
the different frames. To make use of the corresponding point cloud, researchers convert
the extrinsic calibration as the 3D point cloud registration problem [37]. The key of this
approach is to generate the point cloud Pc from RGB images. After that, R and T are
estimated by solving the point cloud registration of Pc and LiDAR point cloud Pl . For the
LiDAR-stereo system, the stereo camera can generate the depth image via the disparity
principle, and Pc is obtained via back-projecting the depth image into the 3D space [44].
For the common LiDAR-camera system, using the sequence of RGB images, a 3D point
cloud Pc can be reconstructed via the technique of structure from motion (SFM) [45] and
simultaneous localization and mapping (SLAM) [46]. Nagy and Benedek [3] exploited
the semantic segmentation on the point clouds Pc and Pl to increase the accuracy of the
ICP algorithm [25]. To make use of the corresponding odometry, researchers convert the
extrinsic calibration as the classic hand-eye calibration problem [47]. This approach needs
to move the LiDAR-camera system. With the ICP algorithm [25], the odometry of LiDAR
is estimated as Ol . Using the techniques of visual odometry (VO) [48], SFM, and SLAM,
the odometry of camera is estimated as Oc. A hand-eye calibration constraint can be
established from Ol and Oc, and then extrinsic parameters are estimated [49]. Ishikawa
et al. [38] presented the two-stage odometry based extrinsic calibration method. In the
first stage, they obtain the initial results R0 and T0 from the odometry information via
the hand-eye calibration approach [47]. In the second stage, they exploited the MI based
extrinsic method [14] to obtain ∆R and ∆T. The extrinsic parameters are finally estimated
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via Equation (1). Unlike calibration object based extrinsic calibration method, the infor-
mation fusion based extrinsic method tends to convert the extrinsic calibration as some
known and classical problems, such as multi-source image registration [14], point cloud
registration [37], and hand-eye calibration [38].

2.3. Deep Learning Based Extrinsic Calibration Method

As for the information fusion based extrinsic calibration method, it needs the extra
techniques, such as MI computation [39], 3D reconstruction [45,46], and odometry esti-
mation [25,48]. Calibration procedure is more complex than the calibration object based
method, and calibration precision depends on the performance of these techniques. With
the success of deep learning in the field of robotic vision [50], some researchers attempt
to design the deep learning based extrinsic calibration method, and aims to extract the
adaptive co-observed feature to regress the extrinsic parameters [15]. The key problem
of this method is how to align the structure feature from LiDAR point cloud Pl and RGB
image R. As Pl and R have the different data representations, a naive approach is to
project Pl into the image plane as D0 and I0 with R0 and T0, and extract the co-observed
feature from D0, I0, andR. Most of the researchers select to extract the CoC feature from
D0 and R [51–53] because most of the edge features are caused by the discontinuous of
depth [54], which means that D0 andR exist the common structure feature. RegNet [51] is
the first deep learning based calibration approach. It uses the network in network (NIN)
module [55] to extract CoC features from D0 andR, and exploit fully connected (FC) layers
to regress ∆R and ∆T. Iyer et al. [52] proposed a calibration network CalibNet, in which
ResNet [56] is used as a backbone network to extract the feature maps from D0 andR. In
CalibNet, they exploited the geometric and photometric consistency of the Pl andR as the
supervision loss. Based on the deep learning based optical flow [57], Cattaneo et al. [53]
aimed to extract the CoC feature from the difference of D0 andR. Recently, Wu et al. [15]
proposed a coarse-to-fine method CalibRank where the image retrieval algorithm is used to
estimate R0 and T0. Yuan et al. [58] considered Riemannian geometry and present a module
tolerance regularizer for extrinsic calibration. Ye et al. [59] designed a point weighting layer
to predict the sparse keypoint correspondences with the weighted scores, and exploited the
PnP algorithm [21] to estimate ∆R, ∆T with these correspondences. A deep learning based
extrinsic calibration method is in development now. It is a challenging task to increase the
generalization ability for various online calibration scenes. In addition, more discussion of
this kind of method is presented in the following.

2.4. Analysis of the Deep Learning Based Extrinsic Calibration Method

As for the online extrinsic calibration on LiDAR-camera system, compared with the
information fusion based method, the deep learning based method is the end-to-end
approach. It does not require any extra techniques, and is convenient to use in the actual
application. The general pipeline of deep learning based extrinsic calibration method is
shown in Figure 1 [51–53]. It consists of three modules: (i) backbone networks, (ii) co-
observed feature extraction, and (iii) parameters regression. To increase the calibration
accuracy, two issues need to be focused on. First, how to learn the salient CoC feature from
multi-source images is an important problem. To solve this issue, we exploit the visual
attention mechanism from LiDAR intensity and present a novel backbone network LIA-Net.
Second, it is essential to increase the learning efficiency of calibration network. To deal with
it, SC loss is proposed to accurately align the LiDAR points and RGB pixels. In the next
section, the proposed LIA-Net and SC loss are discussed with details.
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Figure 1. The general pipeline of deep learning based extrinsic calibration method. Inputs are D0

and R. D0 are obtained by projecting Pl into the image plane with K, R0, and T0. Outputs are ∆R
and ∆T. Squeeze is the operation to convert the 2D feature map into a 1D feature vector. Function
Qua2Rot converts the quaternion ∆Q as the rotation matrix ∆R. Conv. and FC mean convolution and
fully connected, respectively.

3. Proposed Method
3.1. Problem Statement and Method Overview

Extrinsic calibration on the LiDAR-camera system aims to estimate the rigid transfor-
mation between LiDAR coordinate system OL−XLYLZL and the camera coordinate system
OC − XCYCZC, represented by R and T, shown in Figure 2a. As illustrated in Section 1,
with the known and initial R0 and T0, online extrinsic calibration aims to estimate ∆R and
∆T. Compared with Figure 2b and Figure 2c, the alignment of LiDAR point cloud and RGB
image is more accurate after online extrinsic calibration.

Figure 2. The task and significance of online extrinsic calibration on LiDAR-camera system. (a) the
model of LiDAR-camera system; (b) inaccurate alignment of LiDAR point cloud and RGB image
with R0 and T0; (c) LIA-SC-Net predicts accurate ∆R and ∆T, thus obtaining the precise alignment
result. The projected LiDAR point cloud with pseudo color dependent on LiDAR intensity is used
for visualization. After calibration, RGB pixels and LiDAR points of the vehicle in the red box are
correctly aligned.

In this paper, we propose an efficient deep learning based online extrinsic calibration
method LIA-SC-Net. The pipeline is presented in Figure 3. Its inputs are LiDAR point
cloud Pl , RGB imageR, and initial extrinsic parameters R0 and T0. Its outputs are ∆R and
∆T. Using the pinhole projection [7], the initial LiDAR depth D0 and LiDAR intensity I0
are obtained with Pl , K, and R0 and T0. Projection detail is shown in Appendix A.1. R, D0,
and I0 are [W, H, 3], [W, H, 1], [W, H, 1] tensors where W, H are the width and height of the
image. The architecture of LIA-SC-Net is the extension of the general pipeline in Figure 1.
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Unlike the common pipeline, LIA-Net in the proposed method utilizes the natural attention
mechanism from LiDAR intensity, and SC-loss focuses on the alignment of LiDAR point
cloud and RGB image, thus increasing the extrinsic calibration accuracy.

Figure 3. The pipeline of LIA-SC-Net. It mainly consists of LIA-Net and SC loss. Abbreviations Op.
and approx. are operation and approximation, respectively. SC loss aims to reduce the alignment
error by minimizing the re-projection error of the point P′ = R0P + T0.

3.2. LiDAR Intensity Attention Based Backbone Network

LIA-Net is presented to generate salient CoC feature FCoC from R, D0, and I0. It
has two procedures: (i) dense operation and (ii) CoC feature generation. At first, dense
operation is discussed. It is a fact that the number of point cloud generated by the me-
chanical LiDAR (≈105) is far smaller than image pixels W · H (≈106), so that D0 and I0 are
sparser thanR (seen in Figure 4a,b). From the computation theory of CNN layer [18,56],
sparse feature map has the risk of destroying the quality of the structural information of the
original data. Thus, it is essential to densify D0 and I0. Inspired by the work [60], based on
the classical image processing techniques, a simple and fast pipeline is presented as:

Xd = inv(Fmedian(Fhole(Fdilate(inv(X ), k)), k)),X = {D0, I0},Xd = {D0d, I0d} (2)

inv(X ) = max(X ) · 1−X (3)

Operators Fmedian(·, k) and Fdilate(·, k) are median filter and dilation operation with
the kernel size of k × k. If the k set is too large, densification results D0d and I0d have
distortion and are unreal. An exact estimation of k requires the intrinsic parameters of both
LiDAR and camera. It is discussed in Appendix A.2. Fhole(·) is the operation to estimate
the empty depth using the dilation with the large kernel size [60]. inv(·) is the inverse
operation for the single channel image. 1 in Equation (3) is a full-one tensor with the same
size of X . Results of the dense operation are shown in Figure 4c.

After that, CoC feature generation is discussed. From the Lambertian reflection
model [16], it is found that the object with higher LiDAR intensity has the potential with the
salient structure feature in both LiDAR point cloud and RGB image, helpful for generating
the significant CoC feature. It is discussed in the following. As most of the object surfaces in
the open scene are rough [61], the Lambertian reflection model [16] is used to characterize
LiDAR intensity rl :

rl ∝ ρl ·
nT

l nLiDAR

Dl
2 · PLiDAR (4)
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Figure 4. Visualization of dense operation. (a) RGB image; (b) LiDAR depth and intensity; (c) dense
LiDAR depth and intensity after dense operation. Edge structure of the vehicle inside the red box in
the dense LiDAR feature map is clearer than the raw LiDAR feature map, benefiting the extraction of
the significant calibration feature.

LiDAR intensity is determined by the material coefficient of laser ρl , object orientation
nl , LiDAR orientation nLiDAR, object distance Dl , and laser power PLiDAR. As laser is the
active light source, PLiDAR ∝ D−2

l . If LiDAR intensity of one object is larger, it might be the
fact that nT

l nLiDAR ≈ 1 and Dl is smaller, which means that this object is close to LiDAR and
object surface exactly faces LiDAR. According to the mechanism of the mechanical LiDAR,
this kind of object commonly has dense LiDAR points, and its structural feature in LiDAR
point cloud is clear. It is noted that the LiDAR-camera system equipped in the intelligent
vehicle, so that T � Dl . It means that this kind of object is also close to the camera, which
might have salient textural feature in the RGB image. In conclusion, the object with high
LiDAR intensity might have salient features in both LiDAR point cloud and RGB image
(shown in Figure 5), which is helpful for generating the representative CoC feature.

Figure 5. Visualization of (a) RGB image and (b) LiDAR intensity. Observing the red bounding boxes,
the objects with higher LiDAR intensity have the clearer structural features in both RGB image and
LiDAR point cloud.

Based on the above analysis, visual attention is exploited from LiDAR intensity
I0d. With the efficient encoder ResNet [56], the attention feature map A is obtained as
Equation (5). EI(·) is the encoder with the first four convolution layers of ResNet-18. The
reason for selecting ResNet-18 as an encoder is that it is light and efficient to extract the
image feature. Conv2d(·) is one 2D convolution layer with the single channel. Its activation
function is Softmax to make sure the attention value in A lies in [0, 1]. A is [W/8, H/8, 1]
tensor. After that, with A, an attentional LiDAR map feature FLiDAR is extracted as Equa-
tion (6). ED(·) is the encoder of LiDAR depth, as the same architecture with EI(·). FLiDAR
is [W/8, H/8, 256] tensor:

A = Conv2d(EI(I0d)) (5)

FLiDAR = A · ED(D0d) (6)
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Referring the co-observed feature extraction in CMR-Net [53], the CoC feature FCoC is
extracted as:

FCoC = CVC(FLiDAR,FCamera) (7)

FCamera = ER(R) (8)

CVC(·) is the cost volume computation (CVC) module [53,57], discussed in Appendix A.3.
ER(·) is the encoder of RGB image, as the same architecture with EI(·). FCamera is
[W/8, H/8, 256] tensor. FCoC is [d2, W/8, H/8] tensor. d is the pixel range, set as the
default value in the literature [53].

3.3. Parameters Regression

The parameters regression module aims to estimate ∆R and ∆T. Referring the
literature [51,53], the proposed network regresses the unit quaternion ∆Q instead of ∆R,
for regressing ∆R needs to consider two constraints: (i) ∆RT∆R = I and (ii) det(∆R) = 1,
whereas ∆Q only has one constraint: ‖∆Q‖2 = 1. ∆Q and ∆T are obtained as:

fCoC = FC f (Squeeze(FCoC)) (9)

∆Q = FCQ( fCoC), ∆T = FCT( fCoC) (10)

Squeeze(·) is the operation that converts the feature map into 1D vector. FC f is
two FC layers with neurons of 1024 and 512. FCQ is two FC layers with neurons of 256
and 4. FCT is two FC layers with neurons of 256 and 3. As ∆Q is a unit quaternion,
normalization should be done in Equation (11). Finally, ∆R is extracted from ∆Q in
Equation (12). Qua2Rot(·) is the operation that converts the unit quaternion as a rotation
matrix, discussed in Appendix A.4:

∆Q =
∆Q
‖∆Q‖2

(11)

∆R = Qua2Rot(∆Q) (12)

3.4. Structural Consistency Loss

Regular calibration loss [51,53] is illustrated at first. Ground truths’ extrinsic parame-
ters are marked as ∆Rgt and ∆Tgt. ∆Qgt = Qua2Rot(∆Rgt). Regular loss Lreg is presented
in Equation (13). Lsmooth-L1(·) is smooth L1 function [50]. Let Θ denote all learn-able param-
eters in the proposed calibration network. ‖Θ‖2 is an L2 norm of all learn-able parameters.
γ > 0 is L2 regulation weight, set as the default value in the literature [53]:

Lreg = Lsmooth-L1(∆T, ∆Tgt) + Lsmooth-L1(∆Q, ∆Qgt) + γ‖Θ‖2 (13)

The challenge of Lreg is then discussed. In the late period of the training stage, although
the regression results ∆R and ∆T might be close to the ground truths, it cannot promise that
the alignment error of LiDAR point cloud and RGB image is small enough. An example is
taken. Supposed that the focal length of the camera is fc = 800 pixels and T � Dl . If the
error of the rotation angle is close to er = 1.0 deg, the re-projection error of LiDAR point
in the image plane is ep ≥ π

180 fcer = 13.95 pixels [7], which is larger than 8.0 pixels as the
calibration tolerance error [9,10]. Therefore, we need to design a new loss term for the
alignment of LiDAR point cloud and RGB image.

A naive loss term is designed to directly minimize the alignment error as Equation (14).
Pl,i is the coordinate of the i-th LiDAR point in the LiDAR coordinate system. SFOV is
the index set of LiDAR points that are fallen into FOV of the camera. 1(i ∈ SFOV) is the
indicator function. It outputs 1 if the i-th point is fallen into FOV of the camera. It outputs 0
if not. π(·) is the operation of pinhole camera projection, discussed in Appendix A.1. Ii,GT
is the pixel in the image corresponding to the i-th LiDAR point:
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Lalign =
N

∑
i=1
‖Ii,GT − Ii‖2

2 · 1(i ∈ SFOV), Ii = π(P′l,i; ∆R, ∆T), P′l,i = R0Pl,i + T0 (14)

However, Lalign cannot work in the actual applications for two reasons: (i) it is difficult
to find the corresponding pixel Ii for the arbitrary LiDAR point; (ii) it is also difficult
to determine SFOV with the initial and inaccurate R0 and T0. Thus, Lalign needs to be
approximated for the actual application. That is the reason why loss approximation is
needed in Figure 3. With ∆Rgt and ∆Tgt, ground truth LiDAR depth Dgt and LiDAR
intensity Igt are obtained with the same procedure in Section 3.1. With ∆R and ∆T,
D(∆R, ∆T) and I(∆R, ∆T) are also obtained. It is noted that the depth and intensity
of Ii,GT and Ii are close if ‖Ii,GT − Ii‖2 is small enough. Therefore, we aim to maximize
the structural consistency between Dgt and D(∆R, ∆T), or between Igt and I(∆R, ∆T).
Inspired the photo-metric loss in CalibNet [52], using L2 norm, SC loss is designed as:

LSC,raw = ‖Dgt −D(∆R, ∆T)‖2
2 + ‖Igt − I(∆R, ∆T)‖2

2 (15)

Due to the sparsity of LiDAR point cloud, minimizing the sparse feature map would
easily cause the discontinuity of the SC loss. Dense operation in Section 3.2 is exploited
to densify the ground truths and estimated LiDAR projection maps. SC loss is revised as
Equation (16). The calibration loss of LIA-SC-Net is shown in Equation (17):

LSC = ‖Dgtd −Dd(∆R, ∆T)‖2
2 + ‖Igtd − Id(∆R, ∆T)‖2

2 (16)

Lcalib = Lreg + LSC (17)

3.5. Iterative Inference Scheme

Following the methods [52,53], the iterative inference scheme is exploited to increase
the accuracy of LIA-SC-Net. Let m be the iteration time (m = 1, ..., M). In addition, M
is the maximum iterative time. The m-th outputs are ∆Rm and ∆Tm. Then, R0 and T0
are updated with ∆Rm and ∆Tm via Equation (1), and used as the initial parameters for
the m + 1 iteration. In the M-th iteration, updated R0 and T0 are output as the iterative
inference calibration results. The selection of M is discussed in the experiment section.

4. Experimental Results
4.1. Experiment Configuration
4.1.1. Dataset and Preparations

The performance of the proposed method is evaluated on a KITTI autonomous driving
dataset [2]. In the KITTI outdoor dataset, the LiDAR-camera system consists of Velodyne
HDL-64E LiDAR (10 Hz, 64 laser beams) and PointGray Flea2 video RGB camera (10
Hz) [2]. RGB image and LiDAR point cloud are used to prepare our dataset. It contains
7481 samples for training and 7518 samples for validation. The training and validation
datasets are randomly selected from all 28 different outdoor scenes. As the size of image
in the KITTI dataset is [1242, 375], all images are padded to [1280, 384] to meet the CNN
architecture requirement (width and height multiple of 64). Although the KITTI dataset was
established in 2012, it is still the main public benchmark for mainstream applications for the
autonomous driving [17]. To simulate the situation of online extrinsic calibration, we follow
the approach of the current deep learning based extrinsic calibration methods [51–53] to
generate ∆R and ∆T. ∆R can be represented with yaw–pitch–roll Euler form with three
angles (∆θy, ∆θp, ∆θr)T . These angles are randomly sampled from a uniform distribution
in the range of [−θ, θ] (Unit: degree). ∆T has three elements (∆x, ∆y, ∆z)T , and they are
randomly sampled from a uniform distribution in the range of [−D, D] (Unit: meter).

4.1.2. Implementations

To verify the deep learning based methods in different situations, six noise levels
are presented in Table 1. According to the classical learning based method [15], for the
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practical application of the LiDAR-camera system, the drifted rotation error is smaller than
20 deg, and the drifted translation error is smaller than 1.50 m. For the fair comparison, all
learning based methods are trained with level-3 calibration situation, and then tested with
level-0 to level-5 calibration situations. Level-0 is used to test the stability of the learning
based method. Based on an open-source optical flow network PWC-Net [57], CMR-Net [53]
and LIA-SC-Net are implemented with the PyTorch library. Open-source CalibNet [52] is
implemented with Tensorflow library. LiDAR depth and reflected intensity are normalized
to the range of [0, 1]. γ = 0.004. Batch size is set as 1 for training. LIA-SC-Net, CMR-
Net, and CalibNet are trained for 40 epochs using an SGD optimizer on a single Nvidia
GTX 1080ti.

Table 1. Different calibration situations for verification on deep learning based methods.

Levels 0 1 2 3 4 5

θ/ deg 0.0 4.0 8.0 12.0 16.0 20.0
D/m 0.0 0.30 0.60 0.90 1.20 1.50

Training × × × X × ×
Testing X X X X X X

4.1.3. Evaluation Metrics

GT rotation matrix ∆Rgt is represented with yaw–pitch–roll Euler form using three an-
gles (∆θy,gt, ∆θp,gt, ∆θr,gt)T . GT translation vector ∆Tgt is denoted as (∆tx,gt, ∆ty,gt, ∆tz,gt)T .
Calibration metrics are presented as Equations (18) and (19) for evaluation. The average
errors in the validation dataset are used to evaluate the performance of learning based
calibration method:

Eθ =
|∆θy,gt − ∆θy|+ |∆θp,gt − ∆θp|+ |∆θr,gt − ∆θr|

3
(18)

Et =
|∆tx,gt − ∆tx|+ |∆ty,gt − ∆ty|+ |∆tz,gt − ∆tz|

3
(19)

4.2. Verification of the Proposed Method

To evaluate the LIA-Net backbone network and SC loss in LIA-SC-Net, five baselines
are designed in Table 2. Encoder means that the calibration network only uses the encoders
ED and ER to extract CoC features. Calibration errors are presented in Figure 6. Error
curves from Baselines-1 to Baselines-5 are marked as deep blue, light blue, green, yellow,
and pink, respectively. Average and standard deviation errors of all baseline methods are
presented in Table 3.

Table 2. Five baselines for the verification of LIA-SC-Net.

Methods Dense Operation Encoder LIA-Net Lreg LSC

baseline-1 × X × X ×
baseline-2 X X × X ×

baseline-3 (LIA+reg) X × X X ×
baseline-4 (LIA+SC) X × X × X

baseline-5 (LIA-SC-Net) X × X X X
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Table 3. Average and standard deviation of rotation and translation errors for five baseline methods
in the validation dataset. Gain of the average calibration error is also provided.

Methods Rotation Error/deg Translation Error/m

Baseline-1 0.869/0.062 0.0693/0.0087
Baseline-2 0.812/0.054 0.0648/0.0074
Baseline-3 0.786/0.052 0.0601/0.0068
Baseline-4 0.768/0.047 0.0538/0.0064
Baseline-5 0.751/0.045 0.0447/0.0061

Gain 15.71% 55.03%

Figure 6. Calibration performance of five baseline methods in the validation dataset.

4.2.1. Verification on Dense Operation

This experiment investigates the performance of dense operation for LiDAR depth.
From Table 3, compared with baseline-1 and baseline-2, it is found that the rotation and
translation errors are decreased by 0.057 deg and 0.45 cm with the dense operation. As
presented in Figure 4, a dense LiDAR map has more salient object structural information
than the sparse LiDAR map. Thus, the representative CoC feature can be generated from
the dense LiDAR map and RGB image. It is concluded that dense operation is effective for
the extrinsic online calibration for the sparse LiDAR point cloud.

4.2.2. Verification on LiDAR Intensity Attention

This experiment investigates the performance of LiDAR intensity attention. From
Figure 6 and Table 3, compared with baseline-2 and baseline-3, it is found that baseline-3 has
smaller calibration errors from levels 1 to 5. The average rotation and translation errors are
decreased by 0.026 deg and 0.47 cm. Standard deviation is also decreased. Compared with
the encoder, LIA-Net exploits LiDAR intensity as visual attention, which can adaptively
select the area in the LiDAR depth for the salient calibration feature extraction. It means
that LiDAR intensity attention is helpful for CoC feature generation.

4.2.3. Verification on Structural Calibration Loss

This experiment investigates the performance of the proposed SC loss. From Figure 6
and Table 3, compared with baseline-3, baseline-4, and baseline-5, the translation errors
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are decreased significantly with the calibration levels. Compared with baseline-1, rotation
and translation errors of baseline-5 are dropped by 15.71% and 55.03%. Visualizations of
baseline-1 and baseline-5 are shown in Figure 7. It means that combining the regular loss
and the proposed SC loss improves the training efficiency of the calibration network.

Figure 7. Comparisons with the baseline-1 (left) and baseline-5 (right) in the validation dataset for
the various outdoor scenes (a–c). Comparing the alignment of LiDAR points and RGB pixels of the
objects in the red boxes, baseline-5 has the smaller alignment errors. The projected LiDAR point
cloud with pseudo color depended on LiDAR intensity is used for visualization.

4.2.4. Verification on Iterative Inference and Time-Consuming Test

This experiment investigates the performance of iterative inference and time-consuming.
With the iterative time M increasing from 1 to 5, the calibration performance is presented in
Table 4. Calibration accuracy increases with M. When M ≥ 4, the gains of calibration errors
are not obvious because the calibration network has difficultly generating more significant
calibration features so that LIA-SC-Net considers the current results as accurate enough.
We also investigate the performance of time efficiency of the proposed method. CPU-GPU
transfer time was not considered. Time consumption of each module is presented in Table 5.
Frame per second (FPS) of the proposed method in the non-iterative inference mode is
nearly 34, higher than the fresh rate of the mechanical LiDAR (nearly 10 Hz) and camera
(nearly 30 Hz). In the case that M = 5, the proposed method runs 146 ms (nearly 6.8 FPS).
In conclusion, LIA-SC-Net works for the online extrinsic calibration and iterative inference
strategy is useful in the actual application.

Table 4. Performance of iterative inference of LIA-SC-Net in the validation dataset.

M 1 2 3 4 5

Er/ deg 0.751 0.654 0.538 0.525 0.525
Et/m 0.0447 0.0402 0.0396 0.0396 0.0396

Table 5. Runtime of LIA-SC-Net in the validation dataset (Unit: ms).

Module Preparation LIA-Net Regression Total

Time 7.6 13.5 8.1 29.2

4.3. Comparison Results
4.3.1. Comparisons with State-of-the-Art Methods

For the calibration performance evaluation, our method is compared with state-of-the-
art methods, such as CalibNet [52] and CMR-Net [53]. As discussed in Section 4.1.1, these
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methods are all trained on the same validation dataset, with the same epochs and optimizer.
For the fair comparisons on all methods, iterative inference strategy is used for the best
calibration results. Rotation and translation errors of each calibration level are presented
in Figure 8. All methods have nearly the same accuracy for levels 0 to 2. For the large
initial calibration errors, it is found that LIA-SC-Net outperforms other methods. Average
calibration errors of all levels are provided in Table 6. LIA-SC-Net has the smaller average
rotation and translation errors than other methods. In addition, the runtime comparison
results in the non-iterative inference mode are shown in Table 7. Although the inference
time of LIA-SC-Net is not the fastest, it satisfied the requirement of the real-time online
calibration. Therefore, the proposed calibration method meets the need of accurate and
real-time extrinsic calibration on the LiDAR-camera system.

Figure 8. Calibration performance of deep learning based methods in the validation dataset.

Table 6. Average calibration errors of deep learning based methods in the validation dataset.

Methods Rotation Error/deg Translation Error/m

CalibNet 0.621 0.0495
CMR-Net 0.557 0.0437

LIA-SC-Net (Our) 0.525 0.0396

Table 7. Runtime comparison with deep learning based methods in the validation dataset (Unit: ms).

Methods CalibNet CMR-Net LIA-SC-Net

Time 36.8 14.7 29.2

4.3.2. Calibration Visualization

Visualization results of LIA-SC-Net and CMR-Net [53] on the large initial calibration
case are provided in Figure 9. For better visualization, RGB image and LiDAR dense depth
are mixed. Red dotted lines are the borderline of LiDAR depth. It is found that LIA-SC-Net
has better performance than CMR-Net [53] in these scenes. With the iterative inference
strategy, calibration results of our method are close to the ground truths. However, in the
first scene, results of LIA-SC-Net with M = 5 seem to have relatively large rotation error.
The reason might be that few salient objects with the low depth and high LiDAR reflected
intensity are founded in this scene. Therefore, for precise calibration, our method requires
the region close to the LiDAR-camera system with higher LiDAR reflected intensity.
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Figure 9. Calibration visualization of different learning based calibration methods in the various
scenes (a–c). Images mixed with LiDAR depth and RGB image are used for visualization.

5. Discussion

The proposed method LIA-SC-Net has large potential advantages for the online
extrinsic calibration on the LiDAR-camera system. Compared with the calibration object
based method [11,12], it does not exploit any specific calibration object. Among the target-
less based method, the proposed method does not need to compute the odometry from
LiDAR point cloud and RGB image [38], or reconstruct 3D point cloud from an RGB
image [37]. Due to the sparsity of LiDAR point cloud, LiDAR depth and reflected intensity
are also sparse (shown in Figure 4), causing the inaccuracy of MI features [40,41]. Compared
with the other deep learning based calibration methods [51–53], the proposed method
notices the relation of the co-observed features and LiDAR intensity, thus proposing LIA-
Net as the novel backbone network to generate more salient CoC features. In future work,
we attempt to refine LIA-Net with both spatial and channel attention [62] to achieve more
accurate calibration results.

The proposed method LIA-SC-Net provides the aligned LiDAR point cloud and
RGB image for the advanced applications on the LiDAR-camera system, such as depth
completion [61] and 3D object detection [63]. As LiDAR depth is sparse in Figure 4b,
depth completion can use the texture feature in the aligned RGB image as guidance [64] to
generate a dense depth map. As LiDAR point cloud and RGB image are aligned, the multi-
sensor fusion feature can be generated to regress the accurate 3D localization of targeted
object. It means that LIA-SC-Net has wide applications on the LiDAR-camera system.

Experiments demonstrate that LIA-SC-Net has stable calibration performance and
outperforms current methods. It means that the proposed LIA-Net module and SC loss are
useful to ensure that LIA-SC-Net generates the robust and precise calibration results. A
limitation of our method is the compatibility of the real-time and accurate performance.
From the analysis in Section 4.2.4, M ≥ 4 achieves better results, but FPS is lower than 10.
Therefore, we would speed up the proposed method in the future work.

6. Conclusions

In this paper, to solve the accumulated extrinsic parameter errors of the LiDAR-camera
system, we present a novel and efficient extrinsic calibration network LIA-SC-Net. From
the Lambertian reflection model, it is found that the object with higher LiDAR intensity has
the potential of providing the salient co-observed feature. LIA-Net is presented to exploit
LiDAR intensity as the attention feature map to generate the representative CoC feature.
To increase the training efficiency of calibration network, SC loss is proposed to minimize
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the alignment errors of LiDAR point cloud and RGB image. With LIA-Net and SC loss, the
proposed method achieves the accurate and robust performance in the dataset experiment.
It demonstrates the effectiveness of LIA-SC-Net.
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Appendix A

Appendix A.1. Projection Details

Let Pl = (xl , yl , zl)
T ∈ Pl denote the LiDAR coordinate of one LiDAR laser point. rl is

its LiDAR reflected intensity. With the extrinsic parameters R and T, Pl can be projected
into the image plane via camera pinhole model [7]:

dl · Il = K · (RPl + T) (A1)

K =

 fu fs u0
0 fv v0
0 0 1

 (A2)

K is the camera intrinsic matrix. (u0, v0, 1)T is the pixel coordinates of the principle
point. fu and fv are the focal lengths of horizontal and vertical axes on the image plane. fs
is the skew ratio. I = (u, v, 1)T is the pixel coordinates of laser point Pl . If this laser point
falls into the camera field of view (FOV), it has positive depth dl > 0. Projecting all LiDAR

http://www.cvlibs.net/datasets/kitti/
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points fallen into the FOV of the camera via Equation (A1), collecting I, dl , and rl , LiDAR
depth D and LiDAR intensity I intensity images are generated. They are [W, H, 1] tensors
where W and H are the width and height of the image. For simplicity, Equation (A1) can
be rewritten as:

Il = π(Pl ; R, T) (A3)

Table A1. Intrinsic parameters of LiDAR-camera system in the KITTI outdoor dataset [2].

Parameter Values

fu 721.537 pixel
fv 721.537 pixel
fs 0.0 pixel
u0 609.559 pixel
v0 216.379 pixel
θh 0.08 deg
θv 0.40 deg

Appendix A.2. Selection of k in the Dense Operation

Kernel size k of dilation is selected to make sure that each dilated pixel overlaps with
its neighbored dilated pixels. Let θh and θv be the horizontal and vertical resolution angles
of LiDAR. From Equation (A3), k should approximately satisfy the following constraints:

π

180
θh ≤

k
fu
≤ 2

π

180
θh,

π

180
θv ≤

k
fv
≤ 2

π

180
θv (A4)

π

180
· 1

2
(θv fu + θh fv) ≤ k ≤ π

180
· (θv fu + θh fv) (A5)

For the mechanical LiDAR, θv is far larger than θh, and a compromise selection scheme
is exploited as Equation (A5). As the experiments are conducted in the KITTI dataset [2],
according to the parameters of LiDAR-camera system in KITTI dataset [2] (Table A1), k is
set as 5.

Appendix A.3. Details of the Cost Volume Computation Module

To extract co-observed features from FLiDAR and FCamera for calibration, the matching
cost computation module [53,57] is exploited. The CoC feature FCoC is computed as:

FCoC(p1, p2) =
1
c
(FLiDAR(p1)− F̄LiDAR)

T(FCamera(p2)− F̄Camera) (A6)

F̄LiDAR = Mean(FLiDAR), F̄Camera = Mean(FCamera) (A7)

pi = (ui, vi) is the pixel index of the 2D feature map. FLiDAR(p1) and FCamera(p2) are
both [1, c] vectors where c = 256 in this paper (as shown in Section 3.2). To extract the
robust CoC feature from images with different sources, normalization is used. Mean(·)
generates the average feature from a given 2D feature map. F̄LiDAR and F̄Camera are both
[1, c] vectors. T is the vector transpose operator. For the computation efficiency [57], we
only compute a partial cost volume with a limited range of d pixel (‖p1 − p2‖∞ ≤ d/2). As
FLiDAR and FCamera are [W/8, H/8, 256] tensors, FCoC is a [d2, W/8, H/8] tensor.

Appendix A.4. Relation of the Quaternion and Rotation Matrix

Let R = (rij)3×3 be a rotation matrix. Let Q = (q0, q1, q2, q3)
T be a unit quaternion,

which is also a 4× 1 unit vector. R can be converted from Q as:
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R =

 1− 2q2
2 − 2q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 − 2q0q3 1− 2q2

1 − 2q2
3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 1− 2q2
1 − 2q2

2

 (A8)

Q can be converted from R as:

q0 =

√
tr(R) + 1

2
, q1 =

r23 − r32

4q0
, (A9)

q2 =
r31 − r13

4q0
, q3 =

r12 − r21

4q0
(A10)
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