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Abstract: Four-band color imaging of the Martian surface using the Color and Stereo Surface Imaging
System (CaSSIS) onboard the European Space Agency’s ExoMars Trace Gas Orbiter exhibits a high
color diversity in specific regions. Not only is the correlation of color diversity maps with local
morphological properties desirable, but mineralogical interpretation of the observations is also
of great interest. The relatively high spatial resolution of CaSSIS data mitigates its low spectral
resolution. In this paper, we combine the broad-band imaging of the surface of Mars, acquired by
CaSSIS with hyperspectral data from the Compact Reconnaissance Imaging Spectrometer (CRISM)
onboard NASA’s Mars Reconnaissance Orbiter to achieve a fusion of both datasets. We achieve this
using dimensionality reduction and data clustering of the high dimensional datasets from CRISM.
In the presented research, CRISM data from the Coprates Chasma region of Mars are tested with
different machine learning methods and compared for robustness. With the help of a suitable metric,
the best method is selected and, in a further step, an optimal cluster number is determined. To validate
the methods, the so-called “summary products” derived from the hyperspectral data are used to
correlate each cluster with its mineralogical properties. We restrict the analysis to the visible range in
order to match the generated clusters to the CaSSIS band information in the range of 436–1100 nm.
In the machine learning community, the so-called UMAP method for dimensionality reduction has
recently gained attention because of its speed compared to the already established t-SNE. The results
of this analysis also show that this method in combination with the simple K-Means outperforms
comparable methods in its efficiency and speed. The cluster size obtained is between three and six
clusters. Correlating the spectral cluster maps with the given summary products from CRISM shows
that four bands, and especially the NIR bands and VIS albedo, are sufficient to discriminate most of
these clusters. This demonstrates that features in the four-band CaSSIS images can provide robust
mineralogical information, despite the limited spectral information using semi-automatic processing.

Keywords: Mars; CaSSIS; CRISM; Coprates Chasma; spectral cluster map; UMAP

1. Introduction

One of the major difficulties in the investigation of our solar system is that high
resolution datasets returned by in situ orbiting spacecraft are usually incomplete, either
spatially, spectrally or both. Observations of the surface of Mars have shown that high-
resolution remote sensing is needed to establish the physico-chemical properties of specific
areas. Only then can interpretation of the processes involved follow and other aspects,
such as the suitability for a future landing, be considered. High resolution, however,
implies high data volume with reduced surface coverage. Instruments such as the High
Resolution Imaging Science Experiment (HiRISE) [1] and Compact Reconnaissance Imaging
Spectrometer (CRISM) [2] onboard NASA’s Mars Reconnaissance Orbiter (MRO) and
CaSSIS [3] onboard the European Space Agency’s (ESA) ExoMars Trace Gas Orbiter (TGO)

Remote Sens. 2022, 14, 2524. https://doi.org/10.3390/rs14112524 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0137-1984
https://doi.org/10.3390/rs14112524
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112524?type=check_update&version=1


Remote Sens. 2022, 14, 2524 2 of 17

are good illustrations of the problem. All three instruments have high resolution, their data
in total amounts to less than 5% surface coverage of the planet. Nonetheless, the respective
datasets are large suggesting that automated processing techniques can produce significant
benefits. This has led us to pose the question of whether imaging spectrometer datasets from
CRISM can be linked to broad-band imaging datasets from CaSSIS to improve interpretation
through both spatial interpolation of the spectra and extrapolation by taking advantage of
redundancy in the spectral domain.

Spectral data are complex because of resolution issues and the high number of bands
and subclasses. Therefore, our paper relies on unsupervised classification, which is an
important standard procedure in geospatial analysis [4], especially when analyzing hy-
perspectral data with insufficient calibration in-field data. For analysis purposes, the
combination of band information and spatial distributions is formed into a data structure—
in this paper called Spectral Cluster Maps (SCMs). High dimensional data are transferred
to a low latent variable representation by directly applying advanced methods on the
full spectrum itself, and these clusters can be related to the underlying geochemical com-
position (compare Gao et al. [5]). Therefore, it is essential to find suitable unsupervised
dimensionality reduction techniques to produce accurate SCMs before applying various
clustering algorithms on the feature space. The principal component analysis (PCA) [6] is
the most commonly used technique applied to spectral data (e.g., [7,8]) and we use this here
to benchmark against more elaborate algorithms. In recent studies of Machine Learning
Networks, approaches such as t-SNE [9] have achieved promising results. Distinct grouping
has been obtained by focusing on more local structures and mapping the feature space into
a low dimensional representation. Compare among others the works of Pouyet et al. and
Song et al. [10,11] or the self-organizing maps technique (SOM) developed by Kohonen [12],
which has already been proposed for generating spectral databases. Specifically for Mars,
a recent study published by Gao et al. [5] proposes the autoencoder technique for spectral
application. The application of the UMAP technique to spectral data is relatively rare
at present. Groups tackling this issue include Picollo et al. [13] and Wander et al. [14].
The most relevant work in this context is the recently published paper by D’Amore and
Padovan [15] using UMAP for mapping reflectance spectra from Mercury. Publications
using UMAP are more abundant in the biology research field [16,17]; however, due to its
speed and robustness, its wider application for planetary science is desirable.

Generating Spectral cluster maps from CRISM and Cassis data has a direct impact
on geologic mapping activities (e.g., [18]). The planetary geologic mapping process itself
relies on basic geometric and stratigraphic principles, historically limited by the availability
of image and topographic data. The availability of compositional data in recent decades
allowed the inclusion of different kind of methods, varying from heuristical methods to
statistical approaches [19–22].

To assess the feasibility and efficacy of our approach, we have selected Coprates
Chasma, as the region exhibits significant mineralogical (color) diversity in CRISM and
CaSSIS observations.

The rest of this paper is structured as follows: Section 2 describes the data and the
preprocessing used. The examined dimensionality reduction techniques and clustering
algorithms used in this study are also briefly presented. In Section 3, the obtained results
are illustrated and discussed. Section 4 proceeds with a geological mapping based on the
image products and links to the CaSSIS data. The paper finishes with a brief conclusion
(Section 5).

2. Materials and Methods

This section is devoted to the machine learning techniques considered in this study.
The data and their origin are also described.
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2.1. Data Source

CRISM is a high spectral resolution visible and infrared mapping spectrometer cur-
rently in orbit around Mars onboard NASA’s Mars Reconnaissance Orbiter (MRO) [2]. For
this analysis, hyperspectral datasets (compare Appendix B for a list) provided by John
Hopkins University through the Planetary Data System hosted at Washington University
St. Louis [23] were selected.

CRISM provides 2D spatially resolved spectra over a wavelength range of 362 nm
to 3920 nm at 6.55 nm/channel. The spatial resolution is typically around 18 m/px.
Pelkey et al. [24] and Viviano et al. [25] generated a feature set of “image products” from CRISM
spectra, which are strongly related to the geochemical composition of the Martian surface.

The CaSSIS instrument is a high spatial resolution color and stereo imager [3] currently
in orbit around Mars onboard the European Space Agency’s ExoMars Trace Gas Orbiter
(TGO). CaSSIS returns images at 4.5 m/px from the nominal 400 km altitude orbit in four
colors using a push-frame technique. The images typically sample an area of approximately
9 km × 40 km on the Martian surface with around 24 images per day being acquired.
The filters were selected to provide good mineral diagnostics in the visible wavelength
range (400–1100 nm) and to complement the filters in the extremely high-resolution HiRISE
system onboard NASA’s Mars Reconnaissance Orbiter (MRO).

Studies by Tornabene et al. [26] illustrated the potential for mineralogical diagnostics
using preflight calibration data. Good performance in flight has also been established.
Parkes Bowen et al. [27,28] have demonstrated the effectiveness of CaSSIS through identi-
fication of two spectrally and morphologically distinct subunits of the Oxia Planum (the
ExoMars rover landing site) clay unit—one indicative of Fe/Mg-rich clay minerals and one
showing decametre scale fracturing with Fe/Mg-rich clay mineral/olivine signatures.

The data are radiometrically and geometrically well-calibrated in absolute units
(i.e., “I/F” as commonly used in the planetary community) [29,30].

2.2. Data and Location

Coprates Chasma, a central part of Valles Marineris tectonic system on Mars, was
selected for initial studies. Coprates Chasma is a 1000 km long, 100 km wide linear
trough connecting Melas Chasma (central Valles Marineris) to Capri Chasma (eastern
Valles Marineris). The CRISM data files used for this study were the MTRDR products
FRT0000d3a4, FRT0001c479 and FRT0001c71b (compare Figure 1).

Figure 1. Location map of the used cubes in the present work. Left: color-coded MGS MOLA
hillshade over Coprates Chasma and surrounding plateau; the white outline indicates the extent
of the right panel (data). Right: location of the three overlapping CRISM observations used here;
the background imagery consists of HRSC Level4 Nadir imagery, orbit h7201.
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The area exhibits significant color diversity at visible wavelengths and is of major
interest in studies of the history of liquid water on Mars. Geologic features, including
fluvial topography (e.g., [31,32]) and the distribution of a variety of aqueous minerals
including sulfates, are evidence of the influence of water in Valles Marineris [33].

Weitz and Bishop [34] investigated the morphology, mineralogy and stratigraphy
of light-toned layered deposits in the same region and found numerous hydrated min-
erals, including Al-phyllosilicates, Fe/Mg-phyllosilicates, hydrated silica, hydrated sul-
fates, jarosite and acid alteration products based on visible to near-IR spectral analysis
(e.g., [35]). They suggest that valleys sourced from water along the plateau may have
flowed downward into one or more troughs with changing aqueous chemistry resulting in
the diverse mineralogies.

Fueten et al. [36] investigated layered deposits in northern Coprates Chasma. Here,
hydrated sulfates have been detected indicating alteration or deposition by liquid water.
There is also evidence of pedogenesis (weathering of basaltic soils by continuous exposure
to water percolating down from the surface), which can result in layers of aluminium
phyllosilicates forming over layers of iron-magnesium phyllosilicates [37] on the plateau
around Coprates Chasma [38]. The primary test area is centred on an exposure of lighter-
toned material within a 25 km diameter crater. It was expected to give clear mineralogically
diverse signals in CRISM and CaSSIS data.

2.3. Preprocessing

Our preprocessing steps are similar to the steps in Gao et al. [5]: we select a subimage
with a size of 400 × 400 pixels from the image area in order to exclude unwanted empty
areas from the calculation. Like Gao et al. [5] we also perform a per pixel normalization by
removing values outside 0 and 1. To cover the range of the CaSSIS instrument, we restrict
data to a wavelength range of 436–1106 nm and adjust the preprocessing accordingly. This
range corresponds to 88 channels of the CRISM hyperspectral dataset. In summary, we
have (400 × 400) × 88 vectorized images.

2.4. Dimensionality Reduction Techniques

We compared several techniques for dimensionality reduction and feature extraction.
Dimensionality reduction is needed to reduce the high data volume into a feature space
with lower dimension while keeping the relevant information.

We introduce each technique briefly.

Autoencoder

Generally speaking, an autoencoder is an unsupervised feature extraction procedure
based on a neural network. It consists of three main components: an encoder network,
a latent feature representation and a decoder network. The concept of the encoder is to
re-compile the data such that the main information of the input is represented by a certain
number of latent variables. The dimensionality of the reduced feature space is a user-chosen
positive number.

The aim of the decoder is to rescale the encoder output to the initial shape of the data,
as described by Kovenko et al. [39]. The model is trained by using back-propagation. More
information on this topic can be found in [40].

To measure the accuracy during the training process, a loss function is employed,
which has to be minimized. For an autoencoder, it is common practice to use the well-
known mean squared error or mean absolute error to evaluate performance. In this paper,
we adopt the approach of Gao et al. [5] and insert the spectral angle (SA) as a loss function.
This is denoted by:

SA(x, x̂) = arccos
〈x, x̂〉
‖x‖2‖x̂‖2

, (1)

where x is the input data and x̂ is the reconstructed dataset. As pointed out by Gao et al. [5]
this maintains the capability of capturing small features in the spectra.
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t-SNE

The t-distributed Stochastic Neighbor Embedding (t-SNE) technique, introduced by
van der Maaten and Hinton in 2008 [41], is a pioneering approach for cutting down multi-
dimensional data. Because of its remarkable ability to scale high-dimensional data to lower
dimensions, acceptance and adoption is rising in the machine learning community [9]. The
idea is to express the similarities between two points xi and xj as conditional probabilities
pj|i by converting the Euclidean distances:

pj|i =
exp(

−‖xi−xj‖2

2σ2
i

)

∑
k 6=i

exp(−‖xi−xk‖2

2σ2
i

)
, (2)

where σi is the variance of the Gaussian distribution that is centered on data point xi.
For the lower-dimensional representation, a similar conditional probability qj|i is likewise
calculated for yi and yj assigning to the high-dimensional data points xi and xj:

qj|i =
(1 + ‖yi − yj‖2)

−1

∑
k 6=l

(1 + ‖yk − yl‖2)−1 . (3)

In order to avoid overcrowding, a Student t-distribution with one degree of freedom
is used here to model the probabilities. The projections, yi and yj, have to be mapped in the
way that they correctly rebuild the similarities between the high-dimensional data points,
implying that the conditional probabilities pj|i and qj|i are equal.

Similar to the autoencoder, an iterative algorithm is exploited to minimize a cost
function denoted by the Kullback–Leibler divergence [42]. An input parameter to the
t-SNE algorithm is the perplexity, which can be construed as a smoothness measure of the
effective number of neighbors.

UMAP

In 2018, McInnes and Healy [43] presented the Uniform Manifold Approximation and
Projection (UMAP) as a method for dimensionality reduction and data visualization. The
idea and computation resembles the one for t-SNE to a large extent. A concise overview of
the algorithm is given by Allaoui et al. [44]. UMAP aims to represent the dataset in a fuzzy
topological structure. In order to build such a structure, the data points are represented in
a high-dimensional weighted graph. Each edge weight depicts the probability that two
points are connected and is defined by:

pi|j = exp(−
d(xi, xj)− ρi

σi
), (4)

where d(xi, xj) depicts the distance between the i-th and j-th data points and ρi is the
distance between i-th data points and its first nearest neighbor.

Analogous to t-SNE, a lower-dimensional representation has to be determined which
properly reproduces the relations of the data points in the high dimensional graph. To
model these low dimensional similarities, UMAP uses a distribution similar to the Student
t-distribution:

qij = (1 + a(yi − yj)
2b)
−1

. (5)

In the default UMAP implementation, a ≈ 1.93 and b ≈ 0.79 are used but setting a = 1
and b = 1 results in the Student t-distribution applied in t-SNE [43].

For optimization the low-dimensional representation UMAP uses binary cross-entropy
as a cost function. It is also necessary to specify the number of nearest neighbors. As
outlined by Vermeulen et al. [45], this parameter controls how UMAP handles local versus
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global structure in the data. A small value affects concentration on very local structure,
while a larger value provokes UMAP to search for larger neighborhoods.

For benchmarking the proposed techniques, we implement the standard statistical
principal component analysis (PCA) in our data pipeline.

2.5. Clustering Algorithms

In our analysis, we use well-known and established procedures for clustering the
data. The K-Means clustering algorithm was published 1967 by MacQueen [46]. Starting
by initializing a set of k cluster centers, K-Means aims to minimize the Euclidean Distance
between all data points x and their corresponding cluster centers mi of the cluster set C.

The Gaussian Mixture model (GMM) inserts Gaussian distributions and evaluates
cluster membership based on likelihoods rather than distances [47]. The cluster centers are
the means of the distributions.

To overcome the potential issue of uncertainty in the clustering assignment, the Fuzzy-
c-Means clustering algorithm can be applied. Each data point can be assigned to several
clusters by allocating probabilities with which it belongs to each cluster [48].

The Self-Organizing Maps (SOM) technique developed by Teuvo Kohonen [12,49] is
another neural network based approach which projects high dimensional datasets into a
low-dimensional representation, inspired by the different neurological sensory mapping in
the cortex of the brain. This mapping can be achieved by different kinds of “self-organized”
unsupervised learning techniques.

3. Results
3.1. Experiment

In the previous section, various dimensionality reduction techniques and clustering
algorithms were introduced. To evaluate each approach in its ability to generate well-
clustered SCMs, the experiment was designed as follows: using three different preprocessed
CRISM datasets (FRT0000d3a4, FRT0001c479 and FRT0001c71b), we examine each method
for its clustering property. A method was defined by the combination of the discussed
dimensionality reduction techniques and clustering algorithms. In total, a set of 16 different
methods were studied.

For the autoencoder, we follow Gao et al. [5] and determine the number of latent
variables by HySime [50]. As an activation function, a rectified linear unit (ReLU) was
used. To project the data to a lower dimensional space we continued to use PCA with
five extracted components, since this number of components explain about 95% of the
variance in the data. In the case of t-SNE and UMAP, the original spectral dimension was
reduced to two-dimensional data. The perplexity and neighbors parameter, respectively,
used for the manifold approximation was set to 100. The clustering was performed by
using the standard implementations of all algorithms [51–53]. As the true number of classes
is not known, the number of clusters under investigation ranged from 2 to 20 clusters.

To have a better idea of the shape of the obtained results, Figure 2 shows a subset of
the generated SCMs. Each image features a different investigated method for a number
of 10 clusters, based on the FRT0001c71b dataset. Cluster membership is characterized by
color in the pictures. We illustrated the results of an autoencoder in Figure 2a as comparison
to the method established by Gao [5]. Figure 2b shows the results using the standard PCA
method, while Figure 2c shows our result using UMAP. Analysis of mineralogy will be
later be discussed in our analysis of image browse products.

The structure of the individually produced cluster maps does not differ fundamentally.
In particular Figure 2a,c exhibit very similar clustering properties. However, there are dif-
ferences in the details, indicating that some algorithm combinations are better than others.
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(a) (b) (c)

Figure 2. Examples of produced spectral cluster maps with a predefined number of 10 clusters from
the FRT0001c71b dataset. (a) Autoencoder + GMM; (b) PCA + K-Means; (c) UMAP + Fuzzy-c-Means.

3.2. Evaluation

To assess the clustering performance in a quantitative manner, we compute multi-
ple unsupervised cluster-separation metrics for evaluation. To start with, the Calinski–
Harabasz (CH) index [54] for a dataset E with nE pixels and split into k clusters is defined
as the ratio of the dispersion between and within clusters:

CH =
tr(Bk)

tr(Wk)
× nE − k

k− 1
, (6)

where:

Wk =
k

∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T , (7)

Bk =
n

∑
q=1

nq(cq − cE)(cq − cE)
T , (8)

with Cq denoting the set of points in cluster q, cq the center of cluster q, cE the center of
E and nq the number of points in cluster q. The measure indicates a higher score when
clusters are dense and well separated.

The Davies–Bouldin (DB) index [55] is based on the average similarity between each
cluster i and its most similar one j and is given by:

DB =
1
k

k

∑
i=1

max
j

Rij, (9)

where:
Rij =

si + sj

dij
(10)

is the cluster similarity measure, si is the cluster diameter and dij is the distance between
cluster centroids i and j. A lower score refers to a higher cluster validity.

As a final measure, the Silhouette Coefficient is bounded between −1 for incorrect
clustering and +1 for highly dense clustering whereby scores around zero portend to over-
lapping clusters. Thus, a significant advantage of this metric is that it allows direct conclu-
sions about the goodness of the clustering algorithm. The Silhouette Coefficient (SC) [56]
for a single sample can be written as:

s =
b− a

max(a, b)
. (11)

The measure is the ratio of the mean distance a between a point and all other points
in the same group and the mean distance b between the point and all samples in the next
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nearest cluster. The value of SC for a produced SCM is the average of the coefficient for
each pixel.

In order to identify the most appropriate method, the metrics are reported over all
the calculated number of clusters. The first two measures (CH, DB) are fast to compute
and will be shown as a baseline. Figure 3 illustrates the values of the scores plotted against
the number of clusters for the same dataset and methods as the pictured SCMs in Figure 2.
Some of the graphs show strong fluctuations. However, there exists a high level of evidence
for a rather small number of clusters according to the reported scores (compare Figure 4).

(a) Autoencoder + GMM

(b) PCA + K-Means

(c) UMAP + Fuzzy-c-Means

Figure 3. Calinski–Harabasz and Davies–Bouldin index as a function of the number of clusters for the
FRT0001c71b dataset. Each subfigure (a–c) represents quantitative analysis for the same combinations
of the dimensionality reduction technique and clustering algorithm as in Figure 2.
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Figure 4. Silhouette Score UMAP + K-Means as a function of the number of clusters for all
three datasets.

Therefore, we proceed with a further analysis in which the mean of the measures over
a predefined number of clusters is calculated. As pointed out, there is a strong trend for a
small number of classes. Thus, the examination was restricted to a class range of 3 to 7.

In Table 1, we list the mean values of the CH score for all three CRISM selected spectral
cubes and all methods. As outlined by Milligan and Cooper [57], the CH score is a powerful
criterion for evaluating the validity of clustering (compare Appendix A for the DB index).
Apart from a few exceptions, there is a consistent pattern between the Calinski–Harabasz
and Davies–Bouldin metric when establishing rank statistics of the individual scores for
each dataset where a higher rank invokes denser clusters.

Table 1. Mean of the Calinski–Harabasz criterion over a range of 3 to 7 clusters, split by method and
region. The best score for each dataset is in bold.

Regions

Methods FRT0000d3a4 FRT0001c479 FRT0001c71b

Autoencoder + K-Means 96.371 135.768 221.408
Autoencoder + GMM 49.838 62.005 185.458
Autoencoder + SOM 69.396 108.513 192.581

Autoencoder + Fuzzy-c-Means 81.773 133.995 214.217
PCA + K-Means 97.718 138.611 220.849

PCA + GMM 50.756 82.344 202.702
PCA + SOM 71.086 110.939 192.436

PCA + Fuzzy-c-Means 83.132 136.640 213.769
t-SNE + K-Means 137.141 138.955 138.998

t-SNE + GMM 132.889 128.090 127.752
t-SNE + SOM 120.052 114.351 113.640

t-SNE + Fuzzy-c-Means 134.679 138.300 137.684
UMAP + K-Means 207.836 246.825 284.543

UMAP + GMM 178.341 216.898 224.978
UMAP + SOM 162.585 198.219 222.445

UMAP + Fuzzy-c-Means 206.015 245.274 284.117

On first viewing, some general remarks can be made. The most striking one is that the
UMAP in combination with any examined clustering algorithm performs best across all
three spectral images in terms of the CH score whereas the Autoencoder + GMM displays
the lowest score in two of three cases. Broken down by dimensionality reduction technique,
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there is no clear ranking after UMAP. However, the results suggest that the t-SNE approach
is also capable of outperforming the Autoencoder and PCA in the case of the FRT0000d3a4
and FRT0001c479 data.

Another finding is that K-Means and Fuzzy-c-Means have higher scores in comparison
with the other clustering algorithms for the same feature extraction approach. However,
this statement should be treated with caution, since both the CH and the DB index tend to
higher and lower scores, respectively, for convex clusters like those generated by K-means
and Fuzzy-c-Means.

Nevertheless, UMAP + K-Means can be identified as the best method in our experi-
mental setting.

Additionally, we tracked the computation time for each dimensionality reduction
technique. On average, PCA is the fastest technique with 4 s CPU time, while the duration
for the t-SNE is much longer (1675 s). The Autoencoder (559 s) and UMAP (789 s) rank in
the middle field. (Processor: Intel Xeon Gold 6140, 2.3 GHz, 8 virtual CPUs).

After the evaluation and selection of the best method to create SCMs from our Mars
data, we need to determine the most appropriate number of clusters. For this purpose, we
take the Silhouette coefficient as a validation measure as it also enables us to make some
remarks about the goodness of the clusters in general. In Figure 4, the metric is reported
for the UMAP + K-Means method over a reduced range of possible clusters.

In general, all graphs confirm the choice of a small number of classes as the values
for the coefficient drop with an increasing number of clusters. The corresponding number
of clusters to the spotted maximum score for each region is as follows: three clusters
for FRT0000d3a4, four clusters for FRT0001c479 and six clusters for FRT0001c71b. These
findings are mostly in line with the CH and DB index. Furthermore, all maximum scores
are about 0.50, and hence, indicate an accurate clustering in large parts of the array.

To demonstrate the superior performance of the UMAP dimensionality reduction
technique in the context of Mars data and particularly of the UMAP + K-Means approach
compared with the remaining methods, Figure 5 shows the Silhouette coefficient for the
identified number of clusters. While the Autoencoder, PCA and t-SNE show similar values
across the four clustering algorithms, the UMAP exhibits significantly higher scores.

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. Silhouette coefficient for the identified number of clusters for each dataset across all
examined methods. The scores are grouped by clustering algorithm. The UMAP algorithm has the
highest SC score in all but one case. (a) FRT0000d3a4; (b) FRT0001c479; (c) FRT0001c71b.

4. Discussion

According to the results of all metrics (Calinski–Harabasz and Davies–Bouldin), the
UMAP combined with the K-Means cluster procedure clearly shows the best scores (com-
pare Table 1 and Table A1). At the same time, it has a moderate computing time compared
with the PCA calculations. Consequently, this method was selected and was optimized
with respect to the cluster size. The aforementioned metrics for evaluating clustering
performance can be applied. Figure 4 shows that a cluster size of 3, 4 or 6 is proposed for
the individual datasets investigated in this study. The final cluster map overlaid on the
images is shown in Figure 6a for FRT0001c71b.

Gao et al. [5] used expert maps to assign geological properties to the clusters, in order
to relate the clusters to geo-morphological properties of the surface. Similarly, we use the
so-called summary products derived by Pelkey et al. [24] and Viviano et al. [25], which
retrieve mineralogical information by evaluating specific band structures within the given
spectral range. For a detailed description, we refer to Pelkey et al. [24]. We try to determine
which minimum set of these products can be used as input features in a random forest
model to classify the SCM labeled pixel with a good accuracy. The dataset consisting of the
SCMs and its corresponding browse products from image set FRT0001c71b were split into
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training and test sets using a ratio of 0.25. Applying common feature reduction procedures,
it shows that four spectral bands are sufficient without a large loss in prediction accuracy.

(a) (b) (c)

Figure 6. Spectral cluster maps generated for a configuration of six clusters and the FRT0001c71b
dataset. In (a) Spectral cluster map, UMAP + K-Means is applied, in (b) Cluster map based on four
selected summary products and in (c) Cluster map based on CaSSIS bands.

Furthermore, we compute permutation importance for feature evaluation using the
random forest classifier as an estimator. Our analysis shows that four of the five features
of the subsequent list are dominant for all datasets: RBR, R770, BD860_2, BDI1000VIS
and R1080. Besides the expected reflectance at 770 nm, the bands in the NIR dominates.
Viviano et al. [25] related this to the presence of olivine and pyroxenes. The 860 nm band
plays a dominant role in discriminating ferric minerals, such as hematite [25]. The positions
of the final features within the spectra are shown in Figure 7; they basically describe the
silhouette of the spectra dividing it into four distinct areas. It is plausible to relate these
given clusters to geomorphical compositions. Coprates Chasma shows brighter areas,
which we can see in Figure 6. According to Loizeau et al. and Fueten et al. [36,58] light tone
areas could exhibit hydrated minerals and consist of hydrated minerals. Further analysis
has to show if such clusters can be more diversified depending on the different minerals.

Figure 7. Spectral information with supporting bands, dividing area into four distinct ranges.

It is, therefore, now feasible to apply the CaSSIS filter response to the spectral data. We
calculate four new CaSSIS-like features. Within the wavelength range of CaSSIS, there are
electronic transitions and crystal field effects caused by the presence of ferrous Fe2+ iron-
bearing minerals that produce diagnostic absorptions between 700 and 1100 nm (e.g., mafic
minerals such as olivine and pyroxene). The CaSSIS sensitivity range also includes diagnos-
tic broad absorptions which arise from intervalence charge-transfer transitions of ferric iron
Fe3+ and O2− and are present in altered ferric (Fe3+) iron-bearing minerals (e.g., hematite,
nontronite, etc.) [26].
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The CaSSIS filters were selected to give good overlap with the HiRISE bandpasses
but splitting the NIR bandpass in HiRISE into two separate bandpasses (RED and NIR
in CaSSIS) is needed to improve mineralogical distinction. The HIRISE filters are given
in McEwen et al. [1], while the CaSSIS filters are described in Thomas et al. [3] or Gambi-
corti et al. [59,60]. Table A2 in the Appendix C provides a summary of the bandpasses.
The effective central wavelengths of the CaSSIS filters (taking into account the optical
transmission and detector response) are also given.

Similarly we apply a K-Means algorithm on the selected summary products and on
the four CaSSIS features dataset to generate similar cluster maps. These maps are shown
in Figure 6b,c. A strong visual correlation between these maps can be clearly seen, which
enables principally to retrieve basic information about both the surface structure and
the Fe-mineralogy.

5. Conclusions

In this paper, a simple fast method is proposed to derive spectral clusters from hyper-
spectral data in the visible wavelength range. The analyses show that the UMAP algorithm
in combination with the K-Means clustering method provides results quickly and, based on
common cluster metrics, provides comparable or even better results than other proposed
methods. With respect to the evaluation and combination of large hyperspectral datasets,
this can be a decisive factor.

Comparison with the similarly generated maps based on summary products demon-
strate the high information content of four bands partially from NIR, discriminating es-
pecially the Fe mineralogy within that area. The reduced number of relevant bands and
a proposed cluster size between 3 and 6 confirm that the four CaSSIS filter bands were a
reasonable selection sufficient for mineralogical analyses (at least for the Coprates Chasma
region) at visible wavelengths.

This proposed methodology can also be utilized to vary filter parameters and to
propose new settings for future missions. Additionally, it is possible to use this procedure
to generate “new” or slightly different combinations of spectral bands resulting in different
image browse product.

It must be emphasized that the results can depend strongly on the data selection,
the preprocessing and the signal-to-noise ratio. Thus, this procedure should rather be used
as an aid with other analyses. Therefore, further iterative optimization of the procedure
regarding robustness and the extension of the analyses to the geologically more relevant
wavelengths in the NIR range are planned.
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Abbreviations
The following abbreviations are commonly used in this manuscript:

CaSSIS Color and Stereo Surface Imaging System
CH Calinski–Harabasz
CRISM Compact Reconnaissance Imaging Spectrometer
DB Davies–Bouldin
GMM Gaussian Mixture model
HiRISE High Resolution Imaging Science Experiment
MRO Mars Reconnaissance Orbiter
MTRDR Map-projected Targeted Reduced Data Record
PCA Principal omponent analysis
SC Silhouette Coefficient
SCM Spectral Cluster Map
SOM Self-organizing map
t-SNE t-distributed Stochastic Neighbor Embedding
TGO ExoMars Trace Gas Orbiter
UMAP Uniform Manifold Approximation and Projection

Appendix A

Table A1. Mean of the Davies–Bouldin criterion over a range of three to seven clusters, split by
method and region. The best score for each dataset is in bold.

Regions

Methods FRT0000d3a4 FRT0001c479 FRT0001c71b

Autoencoder + K-Means 0.8775 0.9128 0.7967
Autoencoder + GMM 2.9242 2.2085 0.8964
Autoencoder + SOM 1.2979 1.1723 0.9601

Autoencoder + Fuzzy-c-Means 1.0237 0.9387 0.8412
PCA + K-Means 0.8678 0.9009 0.8000

PCA + GMM 1.9057 1.7879 0.8214
PCA + SOM 1.2301 1.1618 0.9572

PCA + Fuzzy-c-Means 1.0105 0.9256 0.8434
t-SNE + K-Means 0.8332 0.8347 0.8369

t-SNE + GMM 0.8454 0.8614 0.8660
t-SNE + SOM 0.9658 0.9936 1.0490

t-SNE + Fuzzy-c-Means 0.8673 0.8438 0.8507
UMAP + K-Means 0.7425 0.6971 0.6523

UMAP + GMM 0.7322 0.7178 0.7142
UMAP + SOM 1.0230 0.8936 0.7817

UMAP + Fuzzy-c-Means 0.7682 0.7178 0.6542

Appendix B. Citation of PDS Data Products

PDS3 data products cited in this paper as part of https://doi.org/10.17189/1519470
(accessed on 1 September 2021) have the following PDS3 DATA_SET_ID:PRODUCT_IDs:

FRT0000d3a4
FRT0001c479
FRT0001c71b

https://doi.org/10.17189/1519470
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Appendix C. HiRISE and CaSSIS Filter Bandpasses

Table A2. A comparison of the HiRISE and CaSSIS filter bandpasses. HiRISE data taken from
McEwen et al. [1]. The filters are not perfect top-hat functions and cut-off values can be +/−5 nm
depending on the definition used.

HiRISE Name HiRISE Color
Band CaSSIS Name CaSSIS Color

Band

CaSSIS
Effective
Central

Wavelength

BG <580 nm BLU <570 nm 494 nm

RED 570–830 nm PAN 550–800 nm 678 nm

NIR >790 nm RED 785–880 nm 836 nm

NIR >870 nm 939 nm
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