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Abstract: Hyperspectral remote sensing image (HSI) include rich spectral information that can be
very beneficial for change detection (CD) technology. Due to the existence of many mixed pixels,
pixel-wise approaches can lead to considerable errors in the resulting CD map. The spectral unmixing
(SU) method is a potential solution to this problem, as it decomposes mixed pixels into a set of
fractions of land cover. Subsequently, the CD map is created by comparing the abundance images.
However, based only on the abundance images created through the SU method, they are unable
to effectively provide detailed change information. Meanwhile, the features of change information
cannot be sufficiently extracted by the traditional sub-pixel CD framework, which leads to a poor
CD result. To address these problems, this paper presents an integrated CD method based on multi-
endmember spectral unmixing, joint matrix and CNN (MSUJMC) for HSI. Three main steps are
considered to accomplish this task. First, considering the endmember spectral variability, more
reliable endmember abundance information is obtained by multi-endmember spectral unmixing
(MSU). Second, the original image features are incorporated with the abundance images using a
joint matrix (JM) algorithm to provide more temporal and spatial land cover change information
characteristics. Third, to efficiently extract the change features and to better handle the fused
multi-source information, the convolutional neural network (CNN) is introduced to realize a high-
accuracy CD result. The proposed method has been verified on simulated and real multitemporal
HSI datasets, which provide multiple changes. Experimental results verify the effectiveness of the
proposed approach.

Keywords: spectral unmixing; hyperspectral image; change detection; multiple changes; joint matrix;
convolutional neural network

1. Introduction

Change detection (CD) [1,2] using remote sensing images is essential for protecting
the ecological environment, managing natural resources and studying social development,
etc. [3–6]. The traditional CD technique is mainly applied in multispectral images (MSI)
with the aim of detecting land cover changes in multi-temporal remote sensing images [7,8].
However, due to the limited spectral resolution of the MSI, only significant changes can be
detected. In contrast, hyperspectral images (HSIs) have more abundant spectral information
of ground objects, which can reflect the subtle spectral properties of the measured objects
in detail [9]. Many researchers have been concerned about the study of CD in HSI. For
example, sparse unmixing with dictionary pruning for HSI-CD is proposed to reduce the
computation time of the CD process and improve the CD performance by using the high
spectral resolution property of HSI [10]. A novel hierarchical CD method that considers
both change magnitude and spectral change information is proposed, aiming to identify the
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change classes with discriminable spectral behaviour and thereby improving the accuracy
of CD results [11]. A subspace-based HSI-CD method is proposed, which makes full use of
the rich spectral information in the HSI and obtains more reliable CD results by measuring
the spectral changes [12], etc.

Even so, many mixed pixels occur widely in HSI due to the complexity of the ground
cover and the restriction of the sensor resolution in HSI, which cause difficulties for CD [13].
The interior of the mixed pixel is not a single element but rather a combination of several
elements [14,15]. If these mixed pixels are employed in CD on a pixel level, some significant
information will be lost [16]. To address the effect of mixed pixels, many researchers
have attempted to explore efficient and robust CD methods. Spectral unmixing (SU) is
a representative method that solves the problem of mixed pixels to a certain extent [17].
The whole procedure is described by the following steps. First, the endmember spectra of
each feature type are extracted from the HSI. Second, the abundance of each feature type
is estimated. Finally, the CD map is created by comparing the corresponding abundance
results. The CD method at sub-pixel level has been shown to be superior to the traditional
CD method at the pixel level [18–20]. During the process, obtaining abundance results with
high accuracy is very important. As the imaging environment of each region on an image is
likely to be different, the same ground element may not have the same endmember spectra
or may have significant differences. The illumination variations or shadows degrade the
performance of the spectral unmixing due to the spectral variability within each endmember
class. If this issue is not addressed, the validity of endmember abundance information
will be adversely impacted, leading to a poor CD result [21]. Many existing unmixing
models that include spectral variability or nonlinearity aim to address these problems. For
example, an unsupervised multitemporal SU method that considers endmember spectral
variability is proposed for detecting multiple changes in HSI [22]. A novel CD approach
is based on SU from stacked multitemporal remote sensing images with a variability of
endmembers [23]. A new spectral mixing model, called the augmented linear mixing model
(ALMM), is proposed to solve the spectral variability problem by applying a data-driven
learning strategy in inverse problems of HSI unmixing [24], etc. These methods have
achieved better results in solving the problem of endmember spectral variability.

However, previous SU methods were mainly focused on obtaining the abundance
images, and afterward, the traditional comparison methods were used to obtain the CD
results. In such a framework, the CD methods at the “sub-pixel level” are often unable to
provide detailed change information effectively based only on the limited resources. The
original image feature information at the pixel level is not utilized, which can be seen as a
significant complement. This means that the original image feature information should be
sufficiently considered and extracted for the HSI-CD task. Thus, to improve the accuracy
of the HSI-CD results, the original image feature information is incorporated with the
endmember abundance information to fully exploit the information contained in the HSI.
Subsequently, a suitable method is adopted to efficiently extract change features from the
fused information. In the early stages, some machine learning-based methods, such as the
k-means clustering algorithm (k-means) [25], change vector analysis (CVA) [26], random
forest (RF) [27], support vector machine (SVM) [28], Markov random field (MRF) [29],
decision trees (DT) [30], neural network (NN) [31], logistic regression (LR) [32], etc., were
widely used. However, these methods only extract shallow features based on the spectral
information of the HSI, using individual pixels and all their bands as input. As a result,
these linear and nonlinear classifiers do not extract subtle features of HSI well, limiting
their application. In recent years, deep learning has become increasingly popular in the
field of remote sensing, as it is capable of dealing with certain sophisticated and abstract
problems. Deep learning can utilize training samples to train the neural network, which
allows the neural network to recognize subtle and abstract features and eventually, extract
these features efficiently [33–35].

From the above discussion, an integrated CD method based on a multi-endmember
spectral unmixing joint matrix and CNN (MSUJMC) is proposed in this paper. It incor-
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porates the original image feature information on sub-pixel level endmember abundance
information. In addition, CNN is used to extract multiple types of the change features for
detecting multiple changes in the HSI. The overall flow chart of the MSUJMC approach is
described in the following steps: (1) Considering the variability of the endmember spectra,
this approach utilizes MSU to generate the abundance maps for the whole image; (2) To
make full use of the valid information contained in the HSI data, the JM algorithm is
used to fuse the multi-source information; (3) The CNN is used to extract complex fine-
grained change features and improve the CD performance of the method. This method
showed excellent performance on both simulated and real HSI datasets. The experimental
results validate the effectiveness of the method in detecting multiple changes in HSI. The
remainder of this work is structured in the following format. The second section reviews
the related research on remote sensing image CD. The third section thoroughly describes
the MSUJMC presented in this article. The fourth section provides the related datasets,
experimental results, and analysis. Finally, the fifth section is the conclusion.

2. Related Works

As mentioned in Section 1, the CD is a common application in the field of remote
sensing. The aim is to extract pixels from multitemporal remote sensing images where
ground types have changed. The relevant CD methods are summarized below.

2.1. Spectral Unmixing

With the increasing availability of HSIs, the problem of mixed pixels included in HSIs
is becoming increasingly apparent, limiting the accuracy of HSI-CD results. In order to
solve mixed pixels in HSIs, SU has been applied in HSI-CD and achieved good results. For
example, a framework based on multi-level SU is proposed for use in HSI-CD tasks [13].
An unsupervised method based on SU and a new formulation for CD is proposed to detect
binary changes and multiple changes [18]. In reference [20], HSI-CD by SU is investigated,
and systematically present the advantages that can be gained by using such an approach.
A sub-pixel CD algorithm using variability in endmembers is proposed, through a simple
but effective model that takes into account the real change in endmember combination, the
performance of SU is enhanced and the accuracy of the CD results is improved [21], etc.

2.2. Machine Learning

Machine learning was widely used in the field of HSI-CD when deep learning was
not widespread. These methods use a number of pixels and all their bands as input to
extract features from the spectral information of the HSI and achieve good results. For
example, through a formal definition and theoretical study of the CVA technique, a suitable
framework is proposed to solve the unsupervised CD problem [26]. An improved RF
algorithm is proposed for the classification step in the feature selection process to improve
the accuracy of CD [27]. A framework based on image calibration, SVM training and tuning,
statistical evaluation of model accuracy, and temporal pixel-based image differencing was
used for the coral reef change detection task [28]. Furthermore, a method based on spatial
domain analysis and MRF was used to detect building changes in remotely sensed images
with good results [29], etc.

2.3. Deep Learning

Deep learning is an important approach for processing high-dimensional data. Dif-
ferent from traditional machine learning algorithms, these deep learning-based methods
can automatically extract high-level semantic information from HSIs with no handcrafted
feature extraction. Numerous studies have shown that deep learning has outstanding
capabilities in feature extraction. When deep learning was introduced into HSI-CD, it
achieved remarkable performance. For example, a three-dimensional spectral spatial CNN
was proposed to extract the spectral and spatial features of HSIs, which improved the
accuracy of the HSI-CD results [33]. A method of the HSI-CD based on tensor and deep
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learning was proposed, which improves the accuracy of the results by extracting the change
information of the underlying features [34]. A CNN-based CD framework was proposed to
detect the subtle change features as a way to improve the accuracy of the binary HSI-CD
results [35], etc.

3. Methodology

In the proposed method, we first consider the variability of the endmember spectra,
using the MSU method to obtain more reliable endmember abundance information. Then,
to exploit the rich information contained in the HSI, the JM algorithm is used to fuse
the sub-pixel level endmember abundance information and the original image feature
information. This procedure converts the corresponding two one-dimensional pixel vectors
into a two-dimensional matrix to provide richer cross-channel gradient information. Finally,
to perform efficient feature extraction, the CNN is introduced to detect various change
categories and generate a CD result map. Figure 1 shows the general architecture of the
proposed HSI-CD approach. According to the above theory, this approach consists of the
following three steps: (1) The abundance maps were obtained based on the MSU method;
(2) Multi-source information was combined based on the JM algorithm; (3) multiple changes
were detected based on CNN.
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Figure 1. The architecture of the HSI-CD method based on MSUJMC.

3.1. MSU Method for Acquiring Abundance Images

We used the MSU technique to obtain reliable sub-pixel level endmember abundance
information, which improves the performance of the HSI-CD method. Figure 2 shows the
flow chart of the MSU method. Considering the large range of the HSI, the same land cover
category is in different imaging environments or has different existence states, which often
results in the endmember spectra of the same land cover category not being the same or
even having large differences. Therefore, the image is divided into several patch images
(P1–Pn) based on the size and complexity of the HSI. Thus, subtle endmember features can
be highlighted. In this situation, the endmember spectral signatures can be sufficiently
analysed in each patch image. The divided patch image is considerably smaller in size than
the entire image. The patch scheme simultaneously handles both issues of a possible large
number of endmembers and the effects of local spectral variability. Although the number
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and type of endmembers are increased, the redundant endmembers that are generated can
be merged or eliminated later. In this case, the relative change in the deformation can be
fully considered, which effectively reduces the errors of the endmember extraction.
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Afterward, the endmember spectra of each patch image are identified by the vertex
component analysis (VCA) [36] algorithm, since it is a robust and universal tool. This
technique builds the observation vector into a convex cone, and the vertices of the convex
cone are considered endmembers. Compared with other techniques, the VCA method is
computationally inexpensive and efficient. In addition, the VCA method has a relatively
good extraction accuracy and noise immunity. Following the endmember extraction, each
patch image has its own endmember pool (U1–Un). Then, the spectra in each endmember
pool are compared for classification. The defined rule is obviously the key factor in
the procedure. Due to the explicit physical meaning, the spectral angle mapper (SAM)
technique [37] is used to distinguish the similarity by calculating the angle through the
following formula:

α
(
εi, ε j

)
= arccos(

εT
i ε j√

εT
i εi

√
εT

j ε j

) (1)

where εi and ε j are the spectra of the two specified endmembers. The more similar the
two spectra are, the smaller the angle is. If the angle of the two endmembers is smaller
than the empirical threshold, they belong to the same type. Following the classification of
the endmember spectra, a ground cover category corresponds to numerous endmember
spectra. However, a large amount of redundant computation arises when there are many
candidate endmember spectra. In particular, blocking easily caused many similar spectra
to occur according to the same land cover type. In this case, the endmember average root
mean square error (EAR) indicator is proposed to optimize the selection of the endmember
spectra [38]. The average error in the endmember spectra of a ground cover type can be
determined by EAR. The endmember spectra with a smaller EAR are the more represen-
tative endmember spectra of the ground cover type among several comparable spectra.
Assuming a land cover type with m candidate endmember spectra {E1, E2, . . . , Em}, the
EAR of the ith endmember spectrum can be stated as follows:

EARi =
1
m

m

∑
j=1

RMSE(Ei, Ej) (2)

where EARi represents the EAR of the ith endmember spectrum, and RMSE(Ei, Ej) repre-
sents the average value of the root mean square error between Ei and Ej. The lower the
EAR value is, the more representative the spectra are. According to the calculated EAR
value, some of the more representative spectra were selected to be the endmember spectra
of the ground cover type. Through this method, the endmember spectra of the various
ground cover categories are optimized and selected. Finally, the endmember pools of all
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the patch images are combined to obtain the final endmember pool (U). In this endmember
pool, a land cover type has several representative endmember spectra.

The LMM is widely used to identify and quantify pure components in remotely sensed
images due to its simple physical interpretation and trackable estimation process [39].
This model assumes that the reflectance measured within each pixel is a unique linear
combination of the reflectance of each sub-pixel endmember, weighted by its abundance
and some noise [40]. The spectral properties of mixed pixels are as follows:

x = Eα + n (3)

where x is the spectral vector value of the mixed pixel, E is the endmember matrix, α is
the abundance column vector of each endmember, and n is the noise. Finally, the least
squares approach is used to obtain the abundance α that is most appropriate. There are
two crucial limitations in computing the abundance; the abundance must be nonnegative,
and the sum must be one [41]. If the number of endmembers in the image is N, Formula (3)
can be represented as:

x =
N

∑
i=1

siαi + n (4)

where si and αi are the ith endmember spectrum and the corresponding abundance values,
respectively. The mixed pixels are decomposed according to a specific endmember pool (U)
obtained previously. The MSU model is revised based on Equation (4) and shown below:

x =
N

∑
i=1

Mi

∑
j=1

qsijαij + n (5)

where N is the number of the endmembers and Mi is the number of spectra according to
the ith land cover type. The values of sij and αij are the jth endmember spectrum in the
ith class type and the corresponding abundance value, respectively, q is the label (zero or
one) representing whether the relevant endmember spectrum is used, and n is the noise.

Like the LMM, the MSU has the following two constraints: 0 ≤ αij ≤ 1 and
N
∑

i=1

Mi
∑

j=1
αij = 1.

Finally, more reliable endmember abundance maps are obtained.

3.2. JM Algorithm for Information Fusion

After obtaining the abundance images, it can be seen that the traditional direct com-
parison approaches are not effective in extracting the change information. In addition, the
detailed change information is not effectively provided if it was only based on the abun-
dance images that were obtained through the MSU method. Therefore, we consider fusing
the abundance image information with the original image feature information to provide
more information on the land cover change. In this process, principal component analysis
(PCA) [42] is used to extract the feature information of the original image. It can map the
high-dimensional data to the low-dimensional space. In other words, the original features
are projected onto the selected feature vector to obtain new low-dimensional feature in-
formation. This process removes redundant information and noise to obtain high-quality
original image feature information and then normalizes it to limit the value to the range of
zero to one. Subsequently, the JM algorithm is used to efficiently process the multi-source
information simultaneously, fusing the sub-pixel level endmember abundance information
with the original image feature information to fully explore the rich information contained
in the HSI. By converting the corresponding two one-dimensional pixel vectors into a
two-dimensional matrix, the change patterns between two corresponding spectral vectors
on the spatial pixels are better explored. The flow chart is shown in Figure 3.
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Assuming that the original image size is I × J × k, m bands are retained after the
PCA processing. Suppose that the abundance image (F1, F2) has n bands. The abundance
image information and its corresponding original image feature information are stacked in
the spectral dimension to obtain two stacked images of size I × J × (m + n). To properly
characterize the local spatial patterns, a neighbourhood is used. For each stacked image, a
neighbourhood of size In × Jn is divided with each pixel as the centre. Then, the JM algo-
rithm is used to reshape and stack the corresponding neighbourhood image information to
obtain tensor K. The tensor K contains the context information of each pixel, and the noise
and misalignment artefacts can be suppressed or removed. This can be expressed with the
following formula:

Kijpq = (r1
ijp − r2

ijq)/
∣∣∣r2

ijq

∣∣∣ i = 1, 2, · · · , In; j = 1, 2, · · · Jn; p, q = 1, 2, · · · , m + n (6)

where Kijpq represents the value of row p and column q of the joint matrix generated by
the pixel vector of row i and column j of the corresponding neighbourhood image; r1

ijp is

the p-band value of the pixel vector of row i and column j in the T1 image; and r2
ijq is the

q-band value of the pixel vector of row i and column j in the T2 image.
According to Equation (6), each pair of the corresponding one-dimensional pixel

vectors is converted into a two-dimensional joint matrix Kij of size (m + n)× (m + n). In
addition, each pair of corresponding neighbourhood images is converted into a joint matrix
cluster K of size (m + n)× (m + n)× (In × Jn). As shown in Figure 3, each Kij contains
three parts of information. In Part A, the abundance image of a certain endmember for one
pixel in the T1 image subtracts the abundance image of the n endmember corresponding to
the pixel of the T2 image. This part of the information represents the difference information
at the sub-pixel level of the HSI, which is distributed in the upper left corner of the two-
dimensional matrix. In Part B, a certain band of a pixel in the T1 image subtracts m bands
of pixels corresponding to the T2 image. This part of the information represents the pixel
level difference information of the HSI, which is distributed in the lower right corner
of the two-dimensional matrix. Since the affinity between the endmember abundance
information and original image feature information is meaningless, the remaining Kij is set
to zero. The smaller the value of Kij is, the more similar it is between the corresponding
pixels. In contrast, the greater the value of Kij is, the greater the likelihood for pixel change.
Following the calculation of the joint matrix, K is obtained with a quantity of I × J.

This whole process combines the endmember abundance information with the original
HSI feature information. Furthermore, the JM algorithm maps the differences between the
corresponding one-dimensional pixel vectors in the neighbourhood to a two-dimensional
matrix, which can provide richer cross-channel gradient information and maximize the
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utilization of multi-source information. This is an efficient way to simultaneously process
multi-source information.

3.3. CNN for Detecting Multiple Changes

To accurately extract the change features from the fused information, the CNN is
introduced to improve the accuracy of the HSI-CD results [43]. The CNN is significant
in computer vision. It maintains spatial information by using convolution, pooling, and
activation functions and learns locally invariant spatial characteristics as well as nonlinear
features. It is commonly utilized for image classification, target detection, change detection,
and other image processing tasks. Furthermore, the CNN convolution layer with an
activation function can be described through the following calculation:

Fl+1,k
i,j = f ((Wl+1,k ∗ Fl)i,j + bl+1,k)

= f (
sl+1

∑
m=1

sl+1

∑
n=1

sl+1

∑
p=1

Wl+1,k
m,n,p · Fl

i+m−1,j+n−1,p + bl+1,k)
(7)

where Fl
i,j,p is the characteristic graph p output by the pixel (i, j) of the lth layer, Wl+1,k

and bl+1,k are the kth convolution kernel and deviation of layer l + 1, respectively, sl+1 is
the size of the convolution kernel of layer l + 1, k is the number of characteristic graphs
of this layer, and f (·) is the activation function, such as the sigmoid function (sigma) [44],
hyperbolic tangent function (tanh) [45], and corrected linear function (relu) [46,47].

The overall network architecture is shown in Figure 4, and the specific parameters
are shown in Table 1. After convolution, a batch normalization (BN) is used to accelerate
the training process, and the relu function is used for nonlinear activation. The previously
obtained joint matrix clusters are fed into this neural network to integrate this rich multi-
source information. Finally, the predicted type labels of the pixels are output to obtain the
HSI multicategory CD result map.
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To optimize the network model, the cross-entropy loss function is used as the loss
function of the neural network to detect multicategory changes in the HSI. The cross-
entropy loss function is as follows:

Loss = − 1
M

M

∑
m=1

C

∑
c=1

ym
c log(pm

c ) (8)

where y and p are real labels and predicted output labels, respectively, C is the number of
categories, and M is the number of samples. The parameters in the model are updated by
backpropagation and random gradient descent.
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Table 1. Specific details of network architecture.

Layers Type Channels Kernel Size

Conv1 Convolution + BN
Activation (relu) 16 3 × 3

Pool1 MaxPooling - 2 × 2

Conv2 Convolution + BN
Activation (relu) 32 3 × 3

Pool2 MaxPooling - 2 × 2

Conv3 Convolution + BN
Activation (relu) 64 3 × 3

Pool3 MaxPooling - 2 × 2

Conv4 Convolution + BN
Activation (relu) 128 3 × 3

Pool4 MaxPooling - 2 × 2

FC1 Fully Connected + BN
Activation (relu) 128 -

FC2 Fully Connected + BN
Activation (softmax) nchange + 1 -

4. Experiment

In this section, we will first introduce the HSI datasets used in the experiment, then
introduce the evaluation measures of the selected method, followed by the discussion of
the results, and finally, give the computational cost analysis.

4.1. Dataset Description

To make the experiment more representative, we chose three datasets with large
differences in style for the experiment. The simulated experimental dataset had a large
number of change types but a strong similarity between the images, which was relatively
simple. The first real experimental data had fewer types of changes and a more concentrated
range of changes, and the main difficulty was reflected in the complex farm paths. The
second real experimental dataset had poor image similarity, and the images had a complex
environment with multiple scattered change types.

The first dataset is made up of an HSI acquired by the AVIRIS sensor in 1998 on Salinas
Valley, California. The original image has 224 contiguous spectral bands with wavelengths
from 400 to 2500 nm, which are characterized by a spatial resolution of 3.7 m and a spectral
resolution of 10 nm. Ground truth data that contain 16 material classes (vegetation, bare
soil, vineyard, etc.) are available. A subset of the whole image was selected, having a size
of 100 × 217 pixels. In pre-processing, 20 water absorption bands (bands 108–112, 154–167,
and 224) were discarded, resulting in 204 bands for the experiments. Taking this image
as the T1 image, the T2 image was simulated based on the T1 image. To obtain realistic
simulation data, six different regions were extracted from the T1 image and inserted back
into different spatial positions on the T1 image by replacing the whole spectral vector. Thus,
the T2 image was generated with six simulated change classes. To simulate the radiation
measurement difference, Gaussian white noise (mean value = 0, variance = 0.001) was
added. A pair of simulated images constructed from the original image was obtained.
Figure 5a,b show the original T1 image and simulated T2 image with noise. The reference
land cover change map in Figure 5c was generated from artificial exchange areas. Change 1
is shown in red, change 2 is shown in green, change 3 is shown in blue, change 4 is shown
in yellow, change 5 is shown in magenta, change 6 is shown in cyan, and the unchanged is
shown in black.
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Figure 5. Simulated multitemporal image dataset: False-colour composite image (bands: R: 40, G: 30,
B: 20): (a) Salinas original hyperspectral image; (b) simulated image with Gaussian white noise
(mean = 0, variance = 0.001); and (c) reference image.

The second dataset, “farmland”, is from the Earth Observation-1 (EO-1) Hyperion
images, as shown in Figure 6a,b. The dataset covers farmland near Yancheng City, Jiangsu
Province, China, with a size of 450 × 140 pixels. The two images were acquired on 3 May
2006, and 23 April 2007, respectively. The spectral resolution is 10 nm, and the spatial
resolution is 30 m. The original image has 242 bands. Some bands with a low signal-to-noise
ratio (uncalibrated, overlapping, highly influenced by water vapour and noisy bands) are
eliminated in the pre-processing process, reserving 155 bands for the experiments. Visually,
the main change in the dataset is the size of farmland. The change reference image is shown
in Figure 6c, change 1 is shown in red, change 2 is shown in green, and the unchanged is
shown in black.
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Figure 6. Real multitemporal image dataset-1 and dataset-2: False-colour composites (bands: R: 23,
G: 13, B: 6) images: Farmland images acquired on (a) 3 May 2006, and (b) 23 April 2007, and
(c) reference image. False-colour composites (bands: R: 23, G: 13, B: 6) images: Agricultural irrigated
images acquired on (d) 1 May 2004 and (e) 8 May 2007, and (f) reference image.

The third dataset is a pair of real bitemporal images acquired by a Hyperion sensor
mounted on the EO-1 satellite on 1 May 2004, and 8 May 2007. The study area is an agricul-
tural irrigated land of Umatilla County, Oregon, USA, which has a size of 390 × 200 pixels.
The wavelength range of the image is 350~2580 nm, the spectral resolution is 10 nm, and
the spatial resolution is 30 m. After pre-processing (repairing bad stripes, removing uncali-
brated and noisy bands, atmospheric correction and registration), 159 bands of the original
242 bands (8–57, 82–119, 131–164, 182–184, and 187–220) were used for the CD experiment.
Changes in this scenario mainly include the land-cover transitions between the crops, bare
soil, and variations in soil moisture and water content of the vegetation. Figure 6d,e show
the false-colour composite of the images. The change reference image is shown in Figure 6f.
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Change 1 is shown in red, change 2 is shown in green, change 3 is shown in blue, change 4
is shown in yellow, change 5 is shown in magenta, and the unchanged is shown in black.

4.2. Evaluation Measures

To assess the performance of the CD method, the CD map was compared to the
real reference map. The precision of the computation results can directly represent a CD
method’s dependability and practicability. In this research, the following four assessment
indices were used: overall accuracy (OA); Kappa coefficient; precision and recall for
each class.

When computing the assessment statistics, each category was considered “positive”,
while the remaining categories were considered “negative”. The number of pixels that
correctly predicted a positive class is the TP, while the number of pixels that correctly
predicted a negative class is the TN. The FP represents the number of pixels that incorrectly
predicted the negative class as positive, and the FN represents the number of pixels that
incorrectly predicted the positive class as negative. The proportion of correctly classified
pixels is calculated using the OA. The formula is as follows:

OA =
TP + TN

TP + TN + FP + FN
(9)

The Kappa coefficient measures the consistency of the CD result map and the actual
surface map. In comparison to the OA, the kappa coefficient more objectively reflects the
correctness of the CD result. The kappa coefficient is calculated as follows:

Kappa =
OA− P

1− P
(10)

where the formula to calculate P is the following:

P =
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2 +
(TN + FN)(FP + TN)

(TP + TN + FP + FN)2 (11)

Precision is the proportion of the pixels in the predicted positive class that truly belong
to the positive class, which demonstrates the prediction ability of the algorithm. The
formula is as follows:

Precision =
TP

TP + FP
(12)

Recall refers to the proportion of the positive class pixels correctly predicted in the
total positive class pixels, which reflects the differentiation ability of the algorithm. The
following formula calculates the recall:

Recall =
TP

TP + FN
(13)

4.3. Results and Discussion

To prove the feasibility of this method (MSUJMC), experiments were performed on
three different HSI datasets. Comparisons with seven methods, which are the pixel-level
CD method based on machine learning (K-means, RF, SVM), sub-pixel level CD method
based on spectral unmixing (SU, MSU), CNN comparison method with abundance maps as
input (MSUC), and JM algorithm based on traditional spectral unmixing and CNN method
(SUJMC), were made to evaluate the performance of the proposed methods. During the
experiment, the neighbourhood size was set to 3 × 3 (In × Jn). The batch size for the
training was set to 64, the optimizer was Adam, the learning rate was 0.0005, and the decay
was 10−3. Experiment was optimized for 300 epochs for the training samples, and the early
stop method was used to avoid overfitting. The number of training samples was 10% of the
total pixels. Each experiment is repeated five times and the average accuracy are reported.
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4.3.1. Simulation Dataset

The MSUJMC method was used to perform the CD on the simulated images. In
acquiring the endmember abundance information, the number of rows and columns was
set to two, and the whole image was segmented into four patch images. In acquiring
the original image feature information, 10 bands were retained after the PCA processing.
Figure 7b–i show the CD results obtained by the different CD methods: K-means, RF,
SVM, SU, MSU, MSUC, SUIMC and MSUJMC, respectively. The evaluation statistics of the
simulated data are shown in Table 2.
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Through the analysis of the evaluation statistics and visual comparison with the
reference map, the result obtained by the K-means method is shown to be the worst.
There are many misclassified isolated pixels caused by the wrong CD, and some of the
change 5 and change 6 pixels were not detected. The RF and SVM methods are much
better than K-means. The six change classes were almost completely detected, but a large
number of unchanged pixels were detected as change 5 and change 6. Therefore, in the
two experimental results, the precision statistics of these two change classes are very low,
barely exceeding 0.1, and the performance of the SVM was better than that of the RF. From
the OA and Kappa, we found that the SU method outperforms RF but is weaker than
SVM. The MSU method is a significant improvement over the SU method but still not
as good as the methods based on the CNN. The SUJMC and MSUJMC, which fuse the
sub-pixel endmember abundance information and original image feature information, have
better performance than the MSUC, which does not consider the original image feature
information. In particular, since the MSUJMC method considers the endmember spectral
variability, this method significantly improves the CD accuracy and has fewer false pixels.
Although some pixels of change 5 and change 6 were not detected, the MSUJMC method
has the best CD performance overall.
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Table 2. Accuracy statistics of simulation dataset.

K-means RF SVM SU MSU MSUC SUJMC MSUJMC

OA (%) 96.07 97.06 98.41 97.81 99.01 99.37 99.80 99.95
Kappa 0.74 0.80 0.88 0.84 0.92 0.95 0.98 0.996

unchanged Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00

change 1 Precision 0.80 1.00 1.00 0.86 1.00 0.95 1.00 1.00
Recall 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00

change 2 Precision 0.48 0.80 0.91 0.68 0.80 1.00 0.99 1.00
Recall 0.91 1.00 1.00 0.98 0.95 1.00 1.00 1.00

change 3 Precision 0.54 0.80 0.88 0.66 0.72 0.95 1.00 1.00
Recall 0.96 1.00 1.00 0.82 0.97 0.97 1.00 1.00

change 4 Precision 0.75 1.00 1.00 0.82 1.00 0.95 1.00 1.00
Recall 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00

change 5 Precision 0.21 0.10 0.17 0.23 0.41 0.76 1.00 1.00
Recall 0.72 1.00 1.00 0.40 0.84 0.95 0.16 0.84

change 6 Precision 0.09 0.07 0.13 0.32 0.36 0.72 1.00 1.00
Recall 0.44 1.00 1.00 0.72 1.00 0.75 0.12 0.76

To explore the stability of the method under the influence of different levels of noise,
we added two simulations for comparison. By increasing the value of the noise variance
(variance = 0.003 and variance = 0.005) in the simulated experiments, the difference in the
performance between the methods is more significantly represented. Figure 8a–d show
the spectral curves at different noise levels. It can be seen that the higher the noise level,
the greater the effect on the spectral curve, which greatly increases the difficulty of CD. By
analysing the statistics of these three simulated experiments, we found that the CD results
of the various methods were affected by interference to different degrees as the noise level
increases. As shown in Figure 8e,f, the MSUJMC method is the least affected by the noise
and the most resistant to interference. When the noise level increases, the OA decreases by
only 0.18% and 0.25%, and the Kappa decreases by only 0.016 and 0.02.

4.3.2. Real HSI Dataset-1

In this experiment, when acquiring the endmember abundance information, the
number of rows and columns was set to two, and the whole image was segmented into
four patch images. When acquiring the original image feature information, 10 bands were
retained after the PCA processing. The MSUJMC method result are shown in Figure 9i, and
the results of the comparison methods (K-means, RF, SVM, SU, MSU, MSUC, SUIMC) are
shown in Figure 9b–h, respectively. The evaluation statistics are shown in Table 3.

By comprehensively analysing the CD result maps of the various methods and their
corresponding evaluation statistics, we found that the K-means method generated the least
accurate result, with a large number of undetected change 2 pixels and a recall statistic of
0.53. In the resulting maps obtained by the RF, SVM and SU methods, a large number of
roads are misidentified as change regions. The performance of the SVM and SU methods
was similar, and both outperformed the RF method. Compared with previous methods,
the result obtained by the MSU method show much visual and statistical improvement.
Due to the strong learning capability of the CNN, the methods based on the CNN are
far superior than the traditional methods. Among them, the SUJMC method and the
MSUJMC method fused multi-source information and outperformed the MSUC method,
which only considers the sub-pixel level endmember abundance information. However,
the endmember abundance information used by the SUJMC method does not consider the
variability of the endmember spectra, only one candidate spectrum for each endmember
type is considered. This leads to the SUJMC method being less reliable than the MSUJMC
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method. It is also clear from the resulting maps and statistics that the MSUJMC is a very
effective way to handle the HSI-CD tasks. All the evaluation statistics are above 0.95, and
most of them are above 0.98, indicating that the resulting maps obtained by the MSUJMC
method are generally consistent with the ground truth maps.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

    
(a) (b) (c) (d) 

  

(e) (f) 

Figure 8. Spectral curves at different noise levels: (a) without noise; (b) with Gaussian white noise 
(variance = 0.001); (c) with Gaussian white noise (variance = 0.003); (d) with Gaussian white noise 
(variance = 0.005). Experimental results of the simulated dataset under different levels of noise: (e) 
the OA of each method for the simulation dataset under different levels of noise; (f) the KAPPA of 
each method for the simulation dataset under different levels of noise. 

4.3.2. Real HSI Dataset-1 
In this experiment, when acquiring the endmember abundance information, the 

number of rows and columns was set to two, and the whole image was segmented into 
four patch images. When acquiring the original image feature information, 10 bands 
were retained after the PCA processing. The MSUJMC method result are shown in Figure 
9i, and the results of the comparison methods (K-means, RF, SVM, SU, MSU, MSUC, 
SUIMC) are shown in Figure 9b–h, respectively. The evaluation statistics are shown in 
Table 3. 

     

(a) (b) (c) (d) (e) 

Figure 8. Spectral curves at different noise levels: (a) without noise; (b) with Gaussian white noise
(variance = 0.001); (c) with Gaussian white noise (variance = 0.003); (d) with Gaussian white noise
(variance = 0.005). Experimental results of the simulated dataset under different levels of noise:
(e) the OA of each method for the simulation dataset under different levels of noise; (f) the KAPPA of
each method for the simulation dataset under different levels of noise.

4.3.3. Real HSI Dataset-2

This dataset is complex compared to the previous datasets. Experiments were carried
out by using the proposed MSUJMC method. In acquiring the endmember abundance
information, the numbers of rows and columns are set to three and two, respectively, and
the whole image is divided into six patch images. When acquiring the original image
feature information, 15 bands were retained after the PCA processing. The MSUJMC
method results are shown in Figure 10i. Figure 10b–h show the CD results obtained by the
comparison of the following CD methods: K-means, RF, SVM, SU, MSU, MSUC, SUIMC,
respectively. The evaluation statistics are shown in Table 4.

We found that the result of the K-means method was significantly different from
the real surface of the reference map. Although most of the change areas were detected,
the various change classes were mixed together, resulting in many misjudgements. In
particular, change 3 was not detected, leading to the precision and recall statistics of zero
for this change type. Compared with the K-means method, the RF and SVM methods can
provide more reliable and clearer information between change classes. The discernibility
between the change classes is strong, but there are many unchanged pixels that are detected
as changed pixels. The overall performance of the SU and MSU methods is similar to
that of the RF and SVM. In the obtained results, the unchanged pixels that are detected
as change pixels are less than those detected in the RF and SVM. However, some change
4 pixels were mistaken for change 5, resulting in lower precision and recall statistics for
both change types. Moreover, in the result of the SU method, the pixels of change 1 and
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change 2 are mixed and difficult to distinguish. The MSUC, SUJMC and MSUJMC methods
based on the CNN show higher performance than the traditional CD methods. Only a
small number of unchanged pixels are detected as change pixels in the results of these three
methods. The detection ability of the MSUC method for change 4 is slightly inferior, and
the SUJMC method is less capable of detecting change 3. The MSUJMC method has the
highest comprehensive performance both from the resulting map and from the evaluation
statistics. The result of the MSUJMC method is the most consistent with the real reference
map, and only very few pixels are incorrectly detected. The precision and recall statistics
for each change type are very high. The OA and Kappa are also the highest among all
experimental methods.
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Figure 9. The experimental results of real multitemporal image dataset-1: (a) reference image;
(b) K-means; (c) RF; (d) SVM; (e) SU; (f) MSU; (g) MSUC; (h) SUJMC; (i) MSUJMC.

Table 3. Accuracy statistics of the real HSI dataset-1.

K-means RF SVM SU MSU MSUC SUJMC MSUJMC

OA (%) 89.33 85.99 88.84 88.31 94.60 96.73 97.36 98.63
Kappa 0.74 0.73 0.78 0.76 0.89 0.93 0.95 0.97

unchanged Precision 0.89 1.00 1.00 0.97 0.99 0.98 0.98 0.99
Recall 0.98 0.86 0.87 0.86 0.93 0.97 0.98 0.99

change 1 Precision 0.86 0.52 0.60 0.79 0.77 0.97 0.95 0.99
Recall 0.97 0.94 0.94 0.96 0.98 0.91 0.91 0.95

change 2 Precision 0.99 0.78 0.79 0.70 0.91 0.92 0.97 0.98
Recall 0.53 0.83 0.92 0.94 0.99 0.99 0.97 0.98
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Figure 10. The experimental results of real multitemporal image dataset-2: (a) reference image;
(b) K-means; (c) RF; (d) SVM; (e) SU; (f) MSU; (g) MSUC; (h) SUJMC; (i) MSUJMC.

Table 4. Accuracy statistics of real HSI dataset-2.

K-means RF SVM SU MSU MSUC SUJMC MSUJMC

OA (%) 94.16 94.94 96.89 95.26 96.69 97.47 98.45 98.89
Kappa 0.75 0.80 0.86 0.80 0.86 0.88 0.93 0.95

unchanged Precision 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00
Recall 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99

change 1 Precision 0.90 0.96 0.89 0.98 0.95 0.90 0.96 0.97
Recall 0.65 0.92 0.92 0.71 0.86 0.93 0.96 0.96

change 2 Precision 0.31 0.39 0.84 0.48 0.66 0.92 0.93 0.93
Recall 0.66 0.89 0.88 0.92 0.86 0.60 0.95 0.95

change 3 Precision 0.00 0.98 1.00 0.16 0.18 0.86 0.70 0.84
Recall 0.00 0.59 0.58 0.82 0.81 0.85 0.90 0.85

change 4 Precision 0.54 0.53 0.60 0.58 0.72 0.91 0.89 0.90
Recall 0.97 0.98 0.98 0.71 0.70 0.77 0.89 0.95

change 5 Precision 0.39 0.95 0.96 0.65 0.69 0.76 0.80 0.90
Recall 0.23 0.36 0.36 0.51 0.73 0.90 0.86 0.91

4.4. Computational Cost Analysis

The hardware and software parameters were as follows: Lenovo Desktops, AMD
Ryzen 7 5800H with Radeon Graphics 3.20 GHz, 16.0 GB RAM, NVIDIA GeForce RTX
3050Ti 4 GB GPU, Windows 10, python3.8. The average computational costs of the three
datasets are shown in Table 5. We can see that among these methods, machine learning
based methods (K-means, RF, SVM) are less time consuming. The reason for this is due
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to the fact that these methods only extract shallow features during training. The K-means
method has the highest time cost of the three methods, while RF and SVM perform much
better in comparison, and RF has the lowest computational time cost. Spectral unmixing
based methods (SU, MSU) are somewhat more costly in terms of computational time than
machine learning based methods. The reason for the higher computation time cost of the
MSU method, compared to the SU method, is analysed mainly as the MSU method adopts
a patching strategy, dividing the original image into multiple patch images to expand and
optimize the endmember pool, which therefore takes more time to complete. The time costs
of deep learning-based methods (MSUC, SUJMC, MSUJMC) increases abruptly, mainly as
neural networks need more training time to extract deep features. Among these three deep
learning-based methods, the MSUC method has the lowest time cost, mainly as the amount
of data input to its network is much smaller. The difference in computational time costs
between the SUJMC method and the MSUJMC method depends primarily on the time
difference in data processing prior to network input. In the simulation experiments, the
time consumption increases with increasing noise levels, but not significantly. In summary,
the MSUJMC method requires the highest cost in terms of computational time, but is
still acceptable.

Table 5. Computational cost of the three datasets.

Time (s) K-means RF SVM SU MSU MSUC SUJMC MSUJMC

simulation
dataset

v = 0.001 7.46 4.37 5.68 8.06 12.75 20.95 37.12 41.98
v = 0.003 8.47 5.16 6.23 8.84 13.64 22.15 38.96 43.78
v = 0.005 9.85 6.53 7.42 9.86 14.83 23.95 40.31 45.26

real dataset-1 9.83 6.94 7.85 10.21 15.36 24.66 41.08 46.24

real dataset-2 15.23 11.02 12.82 18.32 26.38 46.76 67.25 74.86

5. Conclusions

In this paper, the MSUJMC method is proposed to solve the challenging problem of de-
tecting multiple changes in multitemporal HSIs. The main contributions of the method are
reflected in the following three aspects: (1) The MSU method provides sub-pixel endmem-
ber abundance information for the CD. In this process, the variability of the endmember
spectra is fully considered so that the obtained endmember abundance information is more
accurate and reliable; (2) The JM algorithm fuses the sub-pixel level endmember abundance
information and original image feature information into lightweight matrices to make full
use of the valid information in the HSI to determine the type of pixel change; (3) The CNN
are used to fully exploit a series of change features in the joint matrix clusters to better
accomplish the task of detecting multiple changes in HSI.

Although the proposed method consumes more time than the comparative methods
in this paper, the time costs were still acceptable. Experimental results on the simulated
and real HSI datasets verify the effectiveness of the method. The following conclusions can
be drawn from the analysis of the theoretical and experimental results:

(1) A consideration of the variability in the endmember spectra should be made when
obtaining image endmember abundance information. Dividing the original image into
multiple patch images according to the complexity of the image enables the selection
of a large number of possible candidate endmember spectra. The redundant candidate
endmember spectra can be removed by the EAR index optimization. Finally, the mixed
pixels of the whole image can be unmixed using the MSU method and the final endmember
pool to obtain reliable sub-pixel level endmember abundance information.

(2) In the process of fusing the multi-source information, the JM algorithm also consid-
ers the neighbouring pixels around each pixel that jointly participate in the decision on the
type of change of the central pixel. The one-dimensional pixel information is converted into
two-dimensional matrix information, providing richer cross-channel gradient information.
Then, a maximization of the use of the valid information in the HSI can be performed.
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(3) The powerful learning ability of the CNN can work seamlessly with the joint matrix
clusters. It can identify the change features and integrate the multi-source information.
Therefore, the task of detecting multiple changes in the HSIs can be performed efficiently.

Considering that the HSI dataset with the real change reference map is relatively
scarce, the real change reference maps have a high production cost. In order to achieve
high accuracy CD on the HSI dataset without a real change reference map, in future work
we will explore the application of the transfer learning and remote sensing images from
different data sources on the HSI-CD.
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