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Abstract: Blind image deblurring is a long-standing challenge in remote sensing image restoration
tasks. It aims to recover a latent sharp image from a blurry image while the blur kernel is unknown.
To solve this problem, many image priors-based algorithms and learning-based algorithms have been
proposed. However, most of these methods are based on a single blurry image. Due to the lack of
high frequency information, the images restored by these algorithms still have some deficiencies in
edge and texture details. In this work, we propose a novel deep learning model named Reference-
Based Multi-Level Features Fusion Deblurring Network (Ref-MFFDN), which registers the reference
image and the blurry image in the multi-level feature space and transfers the high-quality textures
from registered reference features to assist image deblurring. Comparative experiments on the
testing set prove that our Ref-MFFDN outperforms many state-of-the-art single image deblurring
approaches in both quantitative evaluation and visual results, which indicates the effectiveness
of using reference images in remote sensing image deblurring tasks. More ablation experiments
demonstrates the robustness of Ref-MFFDN to the input image size, the effectiveness of multi-level
features fusion network (MFFN) and the effect of different feature levels in multi-feature extractor
(MFE) on algorithm performance.

Keywords: remote sensing; blind image deblurring; reference image; deep learning

1. Introduction

High-quailty remote sensing images have played an important role in change detec-
tion [1], urban planning [2,3], environmental monitoring [4,5] and so on. However, affected
by many factors such as camera shake, lens defocus and atmospheric disturbance, the
observed images often suffer from image quality degradation and loss of important texture
information. Image deblurring is a long-standing problem in remote sensing tasks. When
the blurring is uniform and spatially invariant, it can be expressed as:

B = I ∗ K + N, (1)

where B, I, K and N denotes the blurry image, the latent sharp image, the blur kernel and
additive noise, respectively. The operation ∗ stands for the discrete convolution.

Deblurring methods are generally divided into two types: non-blind image deblurring
and blind image deblurring. Non-blind deblurring assumes that the blur kernel is known
or has been estimated beforehand, while blind deblurring estimates both blur kernel and
latent sharp image or derives the latent sharp image directly.

Basically, deblurring is a highly ill-posed problem with countless conditional solutions.
To make this problem well-posed, many image priors are considered, such as gradient
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prior [6–8], dark channel prior [9,10], local minimal intensity prior [11], local binary pat-
tern prior [12], latent structure prior [13] and so on. However, most image priors lack
generalization since they are based on limited observations of specific scenes. Therefore,
it is worthwhile to explore more general image priors. To ameliorate this issue, many
deblurring methods based on deep learning are proposed, such as the works of Sun [14],
Nah [15] and Kupyn [16]. Among these deep learning-based methods, images harvested
by convolutional neural network-based (CNN-based) methods usually lack textures. Gen-
erative adversarial network-based (GAN-based) methods can provide detailed structures,
but sometimes may generate fake textures and artifacts.

To reconstruct the fine and realistic textures, some research on image Super-Resolution
(SR) transferred high-resolution (HR) textures from a given reference image to a low-
resolution (LR) image [17–21]. These reference-based SR (RefSR) methods provide a feasible
way for image deblurring. For better algorithm performance, a strong correlation is usually
required between the reference image and the input image. Compared with ordinary
optical images, strongly correlated reference images are easier to obtain in remote sensing
images. Possible methods are as follows:

• As a publicly available remote sensing image platform, Google Earth provides high-
resolution satellite images from around the world. It is feasible to pick up images from
Google Earth as reference images.

• The imaging process of many satellites is periodic and a large number of images of the
same region at different time are accumulated, which can be used as reference images.

Although highly correlated reference images can be obtained in remote sensing tasks,
alignment between the blurry image and the reference image is still necessary because a
difference still exists in some scenes caused by factors such as different shooting viewpoints,
deviations in geographic coordinates, different atmospheric conditions and the effect of
the time change. More specifically, how to extract the texture features matching the blurry
image from the reference image is the key to the reference-based remote sensing deblurring
algorithm.

To address this problem, we propose a novel Reference-Based Multi-Level Features
Fusion Deblurring Network (Ref-MFFDN). The Ref-MFFDN is mainly divided into three
modules: multi-level features fusion network (MFFN), encoder network (EN) and decoder
network (DN). Moreover, the MFFN module mainly consists of two parts: multi-level
features extractor (MFE) and feature fusion (FF). More specifically, multi-level features of
blurry images and reference images are extracted by MFE with shared weights. Then, in
FF, these paired features are further calculated with hard attention maps and soft attention
maps to generate fused features. Finally, the fused features will be concatenated with
the features of blurry images extracted by EN and be fed into DN to harvest latent sharp
images. The main contributions of this paper are:

• To the best of our knowledge, we are one of the first to explore reference-based
deblurring method on remote sensing images.

• We designed a novel MFFN module, which registers the reference image and the blurry
image in the multi-level feature space and transfers the high-quality textures from
registered reference features to assist image deblurring. Furthermore, the effectiveness
of MFFN is demonstrated by the ablation experiments.

• We construct a dataset for blind remote sensing image deblurring with data from the
United States Department of Agriculture (USDA). In the testing set, our algorithm
outperforms all comparative methods in both quantitative evaluation and visual
results, which proves the great potential of the reference-based deblurring approach
in the field of remote sensing.

The rest of this article is organized as follows. We introduce the related work in
Section 2 and give a detailed description of the proposed Ref-MFFDN, loss functions,
dataset and metrics in Section 3. Experimental results and discussion are provided in
Section 4. In Section 5, we conclude our work.
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2. Related Works

In this section, we briefly review previous works of learning-based blind deblurring
algorithms and reference-based SR algorithms which provide a feasible idea for our work.

2.1. Learning-Based Blind Deblurring Algorithms

Learning-based blind deblurring algorithms have developed rapidly in recent years.
Sun et al. [14] proposed a convolutional neural network (CNN) model to estimate the
motion blur at each image patch and then remove non-uniform motion blur in the whole
image. Nah et al. [15] proposed a multiscale CNN and multiscale loss function to restore
latent sharp images, following a coarse-to-fine strategy. Xu et al. [22] proposed a two-
stage model based on CNN to suppress extraneous details and enhance sharp edges.
Zhang et al. [23] proposed a novel end-to-end trainable spatially variant RNN for dynamic
scene deblurring. Kupyn et al. [16] proposed an image deblurring algorithm based on
generative adversarial network which can generate more realistic details in deblurred
image. Li et al. [24] proposed a neural network architecture based on algorithm unrolling
technique, which improves the image restoration performance and operation speed. Suin
et al. [25] proposed an efficient deblurring design built on new convolutional modules
that learn the transformation of features using global attention and adaptive local filters.
However, the above algorithms are all based on a single blurry image. Due to the lack
of high frequency information, the images restored by these algorithms still have some
deficiencies in edge and texture details.

2.2. Reference-Based SR Algorithms

In recent years, RefSR algorithms have been greatly developed which provide a
feasible way for image deblurring. These methods introduce additional high-frequency
details from reference images to help reconstruct high-resolution images with fine textures.

Some existing RefSR algorithms [21,26,27] adopt the method called image alignment
to align the LR and Ref image. Yue et al. [26] proposed a novel matching method to
combine the high-level matching and low-level matching. They first aligned the reference
images with the up-sampled LR image through a global registration, which identified the
corresponding regions and reduced the mismatching. Then, they proposed a structure-
aware matching criterion and adaptive block sizes to improve the mapping accuracy
between LR and HR patches. Zheng et al. [27] proposed a fully convolutional cross-scale
alignment module to align the reference image information with the LR image spatially.
They adopted cross-scale warping to handle non-rigid objects in images and adopted a
cross-scale flow estimator to align the LR and Ref image at multiple scale. Dong et al. [21]
employed deformable convolutions to align gradient-guided Ref and LR features and
proposed a relevance attention module to transfer the aligned reference features in a
multiscale way. These image alignment methods are intuitive and convenient, but their
performance rely on the alignment quality between reference image and LR images.

Patch alignment is another RefSR method [19,20,28] which aims to find the most
relevant Ref feature for each LR patch. Zheng et al. [28] regarded the feature learning as
a classification problem and designed a cross-scale correspondence network to achieve
cross-scale patch alignment between reference and LR image. Zhang et al. [19] employed a
pretrained VGG network to extract Ref and LR features and then calculated and compared
the similarity between reference features and LR features patch-wisely to swap similar
texture features. Yang et al. [20] proposed a relevance embedding module to compute
the relevance between the LR and Ref image in the feature space. In this module, a hard
attention map and a soft attention map were adopted to transform and fuse HR features
from Ref images into LR features. When there are significant differences between the
reference image and the blurred image, such as misalignment and environment changes,
patch alignment can achieve better performance than image alignment. However, this
method is usually computationally intensive and time-consuming.
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Inspired by the above RefSR algorithms, we try to introduce the high-frequency
information of the reference image to assist image deblurring. Due to environmental
changes, urban planning and other factors, different scenes exist in the reference image and
the blurry image. Thus, we adopt patch alignment strategy and propose an MFFN module
to register the feature between the reference image and the blurred image. Then, we adopt
the encoder-decoder framework to achieve image deblurring.

3. Materials and Methods

In this section, we introduce the proposed Reference-Based Multi-Level Features
Fusion Deblurring Network (Ref-MFFDN). The overall architecture is illustrated in Figure 1.
The Ref-MFFDN is mainly divided into three modules: multi-level features fusion network
(MFFN), encoder network (EN) and decoder network (DN). These modules are discussed
in Section 3.1, Section 3.2 and Section 3.3 separately. The detailed structure for each module
is introduced in Appendix A. A set of loss functions for optimizing the proposal network
are explained in Section 3.4.

M
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Encoder Network
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Blur
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 Features

Output
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Figure 1. The overall architecture of Ref-MFFDN.

3.1. Multi-Level Features Fusion Network

To efficiently transfer relevant and high-quality texture information from reference
images into blurry images, we design the MFFN module. The MFFN module mainly
consists of two parts: multi-level features extractor (MFE) and feature fusion (FF).

Multi-level features extractor: The MFE module is used to extract the multi-level
features of the reference image and the blurry image and its structure is shown in Figure 2.
For a more accurate and efficient operation, we use the first four layers of the pretrained
semantic feature extraction network VGG19 [29] to extract the first-level features of the
input image. Let I denote the input image. The operation can be expressed as:

F1 = V(I) (2)

where V(·) stands for the operation of the first four layers of VGG19 and F1 represents
Level-1 features of the input image. Then, a convolutional layer is used to achieve channel
dimension conversion. We next design n ResBlocks to extract higher-level features. The
operation within each ResBlock can be expressed as:

Fk = α ∗ Conv(R(Conv(Fk−1))) + Fk−1 (3)

where R(·) denotes ReLU activation function, Conv(·) stands for convolution operation
and α is the scale factor. The subscript k and k− 1 represents the level of features, where
k ∈ [2, n].
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Finally, the features at all levels are packed into a list as the final output of the MFE:

F = List(F1, F2, . . . , Fn) (4)

αLv 1 Lv 2 Lv 3 Lv n

 Conv3x3 ReLU ResBlock Level-i features Pack up

Multi-Level Features

Figure 2. The structure of the multi-level features extractor.

Feature fusion: The process of feature fusion is illustrated in Figure 3. Let
Bk ∈ RC×H×W and Rk ∈ RC×H×W denote the level-k features of blurry image and refer-
ence image, respectively. Note that C represents the number of features channels, while H
and W stand for the height and width of the features.

To calculate the correlation map, we unfold each channel of Bk and Rk into H ×W
patches in the shape of 3× 3. Then, we rehsape them into [C× 9, H×W]. Let bi ∈ R(C×9)×1

and rj ∈ R(C×9)×1 represent the i-th and the j-th patch, respectively, of Bk and Rk. Then,
we calculate the correlation ρi,j between bi and rj by normalized inner product:

ρi,j = 〈
bi
‖bi‖

,
rj

‖rj‖
〉 (5)

Inspired by Yang’s work [20], we calculate the hard-attention map H ∈ R1×(H×W) and
the soft-attention map S ∈ R1×(H×W) based on ρi,j:

hi = arg max
j

ρi,j (6)

si = max
j

ρi,j (7)

where hi and si are the i-th (i ∈ [1, H ×W]) element of H and S separately.
With the hard-attention map H as the index, we reconstruction Rk to align them with

Bk. Then, we use the soft-attention map S as the weight to enhance the relevant texture
features and reduce the less relevant ones. Specifically, we broadcast H and S into shape
[C× 9, H ×W]. The fused feature Tk ∈ R(C×9)×(H×W) can be calculated by:

Tk = Gather(Rk, H)� S (8)

where the operator � denotes element-wise multiplication. The function Gather(·) stands
for the operation to reconstruction Rk with the value of H as index in second dimension, as
Equation (9):

Rk(i, j) = Rk(i, H(j)) (9)

We fold and reshape Tk into shape [C, H, W]. Eventually, we concatenate the fused
features at all levels to get the final fused features T :

T = Concat(T1, T1, . . . , Tn) (10)
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Rk

Bk

Hard

Attention

Soft

Attention Tk

Feature 

Alignment

Calculate 

Correlation

Figure 3. The process of feature fusion.

3.2. Encoder Network

We design an encoder network (EN) as depicted in Figure 4, whose parameters
will be updated during end-to-end training. The head and tail of EN are composed of
convolutional layers, while the body consists of n ResBlocks. The features extracted by EN
will be concatenated with the fused features extracted by MFFN and input to the decoder
network to restore latent sharp images.

α

n x ResBlock

Conv3x3 ReLU ResBlock Skip Connect

Figure 4. The structure of the encoder network.

3.3. Decoder Network

The structure of decoder network is illustrated in Figure 5. Firstly, we use a convo-
lutional layer to extract features and transform the number of channels. Then, deeper
features are extracted by n ResBlocks with the same structure in MFE and EN. Finally, we
reconstruct the latent sharp images through multiple convolutional layers and clamp the
pixels of the restored images into [0, 255].

α

n x ResBlock

Conv3x3 Conv1x1 ReLU ResBlock Skip Connect

Figure 5. The structure of the decoder network.
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3.4. Loss Function

There are four loss functions in our approach during the training process, containing
the reconstruction loss, adversarial loss, perceptual loss and transferal perceptual loss. The
overall loss is defined as:

Loverall = Lrec + λadvLadv + λpecLpec + λtplLtpl (11)

Reconstruction Loss: Let I ∈ RC×H×W and G ∈ RC×H×W denote the latent sharp
image and ground truth, respectively. The reconstruction loss evaluates the 1-norm distance
between latent sharp image I and the ground truth G, which does help produce sharper
images. The reconstruction loss is defined as:

Lrec = E‖I −G‖1 (12)

Adversarial Loss: The adversarial loss encourages the network to generate clear
and visually favorable images. Here, we adopt WGAN-GP [30], which replaces weight
clipping with gradient penalty. Compared with traditional WGAN, WGAN-GP is better
in compliance with Lipschitz constraints and makes the parameter distribution of the
discriminator more dispersed. This loss can be interpreted as:

Ldis = E
∼
x∼Pg

[D(
∼
x)]− E

x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2] (13)

Ladv = −E[D(x)] (14)

where D(·) denotes the operation of discriminator.
Perceptual loss: Perceptual loss [31] is defined on a pre-trained feature extraction deep

network. It aims to minimize the feature distance between the predicted image and the
target image. Many works [20,21,32,33] confirm that perceptual loss can improve the visual
quality of the restored images. Here, we use the pre-trained classification model VGG19 for
feature extraction. This loss can be interpreted as:

Lper = E[‖Vgg19(I)−Vgg19(G)‖2
2] (15)

Transferal Perceptual Loss: Transferal perceptual loss aims to minimize the feature dis-
tance between the restored image and the reference image. This loss can be interpreted as:

Ltpl = E[‖Concat(MFE(I))− T‖2
2] (16)

where T is the final fused features as described in Equation (9) and MFE(·) denotes the
operation of multi-level features extractor.This loss function ensures that the latent sharp
image has similar texture features to the registered reference image by minimizing their
Euclidean distance in the feature space, which contributes our method to transfer the Ref
textures more efficiently.

3.5. Datasets and Metrics

To the best of our knowledge, there are currently no publicly available datasets for
remote sensing image deblurring with reference images. Therefore, we build a dataset
for the reference-based deblurring algorithm in this work. The data are sourced from the
United States Department of Agriculture (USDA), which takes remote sensing images
of U.S. states every year. We select the remote sensing image of California captured in
2018 as the reference image and the image captured in 2020 as ground truth. The shape
of the original image is 11,184 × 12,717 pixels. We have captured multiple areas from it,
including farmland, vegetation and high-density urban areas. Furthermore, these regions
are further cropped into a shape of 160× 160 pixels with overlapping. We take 82% of the
dataset as the training set and 18% as the testing set. The training set contains 1138 pairs,
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while the testing set contains 240 pairs, where each pair consists of a clear image and a
reference image.

Motion blur is a common type of image blurring in the field of remote sensing. It is
mainly derived from the irregular movement of the imaging device during the exposure
time. Zhang et al. [12] use linear motion kernels to create synthetically blurry images. To
simulate more realistic and complex motion blur process, we use the random trajectory
generation method proposed in the [16] to make motion blur kernels for generating our
blurry images. The blur kernel size is 40× 40 in this work. Examples of our dataset are
shown in Figure 6. However, our Ref-MFFDN does not make assumptions on blur type,
and hence, may be extended to cases other than motion blur.

For quantitative evaluation of network performance, restored images are evaluated on
the peak signal-to-noise ratio (PSNR) and structural similarity measure (SSIM) [34], which
are widely used image quality evaluation metrics.

PSNR is an approximation to human perception of image reconstruction quality.
Because of images’ wide dynamic range, PSNR is usually expressed as a logarithmic
quantity using the decibel scale. Larger PSNR value usually means better reconstruction
results. PSNR can be mathematically defined as:

PSNR(I, G) = 20 log
max

‖I −G‖2
(17)

where maxI is the maximum possible pixel value of the image. When the pixels are
represented using B bits per sample, maxI = 2B − 1.

SSIM is a perception-based model which can measure the difference in structural
information between two images. Here, we adopt SSIM to measure the difference between
restored image and ground truth. Better restored results usually have larger SSIM value.
SSIM can be mathematically defined as:

SSIM(I, G) =
(2µIµG + C1)(2σIG + C2)

(µ2
I + µ2

G + C1)(σ
2
I + σ2

G + C2)
(18)

where µI and µG represent the average of I and G, respectively, while σI and σG represent
the variance of I and G, respectively. Parameter σIG stands for the covariance of I and
G. C1 and C2 are two variables to stabilize the division with weak denominator, where
C1 = (k1L)2 and C2 = (k2L)2. L is the dynamic range of the pixel-values, while k1 = 0.01
and k2 = 0.03 by default.

In addition, to evaluate the efficiency of our algorithm, the average inference time
required to reconstruct latent sharp images is recorded.

Figure 6. Examples of our proposed dataset. (Top row): ground truth. (Second row): reference
image. (Bottom row): blurry image.
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3.6. Implementation Details

In our proposed method, the MFE contains three Resblocks with scale factor α = 0.8.
Both EN and DN consist of 16 ResBlocks with scale factor α = 0.8. For the discriminator, we
adopt the same structure used in TTSR [20]. We used as a training strategy that Ref-MFFDN
is trained once while the discriminator is trained twice. The weight of λrec, λpec, λtpl and
λadv are set to 1, 0.01, 0.01 and 0.001, respectively. We adopt the Adam [35] optimizer with
β1 = 0.9, β2 = 0.999. The learning rate is initialized as 2× 10−4 for EN and DN, while
the learning rate of MFE is initialized as 1× 10−5 and the learning rate of discriminator is
initialized as 1× 10−4.

During the training process, we take data augmentation operations by randomly
cropping reference-blurry image pairs into image patches of 64× 64 pixels and randomly
horizontally and vertically flipping followed by randomly rotating, where the flips and
rotations on reference image and blurry image are independent. Then, we normalize the
values of the training images to [−1, 1]. The batch size is set to 16. We first warm up the
network for 20 epochs where only λrec is applied. Then, all losses are involved to train
another 100 epochs. We implement our models with the PyTorch framework and train them
on an NVIDIA RTX 2080Ti GPU. Table 1 shows the software environment and hardware
environment required for our experiments in detail. The training takes 22 h to converge.
The models are fully convolutional, and thus, can be applied to images of arbitrary size.

Table 1. Software and hardware environment required for our experiments.

Hardware Environment
Single NVIDIA RTX 2080Ti GPU

AMD 5800X
Memory 3200 MHz, 32G

Software Environment

Torch 1.7.0 + cu110
Torchvision 0.8.1 + cu110

Numpy 1.21.2
Python 3.8.5

Visdom 0.1.8.9
Opencv-python 4.4.0.44

4. Results

To evaluate the performance of our proposed method, we compare our Ref-MFFDN
with other SOTA deblurring methods, including PMP [11], DeepDeblur [15], Deblur-
GAN [16] and DeblurGAN-V2 [36]. For fair comparison, we follow the setting in [15,16,36]
to train DeepDeblur, DeblurGAN and DeblurGAN-V2 on our proposed dataset. In
Section 4.1, we test the performance of each algorithm on our proposed dataset. The
robustness of Ref-MFFDN to input image size is discussed in Section 4.2.1. To verify the
effectiveness of the MFFN module and the influence of MFE when added with different
layers of ResBlocks, we conduct an ablation study in Section 4.2.

4.1. Quantitative and Qualitative Evaluation

We quantitatively evaluated the restored images with PSNR and SSIM metrics. More-
over, we recorded the average inference time required for each algorithm to restore one
latent sharp image. Since the PMP algorithm does not use GPU acceleration, all learning-
based algorithms are run both on a CPU (AMD 5800X) and GPU to test inference speed
for fairness.

Average PSNR, average SSIM and runtime of different deblurring methods are shown
in Table 2. As shown in this table, our method performs favorably against other deblurring
methods on the average PSNR and average SSIM.

From the inference time of each algorithm on the CPU, DeblurGAN-V2 gets the
highest score and DeblurGAN gets the second-highest score. The inference time used by
our algorithm is about 149 times that of DeblurGAN-V2, 76 times that of DeblurGAN and
50 times that of DeepDeblur. However, our algorithm is still faster than iterative-based



Remote Sens. 2022, 14, 2520 10 of 21

algorithms PMP. When running on GPU, the inference speed of our algorithm is greatly
improved. Compared with other learning-based methods, the maximum time interval is
reduced from more than 24 s to less than 0.3 s.

Table 2. Average PSNR, SSIM and Runtime of different deblurring methods. The highest score is
highlighted in red while the second-highest score is highlighted in blue.

Methods PSNR (dB) SSIM Runtime on
CPU (s)

Runtime on
GPU (s)

DeblurGAN [16] 27.627 0.710 0.33 0.10
DeblurGAN-V2 [36] 24.293 0.601 0.17 0.07
DeepDeblur [15] 32.549 0.875 0.50 0.15
PMP [11] 21.488 0.406 40.41 −
Ref-MFFDN 33.436 0.894 25.33 0.36

Figure 7 presents a statistical analysis of the PSNR and SSIM results of the comparison
algorithms on the testing set. As shown in Figure 7a, the PSNR metric of images generated
by our algorithm is higher than the comparison algorithm in the maximum, minimum,
median, upper quartile and lower quartile. Figure 7b shows that images restored by Ref-
MFFDN have the smallest value range on the SSIM metric compared to other deblurring
algorithms, which demonstrates the robustness of Ref-MFFDN on our testing set.

(a) PSNR (b) SSIM

Figure 7. The distribution of PSNR and SSIM of different deblurring methods on the testing set. The
box plot displays the maximum, upper quartile, median, lower quartile, and minimum of results
from top to bottom. The rectangle inside the box represents the average metrics of results.

A qualitative evaluation is presented in Figure 8. The latent sharp images restored by
DeblurGAN have a good visual appearance but lack textures. Sometimes, DeblurGAN
can even generate fake textures, e.g., Figure 8e(3). DeblurGAN-V2 can restore the clear
latent sharp image, but the restored image has ghosting artifacts and fake textures as well.
The images generated by DeepDeblur have a good visual appearance and rich texture
information. However, when dealing with some fine textures, it is still insufficient, e.g.,
Figure 8a(5),b(5),d(5). PMP generate some ghost artifacts and fake textures on the examples,
such as DeblurGAN-V2. In contrast, our proposed method can generate visually pleasing
results with fine and realistic textures, whether for text, vegetation or buildings.
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Figure 8. Visual comparison of images restored by different deblurring methods on the testing set.

Furthermore, as shown in Figure 9, when the reference image is significantly different
from the target image, the result restored by our algorithm are closer to the ground truth
and do not have the redundant texture information of the reference image.
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(a) Ground truth (b) Reference image

(c) Blurry image (d) Result

Figure 9. Algorithmic restoration result when there are extra textures in the reference image.

4.2. Ablation Study
4.2.1. Robustness to Image Size

Ref-MFFDN is a fully convolutional network structure and the shape of the output
image is consistent with the input image. To verify the robustness of our algorithm to the
input image size, we conducted experiments with input images of size 64× 64, 96× 96,
128× 128 and 160× 160 pixels, respectively.

As shown in Table 3, images restored by Ref-MFFDN achieved close scores on average
PSNR and SSIM metrics. Moreover, the PSNR and SSIM distributions on the testing set
are also close as shown in Figure 10. The results quantitatively show that Ref-MFFDN is
robust to the size of the input image.

Table 3. Average PSNR and SSIM of Ref-MFFDN when dealing with images of different scales. The
highest score is highlighted in red while the second-highest score is highlighted in blue.

Image Shape PSNR (dB) SSIM

64× 64 32.77 0.900
96× 96 33.26 0.898

128× 128 33.47 0.896
160× 160 33.44 0.894
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(a) PSNR (b) SSIM

Figure 10. The distribution of PSNR and SSIM of Ref-MFFDN when dealing with input images at
different scales. The box plot displays the maximum, upper quartile, median, lower quartile, and
minimum of results from top to bottom. The rectangle inside the box represents the average metrics
of results.

Figures 11–13 show the images restored by Ref-MFFDN when the input image size is
64× 64, 96× 96 and 128× 128 pixels, respectively. Ref-MFFDN works well on blurry images
of different size as shown in Figures 11–13. It qualitatively demonstrates the robustness of
Ref-MFFDN to the size of the input image.
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Figure 11. The images restored by Ref-MFFDN of size 64× 64 pixels.
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Figure 12. The images restored by Ref-MFFDN of size 96× 96 pixels.
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Figure 13. The images restored by Ref-MFFDN of size 128× 128 pixels.

4.2.2. Effectiveness of MFFN and MFE

In this section, we retrain the network by removing the multi-level features fusion
network (MFFN) with the same training strategy to verify the effectiveness of MFFN.
Furthermore, we investigate the performance of the proposed method when we adopt a
multi-level features extractor (MFE) with 0∼4 ResBlocks.

Multi-level features fusion network. As we can see from Table 4, when MFFN
is added, the average PSNR performance can be improved from 31.563 to 33.436 and
the average SSIM performance can be improved from 0.858 to 0.894, which verify the
effectiveness of MFFN during the deblurring process. Correspondingly, inference time
increased from 0.59 s to 25.33 s on CPU and increased from 0.09 s to 0.36 s on GPU
after adding MFFN, which demonstrates that MFFN is the most time-consuming part of
our algorithm.

Table 4. Average PSNR, SSIM and Runtime of our method with MFFN and without MFFN. The
highest score is highlighted in red.

Methods PSNR (dB) SSIM Runtime on CPU
(s)

Runtime on GPU
(s)

No MFFN 31.563 0.858 0.59 0.09
With MFFN 33.436 0.894 25.33 0.36

The distribution of PSNR and SSIM metrics on the testing set of the above two struc-
tures are shown in Figure 14. Compared with structure using only EN and DN, the restored
images by Ref-MFFDN can achieve overall higher PSNR and SSIM scores on the testing set.

(a) PSNR (b) SSIM

Figure 14. The distribution of PSNR and SSIM of our method with MFFN and without MFFN on the
testing set.
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As shown in Figure 15, guided by the reference image, the latent sharp images gener-
ated by Ref-MFFDN have more accurate textures and better visual perception. Comparing
Figure 15a(3),f(3) with Figure 15a(4),f(4), the linear texture information on the building is
better restored with the MFFN module. The ground texture in the yellow box is also better
recovered when guided by the reference image, as shown in Figure15c(4),d(4). Ref-MFFDN
also shows better performance on vegetation textures, as shown in Figure 15b(4),e(4).
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31.858/0.896
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31.916/0.906

36.767/0.944

Figure 15. Visual comparison of images restored by our method with MFFN and without MFFN.

Multi-level features extractor. Table 5 shows the quantitative evaluation results.
Restored images acquired by Ref-MFFDN with 0-ResBlock MFE get the lowest scores on
both the average PSNR metric and average SSIM metric, which demonstrates that adding
the ResBlocks layer to MFE can effectively improve the quality of restored images. In other
words, our network can better reconstruct latent sharp images guided by the high-level
features of the reference images. When adding one to three layers of ResBlocks to the MFE,
the restored images get close scores on the average PSNR and average SSIM metrics. In
detail, the network with 1-ResBlock MFE achieved the highest scores in terms of average
PSNR and average SSIM metrics, while the network with 2-ResBlocks MFE and the network
with 3-ResBlocks MFE achieved the second-highest scores on average PSNR metric and
average SSIM metric, respectively. For inference speed, each additional layer of ResBlock
will increase the inference time by about 6 s on the CPU and about 0.6 s on the GPU.
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Table 5. Average PSNR, SSIM and Runtime of Ref-MFFDN with different layers of ResBlocks added
in MFE. The highest score is highlighted in red, while the second-highest score is highlighted in blue.

Methods PSNR (dB) SSIM Runtime on
CPU (s)

Runtime on
GPU (s)

0-ResBlock 32.691 0.877 6.67 0.19
1-ResBlock 33.992 0.899 12.58 0.26
2-ResBlocks 33.545 0.891 19.00 0.32
3-ResBlocks 33.436 0.894 25.33 0.36

Figure 16 presents a statistical analysis on the PSNR and SSIM metrics of Ref-MFFDN
when adding 0∼3 layers of ResBlocks to MFE. As shown in Figure 16a, the images restored
by Ref-MFFDN with 1∼3 ResBlocks in MFE can achieve higher PSNR and SSIM metrics
on maximum, minimum, mean, median, upper quartile and lower quartile than without
ResBlocks in MFE.

Ref-MFFDN with 1-ResBlock MFE slightly outperforms the other two structures.
Furthermore, the images reconstructed by the network have a smaller dynamic range on
the PSNR metric when using 2-ResBlocks MFE and 3-ResBlocks MFE than when using
1-ResBlocks MFE. However, on the SSIM metric, this conclusion is just the opposite. As a
result, it is difficult to quantitatively evaluate the performance of the above three structures.

(a) PSNR (b) SSIM

Figure 16. The distribution of PSNR and SSIM of Ref-MFFDN with different layers of ResBlocks
added in MFE on the testing set. The box plot displays the maximum, upper quartile, median, lower
quartile, and minimum of results from top to bottom. The rectangle inside the box represents the
average metrics of the results.

Figure 17 shows the qualitative evaluation results. From this figure, we can observe
that the image textures restored by Ref-MFFDN with 0-ResBlock MFE are insufficient,
e.g., Figure 17a(3)–e(3). In contrast, images restored by Ref-MFFDN with ResBlocks in
MFE show fine and detailed textures. In these experiments, the images restored by Ref-
MFFDN adopting three layers of ResBlocks in MFE have the finest and most realistic
textures. In more detail, the text textures in the yellow box of Figure 17a(6),b(6) are clearer
than Figure 17a(3)–a(5),b(3)–b(5). Textures on building in Figure 17d(6)–e(6) are also more
realistic than that in Figure 17d(3)–d(5),e(3)–e(5).

All in all, both quantitative and qualitative analyses demonstrate the effectiveness of
adding ResBlocks to MFE. From the perspective of PSNR and SSIM metrics, Ref-MFFDN
with 1-ResBlock MFE achieves the highest PSNR and SSIM scores. However, from the
perspective of visual perception, images restored by Ref-MFFDN with 3-ResBlocks MFE,
which fuses more advanced features of the reference image, are more visually pleasing.
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Figure 17. Visual comparison of images restored by Ref-MFFDN with different layers of ResBlocks
added in MFE.

5. Conclusions

In this paper, we propose a novel Reference-Based Multi-Level Features Fusion Deblur-
ring Network (Ref-MFFDN) for Optical Remote Sensing Images, which transfers textures
from the reference images to assist the restoration of latent sharp images. The proposed
Ref-MFFDN consists of three modules: a multi-level features fusion network (MFFN),
which extracts fused features from reference images and blurry images, an encoder net-
work (EN), which extracts features from blurry images, and a decoder network (DN), which
restores latent sharp images. Both quantitative and qualitative evaluations on the testing
set demonstrate the effectiveness of the proposed method. However, as the key module
for transferring reference image features to help reconstruct latent sharp images, MFFN
increases the computational complexity of our algorithm. How to reduce inference time on
the premise of ensuring algorithm performance will be the direction of our future research.
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Abbreviations
The following abbreviations are used in this manuscript:

Ref-MFFDN Reference-based Multi-level features fusion Deblurring Network
MFE Multi-level features extractor
EN Encoder network
DN Decoder network
PSNR Peak-Signal-to-Noise Ratio
SSIM Structural-Similarity

Appendix A

In this supplementary material, we will illustrate the detailed structure for each part
of Ref-MFFDN, including the multi-level features extractor (MFE), the encoder network
(EN), the decoder network (DN) and the discriminator.

The detailed structure of MSE is shown in Table A1, while Tables A2 and A3 show
the details of EN and DN, respectively. The parameters in Conv() indicates the number of
input channels, the number of output channels, the kernel size, the stride and the number
of points for padding, respectively. The n_feats is 64 in MFE, EN and DN. The detailed
structure of discriminator is shown in Table A4. The in_size is the crop size during the
training process.

Table A1. The detailed structure of MSE.

Stage Layer Name

VGG19(1∼4)

Conv (3, 64, 3, 1, 1)
ReLU()

Conv (3, 64, 3, 1, 1)
ReLU()

Conv(64, n_feats, 3, 1, 1)

ResBlock-1
Conv(n_feats, n_feats, 3, 1, 1)

ReLU()
Conv(n_feats, n_feats, 3, 1, 1)

ResBlock-2
Conv(n_feats, n_feats, 3, 1, 1)

ReLU()
Conv(n_feats, n_feats, 3, 1, 1)

ResBlock-3
Conv(n_feats, n_feats, 3, 1, 1)

ReLU()
Conv(n_feats, n_feats, 3, 1, 1)
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Table A2. The detailed structure of EN.

Stage Layer Name

Conv_head Conv (3, n_feats, 3, 1, 1)
ReLU()

ResBlock × 16
Conv(n_feats, n_feats, 3, 1, 1)

ReLU()
Conv(n_feats, n_feats, 3, 1, 1)

Conv_tail Conv(n_feats, n_feats, 3, 1, 1)
ReLU()

Table A3. The detailed structure of DN.

Stage Layer Name

Conv_head Conv(5*n_feats, n_feats, 3, 1, 1)
ReLU()

ResBlock × 16
Conv(n_feats, n_feats, 3, 1, 1)

ReLU()
Conv(n_feats, n_feats, 3, 1, 1)

Conv_tail Conv(n_feats, n_feats, 3, 1, 1)
ReLU()

Merge_tail

Conv(n_feats, n_feats, 1, 1, 0)
ReLU()

Conv(n_feats, n_feats, 3, 1, 1)
ReLU()

Conv(n_feats, n_feats/2, 3, 1, 1)
Conv(n_feats/2, 3, 1, 1, 0)

Table A4. The detailed structure of the discriminator.

ID Layer Name

0 Conv(3, 32, 3, 1, 1)
1 LeakyReLU(0.2)
2 Conv(32, 32, 3, 2, 1)
3 LeakyReLU(0.2)
4 Conv(32, 64, 3, 1, 1)
5 LeakyReLU(0.2)
6 Conv(64, 64, 3, 2, 1)
7 LeakyReLU(0.2)
8 Conv(64, 128, 3, 1, 1)
9 LeakyReLU(0.2)
10 Conv(128, 128, 3, 2, 1)
11 LeakyReLU(0.2)
12 Conv(128, 256, 3, 1, 1)
13 LeakyReLU(0.2)
14 Conv(256, 256, 3, 2, 1)
15 LeakyReLU(0.2)
16 Conv(256, 512, 3, 1, 1)
17 LeakyReLU(0.2)
18 Conv(512, 512, 3, 2, 1)
19 LeakyReLU(0.2)
20 FC((in_size/8)**2*512, 1024)
21 LeakyReLU(0.2)
22 FC(1024, 1)
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