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Abstract: Oil contamination is a major source of pollution in the environment. It may take decades
for oil-contaminated soils to be remedied. This study models oil-contaminated soils using one of the
world’s greatest environmental disasters, the onshore oil spill in the desert of Kuwait in 1991. This
work uses state-of-art remote sensing technologies and machine learning to investigate the oil spills
during the first Gulf War. We were able to identify oil-contaminated and clear locations in Kuwait
using unsupervised classification over pre- and post-oil spill data. The research area’s pre-war and
post-war circumstances, in terms of oil spills, were discovered by developing spectral signatures with
different wavelengths and several spectral indices utilized for oil-contamination detection. Following
that, we use this data for sampling and training to model various oil-contaminated soil levels. In
addition, we analyze two separate datasets and used three modeling methodologies, Random Tree
(RT), Support Vector Machine (SVM) and Random Forest (RF). The results show that the suggested
approach is effective in detecting oil-contaminated soil. As a result, the location and degree of
contamination may be established. The results of this analysis can be a valid support to the studies of
an appropriate remediation.

Keywords: oil contamination; soil pollution; soil contamination; soil remediation; remote sensing;
arid areas

1. Introduction

An oil spill is described as uncontrollably spilled crude oil into the atmosphere,
creating serious issues for humans, animals, plants, and the environment. In most cases, it
is the consequence of human error or a system malfunction. Spills also might happen on
purpose, as was observed during the Arabian Gulf War [1,2].

1.1. The Oil Spill in 1991

The major impact of the Arabian Gulf War on the Kuwait ecosystem was the uncon-
trolled release of oil into the marine and terrestrial environment [3,4]. Investigations were
appropriately conducted after the Arabian Gulf War, and rehabilitation studies [5] for the
affected areas were started almost immediately, in order to recover oil from the sea, but only
later and recently to clean the beaches and the hinterland. The oil recovery was carried out
by the Kuwait Oil Company and Kuwait Petroleum Corporation to minimize the impact
of the spilled oil on the local environment. A significant amount of the lighter hydrocar-
bon proportion had evaporated, and the remaining portion in liquid form was partially
reclaimed. The traces of oil leakage persisted as soot and tar, which are unrecovered denser
hydrocarbon components [6].
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The war activities in Kuwait started in August 1990. However, the oil spill started
in the second part of January 1991, when Iraq released oil and initiated the burning of oil
wells [1]. From 1990 to 1991, Kuwait’s desert terrain was left with an iconic disaster [7].
When the forces withdrew in late 1991, they left behind smoldering wells and oil slicks from
the stations that were built along the coast [4]. On 8 November 1991, emergency response
teams struggled to extinguish the last well fire [8]. During this period, a large international
team was already working on the clean-up, mainly by the physical removal of the oil.
Kuwait had 810 actively operating wells, 730 were destroyed or burned down during the
Arabian Gulf War. The emergence of oil lakes and hydrocarbon contaminated surfaces,
which occurred in the Kuwait desert, can be described as the catastrophic environmental
consequence of the Arabian Gulf War [6]. Kuwait is located in the northwestern part of the
Arabian Gulf; the coverage area of Kuwait is 17,818 km2 [9]. GIS analysis shows that 21.6
percent of Kuwait’s area was affected by the Gulf War, of which 4.4 percent was due to oil
pollution and 17.2 percent was due to remobilized sand sheet [7].

Crude oil spilled over the desert landscape gathered to form “oil lakes”. After exten-
sively examination, Kuwait’s “oil lakes” were unique and regarded as one of the biggest
environmental disasters in recent history [8,10–14].

1.2. Related Studies

Oil contamination in the producing fields was strictly monitored through the soil,
water, atmosphere, and plants to determine if they were contaminated with oil [15,16]. Field
studies for analysis were typically time-consuming and expensive, mainly when applied to
broad or inaccessible regions. In addition to field analysis, the areas were monitored using
satellite images. Satellite images cover vast distances simultaneously and regularly in a
non-destructive way at reduced costs and less time, making it a viable alternative to the
traditional approaches based on the ground [17–19].

Multispectral remote sensing, which incorporates gathering visible, near-infrared,
and shortwave infrared images in several broad wavelength bands, was proven to be
extremely useful in generating environmental monitoring capabilities [11,20]. In this
regard, Abdunaser [21] studied Kuwait’s oil-contaminated surfaces by applying time-series
analysis on multi-temporal satellite data. As a result, high-resolution maps were created
to delineate oil-contaminated zones. Kwarteng [7] noted that the Landsat TM imagery,
obtained between 1987 and 1995, was employed to evaluate pre- and post-Arabian Gulf
War conditions in the Burgan oil field in Kuwait. The images were processed according
to the discrimination of the bright and dark cover types. It was emphasized that oil lakes,
tar, soot, vegetation, and other unaffected sand sheet zones could be mapped to highlight
the local characteristics in-depth. The total area of oil lakes was computed from the 1995
TM images as 38.93 km2. Almost 90% of the oil lakes were observed in the Burgan oil
field. The measured area decreased to about 20%, compared to the data calculated from the
TM images in 1992. In their study over the Niger Delta, Ozigis et al. [22] emphasized that
detecting the oil spill-impacted land cover and the oil-free areas can be done by combining
different vegetation health indices with spectral wavelengths from visible, near-infrared,
and shortwave infrared band, using machine learning. The areas were categorized with the
help of a machine learning, Random Forest classifier. This study was used for determining
the optimum characteristics of the oil-contaminated land from the clean areas. Individual
land cover types performed better in identifying oil-free and oil-contaminated land covers
when recognized separately than when the complete study area image, encompassing all
of the land cover types, was assessed at once.

Applying specific indices on the satellite imageries with the machine learning approach
effectively determines the oil spills in the terrestrial locations. Hence, this approach is used
to map the oil-contaminated areas in Kuwait. The oil spill mapping model proposed in
the current study is based on spectral band data, spectral indices, and machine learning
algorithms. The proposed model served fruitfully as an effective oil spill detection method
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and the exact location of the contaminated zones can be detected using its results. In the
light of these findings, remediation studies can be conducted.

2. Materials and Methods
2.1. Study Area

The study area is represented by Kuwait’s three most oil-contaminated areas due to
the war in 1991 (Figure 1). Thus, three major onshore oil fields in Kuwait were investigated
in the current study. The largest study area is Greater Burgan which comprises Burgan,
Ahmadi, and Magwa; the second area contains Raudhatain, Ratqa, Sabriyah, and Behrah;
and the third includes the Umm Gudair oil fields. The land cover classes in Kuwait can
be simply divided into desert and urban areas [23]. With the rapid population growth in
Kuwait, the urban areas have also increased in the last few decades. Thus, since the oil
spill in 1991, the population has increased from approximately two million to over four
million [24]. The desert soil in Kuwait may be classified as arid soils with weakly developed
profiles, sandy compositions, and sandy textures. Soil profiles from numerous Burgan’s
oil-lake bed locations are produced at the edge of the Ahmadi calcareous limestone ridge
and are divided into four distinct zones; (i) Lag gravel on the top of the soil profile mixed
with Aeolian; (ii) Pebbly calcareous sandstone enriched gypsum and clay seams. Highly
fractured; (iii) Coarse mixed sand layers of calcareous sandstone; (iv) Hard, impermeable
and continuous caliche deposits [25]. The chemical properties of the oil samples from the
Burgan area show that, in the range of 0–300 cm depths, the pH ranges from 7.6–8.1, EC
(Electrical Conductivity) 3.9–26.5 (dS/m) [26], where the first 10 cm have the highest EC
values, and the highest pH values were noticed in the range of 25–150 cm depth [25].
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Figure 1. Study area; Left—Kuwait’s onshore oil fields over Landsat TM (RGB, GRSWIR-2) before
the oil spill; Right—Landsat TM (RGB, GRSWIR-2) over Kuwait after the oil spill.

2.2. Remote Sensing Data

According to the historical events in Kuwait, we have selected several investigation
periods. As the oil spill event occurred in 1991, Landsat-5 satellite images from 1989 were
selected as the pre-oil-spill data. Landsat-5 images from 1991 were considered the main
images from the oil contamination, and the data from 1991 were considered as extremely
contaminated. To draw a picture of what happened in 1991, we also investigated the
spectral signatures of the oil-contaminated soil (OCS) in five different periods in 1991.
Following the historical clean-up data, we used imagery from 1992 and considered it to be
data from the highly OCS. Furthermore, we assessed the contamination level of the study
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area in 1997 and 2002, using Landsat-5 data. Landsat-5 is a multispectral sensor with 30 m
spatial resolution, and it is the longest-living and only satellite to provide open-source data
for over forty years. As the wavelengths of the Landsat sensors are different, we evaluated
Landsat-8 data separately and compared the spectral signatures between the clean and
the OCS.

The image processing steps followed in this study were done within the Google Earth
Engine (GEE) platform, a valuable cloud computing service that allows researchers to obtain
free access to various satellite data [27]. After the study area and image period selection,
images with less than 5% cloud cover were selected for further processing. Median values
were used from image collection for the selected periods.

Although the oil-contaminated areas were visible on the 1991 satellite imagery (Figure 1),
an unsupervised classification was conducted in GEE to distinguish the clean and oil-
contaminated zones for further sample collection. Unsupervised classification is a method
for grouping the pixels that have similar features. To discriminate the oil spill conditions
of arid areas at pre-war (1990) and post-war (1991) periods in the study area, Landsat-5
satellite imageries were used. The 1991 classification results were further used in the sample
collection process, where samples from two classes were considered; clean soil and OCS.
Thus, over the 1991 satellite imagery, 300 samples per class were defined from the Burgan
oil field for the oil-contaminated soil class. The samples for the clean soil class were selected
in the west part of Kuwait, where there was no contaminated soil, and the area was not
affected by the oil spill in 1991. The samples were collected randomly in the selected areas.
Spectral signatures were created/generated in GEE for all of the samples.

Spectral Indices

Together with the spectral values from every Landsat band, we calculated and ex-
tracted values from several spectral indices that were significant in the literature for oil-spill
mapping and monitoring. Thus, Kovalev and Tokareva [28] used Normalized Difference
Vegetation Index (NDVI) to monitor the vegetation state in the oil production territory.
Their findings showed abnormal changes due to oil contamination. The Green and Near
Infrared ration (G/NIR) was successfully used to detect the oil pollution in the Niger
Delta [29]. Using the Normalized Difference Moisture Index (NDMI), Balogun et al. [30]
analyzed the oil spill impact on the coastal vegetation and wetlands. Zhao et al. [31]
developed an oil slick detection index (OSDI) for Landsat-8 images, however, we also
adjusted the index for the Landsat-5 images. A Fluorescence Index (FI) was used for the
characterization of the oil spill at sea [32]. The Modified Normalized Difference Water
Index (MNDWI) was one of the most important variables in mapping the terrestrial oil
spills using the Random Forest algorithm [22]. The used spectral indices and their formulas
are given in Table 1.

Table 1. Spectral indices used in this study.

Index Formula Reference

NDVI NIR − RED/NIR + RED [28]
G/NIR G/NIR [29]
NDMI NIR − SWIR/NIR + SWIR [30]
OSDI GREEN − NIR/GREEN + NIR [31]

FI BLUE − RED/BLUE + RED [32,33]
MNDWI GREEN − SWIR/GREEN + SWIR [22]

2.3. Oil-Contaminated Soil Modeling

The resolved data were further used for statistical analysis and prediction in Weka [34],
a multi-purpose software developed to apply machine learning algorithms. Supported
Vector Machine (SVM), Random Forest (RF), and Random Tree (RT) were evaluated for the
oil-contaminated modeling. Thus, the spectral signature from all of the bands and spectral
indices were extracted in GEE, and then imported into Weka. The samples were collected
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from two classes, oil-contaminated and clean soil. The modeling was done using 70% of
the samples, while the remaining 30% were separated for testing the models. Following the
historical events, the modeling was done in different periods. For modeling the extremely
oil-contaminated soil, satellite imagery from 1991 was used. Imagery from 1992 was used
for the highly oil-contaminated soil modeling, while imagery from 2002 was used for the
moderately oil-contaminated soil modeling.

SVM is a supervised non-parametric statistical learning approach, thus, no assump-
tions about the underlying data distribution are made. The approach is given a set of
labeled data instances. The SVM training algorithm attempts to generate a hyperplane that
divides the dataset into a definite specified number of classes that is consistent with the
training examples [35].

Random Tree is a supervised classifier producing a random set of data for constructing
a decision tree. Each node is split using the best split among all of the variables in the
tree. Random trees are a collection of the tree predictors [36]. On the other hand, using
predictions produced from an ensemble of decision trees, the RF classifier produces reliable
classifications [37]. These three modeling techniques were selected due to their simplicity
and the ability to employ the model with various data. The used models were evaluated
using different accuracy assessment parameters.

The results were evaluated using Mean Absolute Error (MAE), error-based analysis
between the predicted and the observed values used to assess the model’s performance
during the model processing [38]:

MAE =
∑n

i=1|Oi − Pi|
n

(1)

where, Oi is the observed and Pi is the predicted value.
Relative Absolute Error (RAE) was used to measure the performance of the predictive

models [39]:

RAE =
∑n

i=1|Oi − Pi|
∑n

i=1
∣∣Oi − Pi

∣∣ (2)

where Oi is a mean value of Oi.
In addition, for the accuracy analyses, common evaluation statistics for binary classifi-

cation were used. Namely, True Positives (TP) (a class correctly identified), False Positives
(FP) (a class incorrectly identified; a commission error), and False Negatives (FN) (a class
is missed; an omission error) parameters were taken into consideration. TP, FN, and FP
indicate perfect identification, under-identification, and over-identification, respectively.
Then the Precision (P), Recall (R), and F-score (F) were calculated. Precision (i.e., positive
predictive value) describes the correctness of the detected oil-contaminated fields and
how well the algorithm dealt with FP (Equation (3)), Recall (i.e., sensitivity) describes the
building detection rate and how well the algorithm dealt with the FN (Equation (4)), and
the F-score is the harmonic mean of Recall and Precision and reports the overall accuracy
considering both commission and omission errors (Equation (5)) [40]. From the confusion
matrix, the kappa statistics were also calculated:

P = TP/(TP + FP) (3)

R = TP/(TP + FN) (4)

F-score = 2 × ((P × R)/(P + R)) (5)

The data were separated, 70% for training the model and 30% for testing the model.
As a result, the accuracy was evaluated using 180 independent points that were not part of
the training set.

The methodology implemented in this study is presented in the flowchart in Figure 2.
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3. Results
3.1. Unsupervised Classification and Spectral Signature Differences

The unsupervised classification results were compared to a 1:50,000 orthophoto classi-
fication [41] and the classes of 1991 were assigned accordingly. Thus, as shown in Figure 3,
while the three classes in 1990 were assigned as soil, artificial, and roads, the three classes
in 1991 after the oil spill were defined as clean soil, soot, and tar mat.
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The unsupervised classification results were taken as reference data. Soil samples
were collected from the clean and contaminated soils. First, the spectral signatures of the
oil-contaminated soil were investigated in 1991 in five different periods. The oil spill started
in January 1991. The first comparison was made between clean soil and oil-contaminated
soil in the period January–February (Figure 4). There is an obvious distinction between the
examined groups, where the values in all of the bands have decreased dramatically. As the
oil spill progressed, the spectral values of the oil-contaminated soil decreased, particularly
in the SWIR-1 zone. The lowest readings were observed between June and November. The
oil spill was finally stopped in November 1991. After the war, remediation studies launched
with physical removal of the oil, and, as a result, the spectral values of the oil-contaminated
soil increased toward the end of 1991 and the beginning of 1992. Figure 5 depicts the
spectral fingerprints for the analyzed years (1997–2002).
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3.2. Modeling Results

SVM, RT, and RF were applied to the samples by employing Weka. During the Gulf
War, the vast majority of the land was transformed into pools of oil lakes, tar, oil mist,
and soot from the burning oil wells. The oil lakes were nearly indistinguishable from the
surrounding landscape [13]. Consequently, based on the spatial resolution of the satellite
imagery, the oil-contaminated soil areas from 1991 were considered extremely contaminated.
Two separate datasets were used in the modeling. All of the spectral bands and indices
were used in Dataset I, whereas in Dataset II only the spectral indices were considered.

The extremely contaminated soils were simply modeled with a two-node tree using
the Green band. Thus, the Green < 56 values were considered as oil-contaminated, and
the Green > 56 as clean soils. Although the results for both models and datasets were
similar, the extremely oil-contaminated soil was the most efficiently separated from the
clean soil using RT. The RT model with Dataset II was constructed of two nodes, where FI
was used as a threshold value (Figure 6). The results revealed a clear distinction between
the investigated classes, where values less than 0.3 represented clean soil, while the values
greater than 0.3, represented OCS.

B1-B7 represents the bands from Landsat-5, respectively. The accuracy assessment for
the extremely OCS modeling is given in Table 2.
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Table 2. Validation results for the extremely OCS modeling.

ML
Algorithm

Correctly Classified
Instances MAE RAE (%) Kappa TP FP Precision Recall F-Score

RT-I 100% 0 0 1 1 0 1 1 1
RT-II 100% 0 0 1 1 0 1 1 1

SVM-I 96% 0.04 8.8 0.91 0.96 0.05 0.96 0.96 0.96
SVM-II 100% 0 0 1 1 0 1 1 1

RF-I 100% 0 0.1 1 1 0 1 1 1
RF-II 99% 0 0.6 0.99 0.99 0 0.99 0.99 0.99

All of the algorithms performed successfully in separating oil-contaminated and
clean soil. RT, unlike SVM and RF, provides a model. The RT model for the highly oil-
contaminated soil using Dataset I was constructed of nine nodes using the B3, B5, B1, and
G/NIR index from Landsat-5. On the other hand, the RT model using Dataset II, also
consists of nine nodes, using OSDI, FI, and G/NIR indices. The RT models are demonstrated
in Figure 7. RT Dataset I presented highly dedicated results that are similar to 1991. The
accuracy assessment results are given in Table 3. Visual results of the classification for
extremely and highly OCS are given in Figure 8. As can be seen from the results, in the
highly OCS, the impervious areas that have similar spectral values with the contaminated
areas are being mixed with the OCS. However, this is not the case for the results from 1991,
where the contaminated areas were clearly classified.
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Compared with the extremely and highly contaminated soil, the accuracy for modeling
the moderately oil-contaminated soil was significantly lower, especially in the SVM models.
The RT models produced higher correlations. In addition, the error values from the SVM
were significantly higher, compared to RT and RF (Table 4). The number of nodes in the
tree was 27 for Dataset I and 23 for Dataset II. Similar to the previous contamination levels,
RT and RF with Dataset I performed best. In Figures 9 and 10 are shown the RT models of
Dataset I and Dataset II, respectifuly. Figure 11 depicts the visual findings of the moderately
oil-contaminated soil classification.
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Table 4. Validation results for the moderately OCS modeling.

ML
Algorithm

Correctly Classified
Instances MAE RAE (%) Kappa TP FP Precision Recall F-Score

RT-I 99% 0 0 0.99 0.99 0 0.99 0.99 0.99
RT-II 97% 0.03 6.6 0.93 0.96 0.03 0.96 0.96 0.96

SVM-I 97% 0.03 5.5 0.94 0.97 0.03 0.97 0.97 0.97
SVM-II 78% 0.2 44.4 0.56 0.78 0.21 0.78 0.78 0.77

RF-I 98% 0.03 6.0 0.97 0.98 0.01 0.98 0.98 0.98
RF-II 97% 0.03 6.9 0.94 0.97 0.03 0.97 0.97 0.97
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4. Discussion
4.1. Oil-Contaminated Soil Classification

The unsupervised classification results in 1991 showed that the clean soil and the
oil-contaminated soil distinguished each other successfully. Using this classification, we
have further collected samples from both investigated classes and investigated the spectral
indices in different periods. The data were classified as extremely (1991), highly (1992), and
moderately oil-contaminated (2002) soil, following their spectral signatures. In addition,
the spectral signatures of the clean soil and oil-contaminated soil in several periods in 1991
were evaluated by employing Landsat-5 images. The results of the spectral values from
1991 correspond to the historical events. Thus, as the oil spill started in January 1991, the
spectral values of the contaminated areas were significantly lowered. The most significant
difference can be noticed in the SWIR region. The findings are consistent with the results
obtained in Kwarteng [22], where the oil lakes and oil-polluted surfaces were investigated
in the same research area. Using hyperspectral satellite data, Pelta et al. [1] conducted
research to identify the clean and oil-contaminated soil on the Evrona Nature Reserves.
The results were matched for different wavelengths.
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4.2. Comparison of Oil-Contaminated Classification Performance

The differences between the clean and oil-contaminated soil are clearly visible in the
following years. The remediation from the study area causes the major difference between
1991 and 1992. As shown in Figure 5, the spectral differences between 1997 and 2002 are
not significantly high. Landsat-5 has not obtained data over the study area since 2002, thus,
further research could not be carried out. Spectral signature differences from Landsat-8
show that there are still spectral traces of oil contamination in 2017 and 2021 (Figure 12).
As can be seen, there are still considerable differences amongst the investigated classes.
It should be noted that this difference could be due to new oil contaminations and that
cleaning of the contaminated areas continues [7,13]. Although some studies [13] discuss
the resilience and remediation of the study area, the spectral differences show that some of
the oil-contaminated areas in 1991 still exist.
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As the investigation of the spectral values showed significant differences, we used the
sample data for the oil-contaminated soil modeling. In the previous studies, thermal data
were used for oil-contaminated soil investigation in the literature. However, considering the
low resolution of the thermal band and the use of the spectral difference in the other parts
of the spectrum, in the present study single bands and spectral indices for oil-contaminated
soil modeling were used. Similar studies [22] have used Random Forest as a classifier.
We employed RT, SVM, and RF models, and we have visualized the RT model to better
understand the structure of the model and the effect of the dataset. Dataset I, which
includes all of the Landsat-5 bands and calculated spectral indices, presented better findings
for all of the cases. Since the differences in the spectral values between the clean and
extremely oil-contaminated soil are higher than highly and moderately contaminated
soil, the classification model is simple and more accurate. Thus, with a simple threshold
of a single index, in this case, FI, or band (Green), we were able to separate clean from
extremely oil-contaminated soil. We were able to classify the highly oil-contaminated soils
with a relatively small Random Tree model (nine nodes for both Datasets). However, the
moderately oil-contaminated soils were difficult to classify, and the Random Tree model
was quite complicated, more than 25 nodes for both Datasets.
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All of the results obtained from the different modeling methods are close to each other.
This is because of the spectral differences between the clean and contaminated soil in the
spectral bands and in the indices derived from the bands. In addition, the used modeling
methods were compared in other research supporting the results obtained in this paper.
Thus, Baek and Jung [42] compared RF and SVM in oil spill, and while both methods
performed accurately, the RF method slightly outperformed the SVM method.

4.3. General Overview of the Proposed Methodology

A scrutinized classification should be needed to determine the degree of the oil-
contamination such as dry oil lake, oil lake, oil pit, soot, tar mat, etc. [43]. Detailed
classification can only be done using high-resolution imagery and a field survey. Similarly,
aerial photography and satellite imagery were used with the addition of collateral maps
and documents and field studies [43]. Classification of the dry and wet oil lakes were
evaluated using 0.5 m resolution satellite imagery [44].

Many of the previous studies focused on the investigation of oil-spills on water. In
the present study, several spectral indices were used successfully used to detect oil slicks,
and promising results were obtained for modeling oil-spill in arid areas. Besides, several
studies in the literature investigate the remediation of the field conditions, by using a
limited number of satellite imageries after the oil spill in Kuwait [6,13]. With the aid of
GEE, we were able to investigate a large quantity of data. Thus, we drew the historical
event in 1991 with spectral values (Figure 4) and historical events between 1991 2002.
In addition, we investigated the spectral values in more recent years (2017 and 2021),
and the findings revealed that there are still spectral differences between the clean and
oil-contaminated soils.

In the light of these findings, our model allows researchers and organizations to
monitor the active oil spill case much earlier. The severity of the spill can be delineated by
monitoring the existing conditions. Furthermore, oil spill remediation studies should be
carried out by selecting the appropriate spill kit. The degree of the spill and its adverse
consequences should be assessed to build the right treatment strategy and select the proper
material (chemical, solvents, etc.) as the spill kit. Remotely sensed satellite data enable the
creation of a set of data that may be used to assess the degree of spill in inaccessible places.

Overall, the study’s findings show that; the proposed methodology can be efficient in
detecting different levels of terrestrial oil-contaminated areas. The RT and RF approach
were superior in comparison to the SVM models. In addition, the simplicity of the RT is
beneficial. The usage of GEE has considerably decreased the time required to process and
analyze large volumes of data.

The results from this study can be significant in future clean-up studies, as field
measurements are costly and time-consuming. The proposed methodology can be used for
detecting the oil-contaminated soil, and, afterward, using higher remote sensing imagery, a
detailed investigation can be performed.

5. Conclusions

The oil spill in 1991 in Kuwait was labeled as one of the greatest ecological disasters.
The mapping and monitoring of oil spills and oil-contaminated areas are vital for clean-up
and remediation studies. Remote sensing data and technologies can help decision-makers
and can also be of great importance by saving both time and costs. In the current study,
remote sensing data were employed for the spectral signature investigation of the OCS for
the ecological disaster in Kuwait in 1991. The major findings demonstrated the differences
between the spectral values of clean and oil-contaminated soils. These differences were
used to build a model. The main aim of this study is to demonstrate the applicability
of different remote sensing data, such as bands and spectral indices, in classifying the
oil-contaminated soil at different contamination levels, using machine learning techniques.
The significant findings of the current study were highly correlated with the pre-war and
post-war period, which included remediation studies. It is concluded from the study that,
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by using remote sensing data, it is possible to track the dimensions and directions of the
previous oil-spills. In addition to that, more accurate results can be achieved by employing
both spectral bands and indices. Although our study presents significant findings for
the designated area, more detailed classification can be conducted with high-resolution
satellite data.
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