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Abstract: To investigate relevant processes as well as to predict the possible impact of soil erosion, 

many soil erosion modelling tools have been developed. The most productive development of 

process-based models took place at the end of the 20th century. Since then, the methods available 

to observe and measure soil erosion features as well as methods to inter- and extrapolate such data 

have undergone rapid development, e.g., photogrammetry, light detection and ranging (LiDAR) 

and sediment tracing are now readily available methods, which can be applied by a broader 

community with lower effort. This review takes 13 process-based soil erosion models and different 

assessment techniques into account. It shows where and how such methods were already imple-

mented in soil erosion modelling approaches. Several areas were found in which the models miss 

the capability to fully implement the information, which can be drawn from the now-available 

observation and data preparation methods. So far, most process-based models are not capable of 

implementing cross-scale erosional processes and can only in parts profit from the available reso-

lution on a temporal and spatial scale. We conclude that the models’ process description, adapta-

bility to scale, parameterization, and calibration need further development. The main challenge is 

to enhance the models, so they are able to simulate soil erosion processes as complex as they need 

to be. Thanks to the progress made in data acquisition techniques, achieving this aim is closer than 

ever, if models are able to reap the benefit. 

Keywords: process-based soil erosion model; remote sensing; photogrammetric methods; tracing; 

soil surface measurement; soil assessment; soil erosion 

 

1. Introduction 

Soil, a natural resource with essential functions to the ecosystem, has experienced 

extensive degradation over the past decades [1,2]. Soil erosion can lead to soil loss and 

eventually to the exposure of the underlying bedrock [3]. It represents a decisive process 

for degrading agricultural land and thus crop yield on a global scale [4–6]. Climate 

change causes an increase in frequency of extreme weather events and therefore leads to 

spatially differentiated changes in extent, intensity and frequency of soil erosion [7–10]. 

Alongside the direct impact of climate change, it also triggers indirect drivers of soil 

Citation: Epple, L.; Kaiser, A.; 

Schindewolf, M.; Bienert, A.; Lenz, 

J.; Eltner, A. A Review on the  

Possibilities and Challenges of  

Today’s Soil and Soil Surface  

Assessment Techniques in the  

Context of Process-Based Soil  

Erosion Models. Remote Sens. 2022, 

14, 2468. https://doi.org/10.3390/ 

rs14102468 

Academic Editors: Magaly Koch, 

José Vicente Pérez-Peña, Xihua Yang 

and Álvaro Gómez-Gutiérrez 

Received: 4 April 2022 

Accepted: 19 May 2022 

Published: 20 May 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Remote Sens. 2022, 14, 2468 2 of 24 
 

 

erosion, such as crop management or land use changes [9,10], varying greatly with the 

region [11–13]. 

While soil erosion on arable land is usually higher than on non-arable land [14], the 

degree of erosion largely depends on land management practices. Therefore, adapted 

land management is an important step towards the sustainable use of soils [15]. The 

protection and conservation of soils has become a major social challenge worldwide and 

represents an important field of research [16]. In order to support soil protection efforts 

and recovery strategies, it is necessary to accurately assess erosion rates and information 

on erosion, transport and sedimentation processes [2,17]. 

Research on this topic started in the early 20th century, with the first modelling ap-

proaches in the 1940s by Zingg [17] quoted in [18] and the development of an empirical 

soil erosion model, the so-called universal soil-loss equation (USLE), by Wischmeier and 

Smith [18]. With the improvement of computing power, data availability and for a better 

process understanding, such empirical models were followed by process-based soil ero-

sion models. These have certain advantages over the empirical models, for example they 

are supposed to be easily transferable to other sites and scales and are able to view soil 

erosion processes based on physical principals [19,20]. 

Most process-based soil erosion models were developed at the end of the 20th cen-

tury (Figure 1). These models did not have access to the possibilities and input data of 

today. While increasing computing power is constantly pushing the limits of data collec-

tion, processing and modelling, new opportunities in assessing and using soil data and in 

understanding soil erosion processes become available. Continuous development and 

improvement of measurement techniques lead to spatially and temporally highly re-

solved information on different scales [21]. 

 

Figure 1. Number of process-based soil erosion models developed over the decades between 1970 

and 2018 based on Aksoy and Kavvas [22] (p. 253), Hajigholizadeh et al. [23] (pp. 11–13), Karydas et 

al. [24] (p. 10), Merritt et al. [25] (pp. 766, 791) and Pandey et al. [21] (pp. 600–606). The number of 

models developed before 1970 is very small and has therefore been ignored.  

Most process-based models demand some kind of measured soil data (e.g., texture, 

water retention function, hydraulic conductivity, aggregate stability), which are mostly 

not available in a high resolution. However, recent data assessment techniques, espe-

cially regarding remote sensing methods, offer new information, and by that the poten-

tial for model development as well as model ensemble strategies. Furthermore, we con-

sider cross-process as well as cross-scale understanding of soil erosion on different spa-

tial and temporal scales as a valuable step towards improved process-based soil erosion 
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modelling. To gain a more holistic understanding and achieve an impact reduction by 

applying adapted management strategies, models need to integrate the current under-

standing of soil erosion processes from splash to gully erosion [8,26]. For future model 

development, we find it crucial to determine in what way the present assessment tech-

niques can contribute to the improvement of process-based soil erosion models. The 

models show difficulties in describing different processes, e.g., connectivity, soil com-

paction or rill initiation. This results in a need for observation that could be specifically 

covered by the new and improved methods. 

Altogether this raises the question of which of the formerly limiting factors, both in 

terms of model capabilities and data availability may have become obsolete. Can mod-

ernised measurement techniques, recent data on soil and soil erosion, a new range on 

resolutions and the latest achievements regarding computing power help to effectively 

develop these models? To address this question, the work is structured considering the 

following aspects: 

1. State-of-the-art 

 What are the strengths and weaknesses of process-based soil erosion models? 

 What are the opportunities and limitations offered by the present data assessment 

techniques regarding the model parameterization and process description? 

2. Limitations and opportunities offered by assessment techniques regarding pro-

cess-based soil erosion models 

 Can today’s data assessment overcome shortcomings and improve existing models? 

 Can soil erosion process descriptions be delineated from modern erosion measure-

ment techniques and integrated into these models? 

 Can data help to produce, parameterize and validate existing process-based soil 

erosion models or is there a need for a new modelling approach altogether? 

Many reviews regarding empirical and process-based soil erosion models already 

exist. Borrelli et al. [26] just recently gave a comprehensive overview of the literature re-

garding soil erosion prediction models. Reviewing 1679 studies published between 1994 

and 2017, they provide a state-of-the-art insight on soil erosion modelling on a global 

scale. According to their research, a huge challenge in soil erosion management is still the 

lack of knowledge in large parts of the world. To help overcome this research gap we 

specialised our research, not on the modelling alone, as has been done many times before 

(e.g., [10,21,23,25]), but in combination with assessment techniques available today. 

Combining these aspects, we aim to identify where available data can help improve and 

further develop process-based soil erosion models. We therefore offer an overview of the 

potentials and shortcomings of soil, soil erosion and soil surface assessment techniques 

by examining process-based soil erosion models and their possibilities for implementing 

data from new and improved measurement techniques. Along this interface, based on 

today’s possibilities of data generation and processing, this work aims to identify the 

factors relevant to overcoming the limitations of process-based soil erosion modelling, 

and to its improvement. 

2. Soil Erosion Assessment 

Today, a large number of soil erosion models exist, and a wide range of methods for 

measuring soil erosion processes by water have been developed. In the following we 

present a selection of process-based soil erosion models. Their possibilities and limita-

tions, as well as their scale and process understanding, have been taken into account. 

Subsequently, we provide a selective overview of different soil erosion assessment tech-

niques we see as relevant in either providing a new cross-scale process understanding or 

offering valuable and improved data for model parameterization. 

  



Remote Sens. 2022, 14, 2468 4 of 24 
 

 

2.1. Process-Based Soil Erosion Models 

Models are simplifications of reality and can, by definition, never fully represent the 

processes of the real world. Because these models can only come close to reality, re-

searchers are looking for a balance between modelling and reality. Depending on their 

area of speciality, models feature different advantages and limitations. With improving 

knowledge, computing power and observational technologies, these limitations are con-

stantly shifting towards models that are more realistic while also showing limits re-

garding reality. Where to exactly draw this line poses an almost philosophical question, 

answerable only by each individual model. In comparison to empirical models, pro-

cess-based soil erosion models are more demanding regarding their input data, compu-

ting requirement and calibration necessity, and in general are less user-friendly. How-

ever, due to physically-based descriptions of soil erosion and sediment transport, the 

models offer an understanding and reproducibility of the occurring processes [23]. Such 

models allow for an isolated consideration of individual components of soil erosion 

processes as well as a better understanding of the relationship between cause and impact 

within soil erosion research [19]. While these models are process-oriented, they still con-

tain empirical parts based on laboratory and site-specific field experiments. Even though 

they can be extrapolated to other scales, this aspect must still be treated with care [27]. 

In recent years, several authors have reviewed soil erosion models, taking different 

perspectives into account [10,21,22,23,25,28,29]. They offer a broad overview of available 

process-based soil erosion models, along with their strengths and weaknesses. As models 

are conceptualised for different purposes as well as for different spatial and temporal 

scales [24], they vary widely regarding their complexity, data demand, temporal and 

spatial representation of process mapping, input parameters and outputs [21]. Jetten and 

Favis-Mortlock [28] highlight the challenge that different models are developed for spe-

cial spatial and temporal scales and therefore mostly incorporate a scale-specific process 

mapping. Restrictions such as these are often accompanied by the practical aspect of data 

availability [21]. Models consequently often assume continuous temporal soil and surface 

input parameters, which can lead to wrong process description [28]. The prediction 

quality of a model is heavily influenced by its input data and its parameterization. 

Therefore appropriate data collection from multiple sources, accurate model parameter-

ization and temporal and spatial high-resolution input data are important aspects of 

model improvement [21,30]. Parsons [27] sees the simulation capability of the models 

constrained by the underlying process description and consequently by our under-

standing of soil erosion processes. Thus, the potential for model improvement can be the 

use of revised process descriptions such as rill-interrill interaction [22] or gully erosion 

[23]. 

In Table 1 we have compiled, a selection of process-based soil erosion models, de-

rived from Aksoy and Kavvas [22], Karydas et al. [24], Hajigholizadeh et al. [23], Merritt 

et al. [25] and Pandey et al. [21]. We further constricted the selection to those more fre-

quently used models since 2000 (more than 10 publications). In this way, we made sure to 

capture the most relevant models without having a table that is oversized for the purpose 

of this manuscript. The table is structured according to the different processes considered 

by soil erosion modelling. Because a holistic listing of model limitations cannot be im-

plemented and would go beyond the scope of such a table, we decided to list the possi-

bilities of the models instead. Conversely, their limits can be derived from their strengths, 

which are based mainly on equations and coefficients. Figure 2 provides a historical 

classification of these models. While, as presented in Figure 1, many models were de-

veloped before the end of the 20th century, research regarding those existing models has 

since increased. Based on Google Scholar searches, looking for research titles including 

the model’s name and “erosion”, Figure 2 gives an overview of the consistent, increasing 

or decreasing usage of the different process-based soil erosion models over the past 

fewndecades. Google Scholar was chosen because of its free availability, transparency, 

reproducibility and the broad spectrum of sources taken into account. Because only 
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manuscripts mentioning the model and erosion in the title have been considered, this 

analysis only gives an impression and cannot claim to be exhaustive. The EUROSEM 

model shows a decrease of usage, while publications on the models EROSION 3D and 

especially WEPP have increased significantly. A constant application since its develop-

ment can be found by the model LISEM. 

 

Figure 2. Literature analysis based on the Google Scholar search engine. Search query (28 April 

2022) including model abbreviation and “erosion” limited to “all in title” findings for the years up 

to 1999, between 2000 and 2010 and since the year 2011 until now. The analysis includes the num-

ber of publications found in each time frame on the left-hand side, and the percentage of each 

models’ application all together on the right. The colouring on the left is arranged from the bottom 

to the top (DWSM to WEPP), on the right it starts at the top reading clockwise (DWSM to WEPP). 

Table 1. Process-based (distributed and event-based) soil erosion models and their basic equations 

regarding their processes mapping (coefficient = coef., equation = eq.). The meaning of the models’ 

acronyms can be found in Appendix A. The table is derived from the process-based soil erosion 

models reviewed by Aksoy and Kavvas [22], Karydas et al. [24], Hajigholizadeh et al. [23], Merritt 

et al. [25] and Pandey et al. [21]. To ensure a good overview, only models with at least 10 publica-

tions since 2000 were included in the following table. 
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model [68] approximation) 

kinematic wave 

[66] 

stress [69]; DbO: 

linear function of 

excess hydraulic shear 

[66] 

transported sediment 

[66] 

selective deposition 

[67] 

Table 1 highlights in which areas, in regard to their process mapping, process-based 

soil erosion models show strengths and weaknesses. Non-addressed processes can espe-

cially be found in the fields of particle detachment within rills, particle size distribution, 

deposition, and flow routing. The last column of the table, flow routing, reveals the 

greatest gaps and is, even when considered by models, mostly treated only statically. 

While RillGrow presents an exception, most approaches have difficulties in adapting the 

relief during the modelling process. Of these models RillGrow alone is able to depict rills 

dynamically. Even though it offers a self-organizing system, enabling feedback loops on 

the microtopography, it also neglects important aspects such as infiltration and deposi-

tion. Backwater, diffusion and dynamic distribution of shallow water by water surface 

elevation can only be solved by the more complicated equations, such as the Saint Venant 

equation, which results in even more complex models. However, as these models are all 

simplifications of reality, the all-achieving model cannot exist, which results in a con-

stantly rising and gradually confusing number of models with a range of different 

strengths and weaknesses. Presenting the limiting factors of a selection of process-based 

soil erosion models might indicate starting points for necessary model improvement. In 

this context, we investigate which processes can be observed on a new temporal and 

spatial scale and where these methods can be used to further develop process-based soil 

erosion models. 

2.2. Techniques on Soil Erosion Measurement 

Measurement techniques to assess soil properties, soil surface and soil erosion are 

constantly advancing in terms of their spatial and temporal resolution [71]. In reviewing 

those, a holistic approach hardly seems achievable; therefore, most researchers focus on 

comparing a selection of similar technological approaches, such as, e.g., Padarian et al. 

[72], concentrating on different machine learning (ML) approaches, or Castillo et al. [73], 

comparing LiDAR, laser profilometre, a total station and 3D photo-reconstruction in the 

context of gully erosion. Others give a broad overview of different assessment areas but 

do not go into detail regarding the individual techniques, such as Parsons [27], summa-

rising information on plot studies, monitoring and measurement techniques and model-

ling approaches. For more quantitative and precise approaches and to gain an improved 

understanding of processes and connectivity, both Li et al. [71] and Rodrigo-Comino [74] 

suggest applying the methods combined on different temporal and spatial scales. Re-

garding process-based soil erosion models, such new assessment techniques and the re-

sulting data are especially interesting, considering the following two factors: 

 Recently improved methods offer new data, which can be used to feed pro-

cess-based soil erosion models and offer spatial and temporal distributed model 

parameterization. 

 Models are based on specific equations and therefore focus on certain processes and 

certain scales. Of interest are methods which offer new temporal and spatial 

cross-scale knowledge on soil erosion processes and their distribution. Such data can 

be used to validate available process understanding or even integrate new process 

understanding into models. 

The choices of method discussed in this review were selected and structured on the 

basis of these two categories and do not claim to be exhaustive. For certain, many more 

techniques have been developed and improved, offering new information and data val-

uable for process-based soil erosion models. A holistic view of all such methods would 

go beyond the scope of this paper. This work presents different methods which enable 
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either new and improved data availability or a new and improved process understand-

ing. Figure 3 offers a selection of different soil and soil erosion assessment techniques, 

structured by their type of assessment, their temporal scale and their output. It distin-

guishes methods for assessing data for a whole area at one outlet (area average), point 

source data (selective) and those assessing exhaustive data for the research area (distrib-

uted). Summarised in categories, Figure 4 provides an overview of the development of 

soil and soil erosion techniques between 1989 and today. It also further visualises the 

categories structured by their temporal scale of application on a spatial scale. The same 

colouring as in Figure 3 gives an insight into the type of output data to be expected. Fig-

ure 4 emphasises what can also be found after a structured literature analysis with the 

Google Scholar search engine visualised in Figure 5. Photogrammetric and tracing tech-

niques show a huge increase in research. The literature analysis has shown that within 

the broad category of tracing, fallout radionuclides and sediment fingerprinting make up 

the largest part, and in the category of photogrammetry, Structure from Motion (SfM) 

proves to be researched the most. 

 

Figure 3. Overview of soil and soil erosion assessment techniques, structured by their type of as-

sessment, their output (area average, selective or distributed) and their temporal scale. The meth-

ods presented in this figure are not weighted and do not claim to be exhaustive. The selection is 

based on Guan et al. [75], Li et al. [71], Jester and Klik [76], Thomsen et al. [77], Batista et al. [78] and 

Rodrigo-Comino [74]. 
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Figure 4. Changes and developments in soil erosion assessment techniques as well as their tem-

poral and spatial scales of application, (left) derived from Loughran [79] presenting assessment 

techniques used in 1989 and (right) based on information from Guan et al. [75], Li et al. [71], Jester 

and Klik [76], Thomsen et al. [77], Batista et al. [78], Rodrigo-Comino [74] and, as discussed in Sec-

tions 2.2.1 and 2.2.2, methods used up to 2017. The methods are coloured by their type of output 

(area average, selective or distributed). The category discharge measurement includes aspects such 

as erosion plots and techniques, also listed in Figure 3 under the heading of sediment collecting. 

 

Figure 5. Literature analysis based on the Google Scholar search engine. Search query (28 April 

2022) including the name of the assessment techniques (full name, abbreviations) and “erosion” 

limited to “all in title” findings for the years up to 1999, between 2000 and 2010 and since the year 

2011 until now. The analysis includes the number of publications found in each time frame on the 

left-hand side, and the percentage of the mentioning of each model all together on the right-hand 

side. LiDAR includes terrestrial and airborne laser scanning. The different categories researched 

can be found in more detail in Figure 3. The colouring on the left is arranged from the bottom to the 

top (LiDAR to Others); on the right it starts at the top reading clockwise (LiDAR to Others). 

All three figures (Figures 3–5) offer only estimations and do not claim to be exhaus-

tive. Of particular interest to process-based soil erosion models are the techniques as-

sessing event-based soil erosion and those working on a short temporal scale (Figure 3). 

High temporal resolutions for the short term have recently been improved and are fur-

ther evaluated in the following chapter. For the long-term temporal scale, empirical 
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models are generally preferred, and therefore these techniques are of less interest to this 

study. Taking those analyses into account, we further concentrate on the assessment 

techniques of photogrammetry, LiDAR and tracer and their potential contribution to the 

further development and improvement of process-based soil erosion models. 

2.2.1. Parameterization Possibilities 

Methods to assess soil and soil erosion today lead to a new range of data as well as 

data with advanced spatial and temporal resolution. Distributed data available for a 

high, nearly continuous frequency can be a valuable asset for the parameterization of 

process-based soil erosion models. The following presents methods which offer utterly 

new data for process-based soil erosion modelling and also data with advanced high 

temporal or spatial resolution. The latter also includes a new data supply, considering 

that higher resolution and availability at both smaller and larger scales can provide a 

whole new range of information. 

Parameterization Due to Developments in Resolution 

Improved resolutions on ever larger areas and on temporal scales offer new infor-

mation and fields of application. Such developments make satellite data more and more 

attractive. Using digital soil mapping data from, e.g., Sentinel 1, Sentinel 2 and Landsat 8, 

can serve as covariates to predict soil properties. They offer a great spectrum of infor-

mation on, e.g., soil organic carbon, soil total nitrogen, clay content of the soil and the 

“Normalized Difference Vegetation Index”, with spatial resolutions up to 10 metres [80–

82]. Such information, which has been constantly improving over the last few decades, 

offer us input data today, with resolutions that are especially interesting to model ap-

plications covering medium to large areas. While they are able to generate information 

on large scales with revisiting times of a few days, the resolutions available in the scope 

of metres only enable information on erosional processes on larger scales. 

On an entirely different level, of interest to small scale erosional processes, con-

stantly higher resolutions can also be found in the sub-centimetre and even 

sub-millimetre range in the area of LiDAR and photogrammetric remote sensing. Hu et 

al. [83] describe LiDAR as a promising technology for generating micro-topography soil 

parameters, which can be linked to the high-resolution photogrammetric derived digital 

elevation model (DEM). Photogrammetry and laser scanning are non-invasive, 

high-accuracy, and high-mobility techniques, which also allow the assessment of soil 

properties such as soil roughness [77,84–88] and soil moisture [89]. Soil spectra measured 

via remote sensing are an important step for in situ assessment of soil properties in real 

time [90]. Techniques of digital soil mapping enable the spatially distributed assessment 

of soil and vegetation properties at a high temporal resolution, which can be of great 

value for the parameterization of physically-based soil erosion models. Meinen and 

Robinson [91] see great potential in Unmanned-Aerial-Vehicle Structure-from-Motion 

Multi-View-Stereo (UAV SfM-MVS) for validation and calibration of soil erosion models. 

The past development of LiDAR and photogrammetry offer new high-resolution spatial 

(mm/sub-mm) and temporal distributed input data for model application from the mi-

croplot to the catchment scale. While they show great potential on small scales and 

therefore small-scale soil erosion processes, application on medium catchment to re-

gional scale are mostly not feasible with these kinds of methods. 

Possibilities Regarding Parameterization 

The constant development of methods offers not only higher resolutio, but also new 

opportunities to generate input data as it combines different methods and data to gain 

new information. Combining spectroscopic techniques from satellite data with artificial 

neural networks is an efficient and cost effective way to assess soil parameters on a larger 

scale [92]. While techniques have been developed to use ML, based on visual data to 
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predict soil properties (e.g., soil bulk density), such approaches seem only able to give 

approximate in situ measurements, filling the gaps of laboratory assessed data [93]. Deep 

learning approaches (e.g., neural networks) combined with digital soil mapping can offer 

new opportunities to automatically receive multi-scale information about soil properties 

on different soil depths. Open source algorithms combined with in situ and remotely 

assessed soil data enable the use of ML approaches to analyse soil data [72]. Today’s 

cost-efficient ways to collect such data also make them interesting as modelling input, 

aspects which could not have been considered before. 

With the development and improvement of sensor systems, capable tracing meth-

ods can be used today, measuring with high accuracy the flow velocity, which is crucial 

for soil erosion modelling and further process understanding. Alongside colour dyes, 

fluorescent dyes, fluorescent particles and electrolytes, such data can also be accessed 

using thermal tracing [94,95]. Thanks to increased resolution, portability and cost reduc-

tion, current infrared thermography offers a fast, effective and accurate way of monitor-

ing flow velocity via thermal tracing on a high temporal (seconds) and spatial (mm) res-

olution [94,96]. Such methods enable a new spectrum of temporal and spatial resolution 

and open up new possibilities for the parameterization of process-based soil erosion 

models. 

2.2.2. New Data for Process Validation and Integration 

Advanced methods, higher resolutions and the combination of different assessment 

techniques enable an improved and further developed process understanding. 

Cross-scale and cross-process knowledge and description can be valuable for model de-

velopment. They can also be useful to both the validation of models, which are already 

able to depict various processes, as well as to the further development and integration of 

new process mapping not considered by the models so far. 

Tracing 

In order to gather information on soil properties and soil erosion processes, a wide 

range of tracers exist, working with different properties of natural or anthropogenic 

origin. Fallout radionuclides such as Caesium-137 (137Cs), Beryllium-7 (7Be) and Lead-210 

(210Pbex) are tracers capable of reconstructing sedimentation histories on different tem-

poral scales, from a few months or decades ago [75,97,98]. Combining soil erosion mod-

elling with both 7Be and soil measurements helps to understand soil relocation processes 

[99] and enables deeper insight into the connectivity. Joining the tracer 7Be with 

high-resolution UAV photogrammetry proves to be useful in quantitatively detecting 

surface changes on a spectrum of up to 2 mm resolution [100]. Photogrammetry therefore 

offers a new, spatial distributed, high-resolution tracer application. While they work on 

high resolutions and for small scales, larger to regional scales are not feasible with 

method combinations. 

Chemical, biological and physical properties of soil can be used to compare a given 

composition from one area with a composition from another area, providing insights on 

erosion. Magnetic tracers, either natural or artificially incorporated, enable the recon-

struction of sediment sources on different temporal and spatial scales [75,101]. Guzmán 

et al. [101] propose the use of magnetic tracers and spectroscopic techniques to better 

understand the influence of spatial variability in water erosion. Combining different 

tracing techniques with soil erosion monitoring approaches on different temporal and 

nested spatial scales can help to identify sediment sources, and their change of spatial 

and temporal distribution in a catchment over time [75]. Such approaches enable 

high-resolution (mm) and cross-scale measurements of different erosional processes and 

can be used to validate models on larger spatial and temporal scales, also giving insights 

into the development from one process to another. 
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Satellite Remote Sensing 

Satellite remote sensing provides a vast range of spatial resolutions, spectral bands 

and revisiting times. They are useful for measuring soil erosion due to the method’s ro-

bustness, the large spatial scales and the data availability, especially in remote regions. 

Furthermore, they are more affordable and display low time expenditure [102] while also 

offering a revisiting period of a few days. Such data are valuable in identifying erosion 

and its effects on the medium to large scale [103]. While satellite data can be used to ob-

tain and integrate soil properties on the large catchment scale into process-based soil 

erosion models [104], the resolution is not so high (10–30 m) for it to properly work on 

small scales or even plot scales. These data, combined with high-resolution data, can be 

useful for the improvement of cross-scale process understanding in the metres-resolution 

and with a temporal resolution of days, and especially show potential for actual model 

application. The benefit of satellite remote sensing greatly depends on the scale and the 

research question and becomes even more attractive with future technical developments 

and further improvements of spatial and temporal resolutions. 

Photogrammetry and LiDAR 

Methods on aerial and terrestrial photogrammetry, and aerial and terrestrial LiDAR 

or laser scanning (ALS and TLS), are very useful tools in soil erosion research, and they 

become even more efficient with further advancements and improvements concerning 

computing power [5,105,106]. The photogrammetric technique SfM via UAV is a pow-

erful and achievable method for measuring soil erosion, especially in terrain which is 

difficult to access [105,107]. Thanks to their high spatial (cm/mm/sub-mm) and temporal 

(s/min) resolution, photogrammetry and LiDAR can almost continuously measure soil 

surface changes during artificial and natural rainfall [108]. On the one hand, such data 

can be used to validate soil loss on an artificial plot. On the other hand, they provide 

valuable insight into the processes that have taken place. In this context, Yang et al. [109] 

offer a spatial high-resolution monitoring of the development of rill and interrill erosion 

via TLS and SfM (resolutions up to 1 mm), leading to a high accuracy in quantifying rill 

erosion and its development on an artificial plot. On an even smaller scale, Laburda et al. 

[110] use SfM to monitor splash erosion, working with resolutions up to 0.1 mm. 

Low-cost, terrestrial, high-resolution photogrammetry allows us today to detect surface 

changes in sub-minute time steps and with sub-millimetre resolutions. 

Despite being more costly, LiDAR also presents a sufficient tool for surface change 

detection [111], which helps to improve the understanding of types of soil erosion such as 

soil crusts [83] or rill characteristics [112]. Photogrammetric approaches, as well as Li-

DAR, offer easily accessible, spatial and temporal high-resolution cross-scale under-

standing of on-going processes regarding soil and soil erosion and their development 

from the microplot to the catchment scale. Instead of having to watch every process sep-

arately, these techniques could provide a more holistic understanding of the different 

processes and their interactions, both the observed and the not observed. They enable 

cross-scale validation opportunities of process-based soil erosion models and allow the 

assessment of heterogeneously distributed input parameters. In this context, they present 

a basis for the further development of physically-based process descriptions. 

3. Challenges and Opportunities of Process-Based Soil Erosion Modelling in the  

Context of New and Improved Data Assessment Techniques 

After viewing the limitations and opportunities of process-based soil erosion mod-

els, and soil and soil erosion assessment techniques, the following chapter aims to com-

bine these aspects. It discusses the interaction and adaption of soil erosion models re-

garding parameterization, process understanding, scale, resolution, complexity and 

connectivity in respect of new and further developed assessment techniques. 
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3.1. Parameterization 

3.1.1. New Input Data Opportunities 

Improved techniques combining ML, photogrammetry and tracing have brought 

about advances in the area of image-based flow velocimetry. They could lead to an au-

tomatic measurement technique, opening up new possibilities for input parameters, such 

as flow velocity and flow path detection, as presented in Section 2.2.1 by Lin et al. [96]. 

While improved techniques will undoubtedly support validation interests and process 

understanding, it is debatable if workflows can be developed to include such data into 

soil erosion modelling and if the existing prediction tools can easily include such dis-

tributed, high-resolution data. The plan to integrate such data could lead to the need to 

further develop the simplified hydrological models, in many cases based on the kine-

matic wave, and cause the need to use more complex and computing power-intensive 

approaches, such as the Saint Venant equation. 

As can be seen in Table 1, the empirically determined Manning’s ‘n’ represents an 

important input parameter for many process-based soil erosion models, such as DWSM, 

EROSION-3D, GSSHA, SMODERP and LISEM. Kaiser et al. [113] present in their study 

that the hydraulic roughness shows good agreement with surface roughness assessed via 

SfM algorithms. Due to its high resolution, SfM enables the spatially distributed assess-

ment of roughness on the field and small catchment scale. Another mobile and econom-

ical technique to assess the parameter of spatially distributed surface roughness is the 

depth-sensing technology Xtion Pro [77]. Deriving such parameters by remote sensing, as 

shown by Kaiser et al. [113] for the model EROSION-3D, and Thomsen et al. [77] for the 

LISEM, can offer distributed information on Manning’s ‘n’ and random roughness. The 

method is far more time efficient and applicable in terms of spatial distribution than the 

so far used rainfall simulations. The assessment techniques and the resulting data can 

gather a great amount of distributed data which models are currently not able to imple-

ment. 

Recent advances in time-lapse SfM photogrammetry [114] enabled the assessment of 

surface changes during a rainfall event with a temporal resolution of several seconds 

[108]. While most models cope differently with the precipitation, they in general ignore 

the influence of wind-driven rain on soil erosion. Nonetheless, the wind can have a major 

impact and cause up to 30 % higher erosion rates. This indicates a necessity to assess and 

integrate high resolution data on near-surface wind speed and direction in soil erosion 

modelling [115,116]. Time-lapse SfM data, combined with surface wind speed and direc-

tion, could foster innovations in this field of soil erosion modelling. As these parameters 

have so far not been integrated in any way, process-based soil erosion models are most 

likely, without adaptions, not capable of taking wind-driven rain into account. 

3.1.2. Resolution and Spatial Distribution of Input Parameters 

While to a certain degree the model’s accuracy improves with the number of input 

parameters, in general more input parameters also lead to an increasing model complex-

ity. Expecting input parameters on, e.g., topographic data, soil data, tillage practices, and 

crop management, process-based soil erosion models are already rather complex in terms 

of their parameterization requirement [21,23,25]. To reduce assessment time and model 

complexity, these input parameters are often assumed to be homogeneously distributed 

throughout the whole field or catchment area. Nevertheless, to gain reliable and accurate 

results, the resolution and quality of the different input data is important to the model 

performance [25,117]. Depending on the model, time-varying input data can be beneficial 

in order to gain more accurate modelling results [22]. The impact of the cell size on the 

soil erosion simulation varies with the model’s choice. The LISEM model, for example, 

proves more adaptable to changes in spatial and temporal resolution than EROSION-3D, 

where the choice for the right resolution is more complex and requires a higher model-

ling experience [118]. A way forward to more precise soil erosion modelling, including 
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the large amount of available data, has been presented by Ayensa-Jiménez et al. [119]: a 

framework using the physical base of soil erosion models and combining them with a 

data-driven method for an improved modelling result and reduced uncertainties. 

We conclude that, while the choice for the right resolution has so far depended on 

the research question, the appropriate model and the model capabilities, new assessment 

techniques in the field of photogrammetry and LiDAR can greatly facilitate the pro-

curement of highly resolved parameters on both temporal and spatial scales, enabling 

distributed input data in both time and space. These, combined with higher computing 

capabilities, open up new opportunities for modelling approaches. On the one hand, out 

of the user perspective, distributed, high resolution input parameter can offer more ac-

curacy on the spatial variability of modelling results. On the other hand, taking the sci-

entific perspective, such data on surface changes enable a spatially distributed model 

validation. 

3.1.3. Model Complexity and Equifinality 

There is almost no way around using a complex model if the model is to be trans-

ferable and offer spatially differentiated and event-based predictions [120]. Nevertheless, 

an increase in complexity does not necessarily result in improved modelling [121], rather 

it enhances the dependency of modelling results on the modeller’s experience [25]. While 

many parameters lead to complex models, they can also result in a large number of de-

grees of freedom [121]. Varying parameter combinations can lead to equally sufficient 

model outputs [78], misunderstanding the relationship between observed and predicted 

erosion [2]. Even though the model adequately simulates the sediment yield at the sys-

tems’ outlet, it does not necessarily implicate a correct process description or a correct 

spatial distribution of erosion and deposition [122]. This creates another challenge of 

process-based soil erosion models, namely the risk of achieving the correct outcome for 

the wrong reasons [121]. The model might work poorly in identifying spatially distrib-

uted erosion hotspots or representing internal dynamics, but still offer a realistic predic-

tion of the overall simulation outcome in respect to sediment yield and runoff at the 

systems’ outlet [14,123]. Even though there is a variety of starting conditions in an open 

system, similar processes might lead to similar results [124]. Modellers should hence be 

aware that equifinality is a consequence of model calibration [78], which might even lead 

to misdirected management and recovery strategies [14]. Spatially and temporally dis-

tributed data as high-resolution surface change detection by photogrammetry or LiDAR 

can be of use to validate models and thus help reducing this risk of equifinality. 

3.2. Soil Erosion Processes 

Different soil erosion models are developed for different scales, and therefore vary 

according to process mapping. Due to the complexity of the occurring and transforming 

soil erosion processes, the models make simplified assumptions. Splash, interrill, rill and 

gully erosion vary greatly in their process description [78], with some processes being 

better presented than others. As displayed in Table 1, there are models such as the 

DWSM that use coefficients to simulate detachment based on splash and overland flow, 

while others, such as the EROSION-3D, apply the momentum flux approach. The 

KINEROS model does not differentiate between interrill and rill erosion [22], whereas 

WEPP simulates interrill erosion and concentrated runoff within rills but does not take 

the transition from one to another into account [25]. As presented in Table 1, many mod-

els base their process calculation on the kinematic wave, which has been shown as not 

being sufficient enough for a holistic flow routing. Models developed for small scales 

depict splash erosion and interrill erosion especially well, whereas those developed for 

larger scales focus on gully erosion. The following chapter discusses assessment oppor-

tunities for an improved process understanding and the feasibility to integrate that in-

formation into process-based soil erosion models. 
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3.2.1. Rill Initiation 

Process-based soil erosion models, as displayed in Table 1, show gaps regarding the 

particle size transport, the deposition, the flow routing and the particle detachment in 

rills, especially in simulating the initiation of those processes [125]. While most of these 

models are capable of simulating runoff and soil erosion within existing rills as well as in 

interrill areas, they lack the ability to depict spontaneous rill formation [21] and the spa-

tial and temporal development of rills. Using a self-organised dynamic system approach 

[57], RillGrow can map the hydraulic processes inside a rill. However the model is also 

not capable of simulating rill initiation [21,126]. Wu et al. [127] present an approach on a 

WEPP-based soil erosion model to simulate erosion and rill evolution on the hillslope 

scale. For this purpose, they combine an infiltration, a diffusive wave and a modified 

WEPP model, achieving good agreement regarding erosion, spatial distribution and 

depth of rills. However, their model has difficulties in locating the initiation, bifurcation 

and merging of rills [128]. These difficulties stem from the highly random component of 

rill erosion, which incorporates many different factors [129]. As the spatial and temporal 

distribution of rills has a significant influence on soil erosion and runoff, the embedding 

of the initiation and development of rills in soil erosion models is necessary for gaining 

more precise modelling results [130]. An improved process understanding, gained by 

repeated and accurate rill erosion assessment [131], and detailed information about their 

origin, geometry and frequency [25] is an important step in the modelling of rills. Ad-

vances in time-lapse SfM allow for the assessment of surface changes during a rainfall 

event with a temporal resolution of several seconds [108]. Such approaches, as well as 

information gained by rare earth elements on rill–interrill erosion processes can enable an 

enhanced temporal and spatial high-resolution process understanding on rill erosion 

[132]. This knowledge might help to develop and integrate a topographic threshold 

concept, as was suggested by Nouwakpo et al. [133], to implement the transition from 

interrill to rill erosion. Lifeng [125] suggests the usage of cellular automata, as in their 

approach CASEM, to improve the simulation of the initiation of soil erosion processes 

with a continuously improving system. While promising, this approach is still in the be-

ginning of development. A cross-scale understanding of when and where rills develop, 

and integrating this knowledge into models, should improve modelling, especially on a 

spatially distributed level. As previously stated, process-based soil erosion models differ 

in terms of their process description. Instead of having one improved model, the combi-

nation of different adjusted models, similar to the approach of Wu et al. [127], removing 

the models’ limitations, or Eekhout et al. [134], working with a process-based model en-

semble concerning model uncertainties, could prove beneficial. With the available com-

puting capability and the combination of the data, intense but strong sub-models could 

become an achievable goal. 

3.2.2. The Role of Scale Regarding Process Understanding 

An improved process understanding can help reduce the necessity of model cali-

bration. Different assessment techniques open up opportunities for an enhanced under-

standing of soil erosion processes and especially the cross-scale transition from one pro-

cess to another. Therefore, these new data make it possible to monitor initialising and 

on-going processes that previously could not be observed at all or “only” in the form of 

results (e.g., headcut retreat, filling small ponds or aggregates disintegration). Such 

gained data might be used for model validation and development. 

Process-based soil erosion models deliver the best results at the observation scale 

they were parameterized and validated for [23,78,121,135,136]. Their governing equa-

tions are usually derived from the basis of small scales, and transferring them to a dif-

ferent scale can lead to poor validation results [23], because changing the considered 

scale also changes the prevailing erosional process [25,121]. To understand the dominant 

processes and their influences on erosional rates, it is important to consider the role of 
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scale. With improving technology, high-resolution data becomes available for a whole 

range of scales. While these data enable a validated extension of the spatial modelling 

scales, both on the micro and the macro level [29], it is unclear whether the models are 

ready for this kind of up and down scaling. 

Changing the size of the DEM cell can lead to a different focus on operating pro-

cesses [29]. An increasing resolution can expose non-erosive processes, e.g., swelling or 

shrinking, which may mask the actual erosional processes [84]. New assessment tech-

niques should trigger model development for an improved process description. There 

seems to be an effective resolution which models can cope with and below which small 

cells show higher erosion rates than is plausible. Models developed for resolutions in the 

range of metres can have difficulties with very high resolutions. However, a holistic un-

derstanding of soil erosion processes, including scale and resolution, remains necessary. 

Photogrammetric and LiDAR data, as discussed in Section 2, can enable temporal and 

spatial high resolution change detection and process mapping at different magnitudes 

[108,137], offering such information for soil erosion modelling. Which scale and resolu-

tion to choose from is not only dependent on the research question but also on the mod-

els’ capability. While authors already integrated small scale features in large scale mod-

elling, the data base for the viability of such an application in the context of process-based 

soil erosion modelling remains very limited. 

Figure 6 demonstrates how soil erosion processes act within the space-time scale 

and are superimposed by the next dominant process. While processes occur across scales 

(dashed lines), soil erosion is usually measured and modelled in a relatively discrete 

manner (solid lines). So far, insights on the whole scope of soil erosion processes and 

their interactions between are somewhat limited [138]. Nevertheless, recent assessment 

developments offer spatial and temporal high-resolution data, which enable the identi-

fication and mapping of processes on scales where they have not been visible before. 

Such techniques provide information not only on the spectrum of erosion and its inter-

action but also on the spatial and temporal distribution. Different models can be applied 

to different processes that again work on specific scales. Models consider single slopes or 

catchments with one mathematical function, as can be seen in Table 1, and reach their 

limit when switching to the next scale. While different scales are covered by different 

models and their mathematical equations, a cross-scale modelling approach could be 

achieved by integrating different parallel existing model equations. Techniques, such as 

in the area of remote sensing, open up opportunities for cross-scale process understand-

ing and accordingly model integration. 

 

Figure 6. Soil erosion processes considered by taking their cross-scale interaction into account 

(dashed ellipses) as well as the discrete consideration within their dominant temporal and spatial 

scale (continuous ellipses). Assessment techniques such as splash cups, discharge measurement, 



Remote Sens. 2022, 14, 2468 17 of 24 
 

 

roller chain and topographical survey, as well as process-based soil erosion models, have a discrete 

process understanding, whereas methods as remote sensing of tracing offer a cross-scale process 

understanding. 

3.3. Connectivity 

The complexity and multitude of processes taking place within a catchment affects 

sediment and water transfer throughout the system. To address management strategies 

and mitigation measurements, it is necessary to gain a complete overview of the system’s 

connectivity, shifting the perspective away from the single slope and towards the con-

nected system, taking a variety of spatial scales into account. This leads to a better un-

derstanding of the influence of human built structures and natural landforms on the 

continuity of water and sediment transfer throughout the system as well as the cause of 

off-site damages [139,140]. Models are simplifications of reality and often neglect the 

delayed reaction of the sediment yield and the impact of sediment connectivity [136]. 

Supplementary to erosion rate assessment, the mapping and modelling of sediment 

transport and runoff throughout the system is very important because those erosional 

forms have a profound impact on off-site damage [141]. A cross-scale process under-

standing based on spatial and temporal distributed soil, soil surface and soil erosion as-

sessments can also result in an improved understanding of connectivity and can help to 

integrate such aspects in process-based soil erosion models. 

For a best-fit of sediment transfer to its outlet, Mahoney et al. [142] stress the need of 

coupling erosion, connectivity formula and flow routing. As Table 1 summarise, the lat-

ter shows large gaps across the models and might therefore be tricky to integrate. A 

modelling approach, which takes connectivity into account, is represented by the Ge-

oWEPP-C model. It combines process-based soil erosion modelling with lateral sediment 

connectivity modelling but is still in the early stages of development [143]. In order to 

gain short and long term results from the development of connectivity, Baartman et al. 

[29] propose a continuous monitoring and modelling of runoff and sediment transfer. 

GIS-based indices offer an approach to circumvent extensive field work and large 

amounts of input data to partly quantify relevant connectivity factors [144]. Even though 

connectivity can currently only be assessed to a certain extent, new high-resolution re-

mote sensing data (e.g., surface change by DEMs) help to measure connectivity aspects at 

least in parts and enables the development of such connectivity indices [145]. While 

various methods, including tracing approaches, provide information about connectivity, 

process-based soil erosion models are not able to integrate this information so easily. This 

begs the question of whether it is more effective to adapt existing models or to create an 

entirely new approach, making future models more adaptable to new challenges. 

4. Conclusions and Outlook 

More advanced techniques as well as opportunities regarding scale and resolution 

in soil erosion assessment open up new possibilities regarding parameterization and 

process description. This review provides an overview of the opportunities that the im-

provement of soil and soil erosion assessment techniques can offer current process-based 

soil erosion models. We have selected 13 process-based soil erosion models and dis-

cussed whether such models can make use of the data presently available. The models 

have demonstrated different limitations regarding their process understanding, 

cross-scale modelling and the applicable resolution. We found modelling limitations, 

e.g., in implementing the calculations (regarding spatial and temporal discretisation), in 

input data (taking advantage of the available data), regarding the user (the provision of 

the data is so far very costly) and in the process calculation possibilities, such as the 

kinematic wave, which is not sufficient enough for a holistic flow routing. They fur-

thermore show difficulties regarding their process choice for the observed scale, which 

asks for new process integration. An important step could also be the development of a 

connectivity parameter for the spatial linkage of the modelled erosion. Current data 
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availabilities show potential in addressing some of the aspects models struggle with, 

such as particle detachment in rills, deposition, connectivity, flow velocity, wind-driven 

rain, model validation, reducing equifinality and flow routing. We conclude that the 

amount, availability and assessment of data have been extensively developed over the 

last few years, especially in the area of photogrammetry, LiDAR and tracing. However, 

our research has also shown that models can only partly integrate and benefit from new 

opportunities, such as resolution, and in most cases require a thorough model adaption. 

Because the strengths and weaknesses vary between the different models, we see 

great potential in merging the strengths of the various existing soil erosion models and 

weaken their limitations by working towards a cross-scale model collection. This could 

be a combination of different models or take form of an application which integrates the 

various model equations for different processes on different scales and resolutions. Such 

a framework, combined with a guideline to the correct choice of equations, based on 

scale, resolution, available data and the research question, could create a globally appli-

cable adaptive process-based modelling approach. Existing open-source process-based 

soil erosion models might already be a first step towards such a solution. The complexity 

of the entire erosional processes cannot be described only on a physical level. This aspect 

and the large and constantly rising amount of soil erosion data could pave the way to-

wards a new generation of models, which combines data driven frameworks with the 

strengths of an ensemble of process-based soil erosion models and their physical foun-

dation. In conclusion, future research should focus on advancing model development to 

keep up with the data and create a more holistic modelling approach. 
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Appendix A. Abbreviations: List of Process-Based Soil Erosion Models 

DWSM Dynamic Watershed Simulation Model [31] 

EROSION-3D no abbreviation [35] 

EUROSEM European Soil Erosion Model [40] 

GeoWEPP Geospatial Interface for Water Erosion Prediction Project [144] 

GSSHA Gridded Surface Subsurface Hydrologic Analysis [44] 

KINEROS1/2 KINematic runoff and EROsion model [48] 

LISEM Limburg Soil Erosion Model [52] 

MEFIDIS Modelo de Erosão FÍsico e DIStribuído [53] 

MIKE SHE no abbreviation [56] 

RillGrow no abbreviation [57] 

SHETRAN Systeme Hydrologique Europian-TRANsport [60] 

SIMWE SIMulation of Water Erosion [61] 

SMODERP A Simulation Model of Overland Flow and Erosion Processes [63] 

WEPP Water Erosion Prediction Project [66] 
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