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Abstract: Forest fires are among the biggest threats to forest ecosystems and forest resources, and can
lead to ecological disasters and social crises. Therefore, it is imperative to detect and extinguish forest
fires in time to reduce their negative impacts. Satellite remote sensing, especially meteorological
satellites, has been a useful tool for forest-fire detection and monitoring because of its high temporal
resolution over large areas. Researchers monitor forest fires directly at pixel level, which usually
presents a mixture of forest and fire, but the low spatial resolution of such mixed pixels cannot
accurately locate the exact position of the fire, and the optimal time window for fire suppression can
thus be missed. In order to improve the positioning accuracy of the origin of forest fire (OriFF), we
proposed a mixed-pixel unmixing integrated with pixel-swapping algorithm (MPU-PSA) model to
monitor the OriFFs in time. We then applied the model to the Japanese Himawari-8 Geostationary
Meteorological Satellite data to obtain forest-fire products at subpixel level. In this study, the ground
truth data were provided by the Department of Emergency Management of Hunan Province, China.
To validate the positioning accuracy of MPU-PSA for OriFFs, we applied the model to the Himawari-8
satellite data and then compared the derived fire results with fifteen reference forest-fire events that
occurred in Hunan Province, China. The results show that the extracted forest-fire locations using
the proposed method, referred to as forest fire locations at subpixel (FFLS) level, were far closer
to the actual OriFFs than those from the modified Himawari-8 Wild Fire Product (M-HWFP). This
improvement will help to reduce false fire claims in the Himawari-8 Wild Fire Product (HWFP). We
conducted a comparative study of M-HWFP and FFLS products using three accuracy-evaluation
indexes, i.e., Euclidean distance, RMSE, and MAE. The mean distances between M-HWFP fire
locations and OriFFs and between FFLS fire locations and OriFFs were 3362.21 m and 1294.00 m,
respectively. The mean RMSEs of the M-HWFP and FFLS products are 1225.52 m and 474.93 m,
respectively. The mean MAEs of the M-HWFP and FFLS products are 992.12 m and 387.13 m,
respectively. We concluded that the newly proposed MPU-PSA method can extract forest-fire locations
at subpixel level, providing higher positioning accuracy of forest fires for their suppression.

Keywords: subpixel; Himawari-8; MPU-PSA; origin of forest fire (OriFF); modified Himawari-8 Wild
Fire Product (M-HWFP); forest-fire locations at subpixel (FFLS) level

1. Introduction

Forest fires, when not suppressed in time, can spread over large areas and sometimes
may last for years or decades. There were a total of 116,171 active forest-fire events
in China from 2001 to 2015 [1]. Forest-associated biomass burning could be, in part,
responsible for the increase in greenhouse gases (GHG) in the atmosphere [2,3]. Forest fires
are among the biggest threats to plant ecological systems and resources [1,4], and can cause
ecological disasters and social crises. For instance, in Liangshan Yi Autonomous Prefecture,
Sichuan Province, China, serious forest fires occurred three times during 2019–2021 causing
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49 casualties [5–7], and the 2019–2020 Australia megafires lasted for five months from
September 2019 to February 2020, killing or displacing nearly 3 billion animals [8].

A series of precautions should be taken to mitigate adverse fire impacts and reduce
the likelihood of forest fires [9]. Effective forest-fire detection and monitoring has always
been a strong focus of research [10–14]. Meteorological satellites can acquire data contin-
uously over large areas and in high temporal resolution. Thus, they have been widely
used for forest-fire detection and monitoring [13,15–18]. Over the past decades, based on
the data from geostationary orbit (GEO) satellites or polar-orbiting satellites, researchers
have proposed many forest-fire detection and monitoring algorithms. These can be divided
into five categories [19]: (1) bi-spectral methods, such as that of Dozier [20], measuring the
surface radiant temperature of subpixel spatial resolution; (2) modified bi-spectral methods,
such as multiple endmember spectral mixture analysis (MESMA) [21], bi-spectral infrared
detection (BIRD) [22], and the Giglio and Schroeder [23] method; (3) threshold methods,
such as multi-channel threshold algorithms [24]; (4) spatial contextual methods, such as
MODIS Collection 6 active fire algorithms [25]; and (5) multi-temporal fire detection meth-
ods, such as robust satellite techniques for FIRES detection and monitoring (RST-FIRES)
algorithm [14]. However, due to the low spatial resolution of the satellites, researchers
conduct forest-fire monitoring research directly at pixel scale, which can lead to signifi-
cant fire-positioning error when the pixel shows a mixture of forest and fire [16,26–30].
Atkinson [31,32] first proposed the subpixel concept to find specific spatial distribution
information in a mixed pixel. Forest-fire spatial location must be specified in a mixed pixel
at the subpixel level.

For satellite data of low spatial resolution, mixed pixels are a common phenomenon [33–35].
They can be an obstacle in remote sensing applications in forest-fire detection, causing the
estimated location of a forest fire to vary widely from the actual position, depending on
spatial resolution. To overcome this obstacle, researchers proposed the traditional expo-
nential model, which is often found to produce inconsistent results, since a mixed pixel
includes both objective and non-objective materials [36]. A series of unmixing methods
have been proposed, such as maximum-margin criterion and derivative weights (MD-
WSU) [37], minimum-volume transform (MVT) [38], vertex component analysis (VCA) [39],
simplex growing algorithm (SGA) [40], minimum-volume-constrained nonnegative matrix
factorization (MVC-NMF) [41], successive projection algorithm (SPA) [42], etc. He et al. [36]
showed that spectral unmixing methods have advantages over the traditional exponential
model due to their ability to decompose the mixed pixel into several fractional abundances.
Shao and Lan [37] used the MDWSU technique to obtain more accurate endmembers and
abundance estimates. Nascimento and Dias [39] performed a series of experiments using
simulated and real data, and found that the VCA algorithm performs better than the pixel
purity index (PPI) method, and better than or similar to the N-FINDR algorithms [43]. Miao
and Qi [41] proposed the MVC-NMF method to extract unsupervised endmembers from
highly mixed image data. Zhang et al. [42] proposed SPA, which can provide a general
guideline to constrain the total number of endmembers.

However, spectral unmixing methods only solve the problem of endmember types
and abundances, without determining endmember location in a mixed pixel. To solve this
problem, Atkinson [31,32] proposed the subpixel concept for identifying precise spatial
locations of endmembers in a mixed pixel based on unmixing analysis results [44]. On
the basis of Atkinson’s study, many algorithms have been developed [45], such as spatial
attraction model (SAM), double-calculated spatial attraction model (DSAM) [34], subpixel
learning algorithms [46], subpixel edge-detection method [47], and so on. These subpixel
techniques have found many applications [48–51]. For instance, the random forests and
Spatial Attraction Model (RFSAM) was applied to remote sensing images to improve
the accuracy of subpixel mapping of wetland flooding [52]. Li et al. [53] proposed the
spatiotemporal subpixel land cover mapping (STSPM) method, demonstrating that it can
predict land cover maps accurately. Ling et al. [54] proposed a new approach aimed at
efficiently and accurately monitoring reservoir surface water area variations using daily
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moderate resolution imaging spectroradiometer (MODIS) images to explore subpixel scale
information. Deng and Zhu [55] proposed the continuous subpixel monitoring (CSM)
method and successfully applied it to mapping urban impervious surface area (ISA %) at
subpixel scale and characterizing its dynamics in Broome County, New York.

However, there are very few applications of these subpixel algorithms to forest-fire
location detection and fire monitoring [21]. In order to rapidly detect and monitor forest-
fire locations to reduce damage and save lives and properties, ascertaining the exact
locations of the origins of fires is important in order to gain quick access for firefighters.
Subpixel algorithms can help locate fires with subpixel accuracy. However, current forest-
fire monitoring methods using remote sensing data can locate forest fires only at pixel-size
level. Location accuracy can be improved with subpixel-level detection.

The objective of this study is to develop a new algorithm to improve the detection of
fire locations at subpixel level. To this end, we proposed a mixed pixel unmixing integrated
with pixel-swapping algorithm (MPU-PSA) model, in which spectral unmixing analysis is
performed using the Newton’s Method, then the unmixing analysis results are processed
with the pixel-swapping algorithm to obtain OriFFs of forest fires. We then applied the new
algorithm to the Himawari-8 L1 gridded data (HLGD) and Himawari-8 Wild Fire Product
(HWFP), taking advantage of the high temporal resolution of the Himawari-8 satellite data
to achieve more accurate forest-fire locations. The forest-fire information provided by the
Department of Emergency Management of Hunan Province, China, was used as ground
truth reference data. The result showed that the algorithm improved the location accuracy
of the origin of forest fire (OriFF), saving time for forest-fire extinguishment.

2. Materials and Methods

The present research used the following data: (a) satellite data, including Himawari-8,
Sentinel 2, and Landsat 8 satellite data (Section 2.2); (b) ground truth data (Section 2.4). First, we
ordered the Himawari-8 (https://www.eorc.jaxa.jp/ptree/, accessed on 10 December 2021)
HLGD and HWFP data for the dates closest to the starting time of a forest fire. Then, band 7
and band 14 of the HLGD data were selected and fused to produce dataset B7_14 in Matlab
R2016a (v 9.0, Mathworks, Natick, MA, USA). Wildfires detected in the HWFP data that did
not match the ground truth forest-fire information were eliminated to generate the modified
Himawari-8 Wild Fire Product (M-HWFP) dataset, but this remained at pixel level. Finally,
the datasets B7_14 and M-HWFP were used as inputs to our proposed model to obtain the
fire dataset forest-fire locations at subpixel (FFLS) level. Figure 1 shows the flowchart of
data processing and analysis, which are explained in detail over the following sub-sections.

2.1. Study Area

Hunan Province is located in the middle Yangtze River, central China, within an
area enclosed by 108◦47′~114◦15′ longitude and 24◦38′~30◦08′ latitude (Figure 2). Over
a year, the temperature in Hunan Province typically varies from 7.78 ◦C to 33.33 ◦C.
The rainiest month is June, with an average rainfall of 177.8 mm. The driest month is
December, with an average rainfall of 35.56 mm. The relatively warm and humid weather
results in lush vegetation and an evergreen landscape. Hunan province has a subtropical
evergreen broad-leaved forest area with a forest coverage rate of 59.96%. Forest and
wetland ecosystems are two major natural ecosystems. The ecological service function of
the forest ecosystems in Hunan Province is worth 1.01 trillion Chinese Yuan. There are
about 200 significant ecological zones around the world. Hunan province has two forest
and wetland ecosystems (subtropical evergreen broad-leaved forest ecological zones in the
Wuling Xuefeng Mountains and the Nanling Luoxiao Mountains), and they are known as
the world’s most valuable ecological regions within their latitude zone. Due to the high
forest coverage rate in Hunan Province, China, forest fires are significant potential hazards.
Therefore, monitoring and rapidly suppressing forest fires is imperative for maintaining
ecological integrity.

https://www.eorc.jaxa.jp/ptree/
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Figure 2. Location of the study area. (a) Study boundary within China for which data were down-
loaded http://bzdt.ch.mnr.gov.cn/ (accessed on 10 December 2021), (b) the 15 forest-fire events in
Hunan Province, China as reference data.

2.2. Satellite Data Processing

Himawari-8, Sentinel 2, and Landsat 8 satellite data were reprojected into a common
Universal Transverse Mercator (UTM) projection with WGS84 as the datum so that all
datasets could be overlaid within the same coordinate system. After each satellite dataset
was clipped, the cloud cover was less than 10%. The Himawari-8 satellite data were used
for detecting and monitoring the OriFF attribute at high temporal resolution (10 min). The
Sentinel 2 and Landsat 8 images with higher spatial resolution were used as base maps to
verify whether the hotspots detected in the Himawari-8 data were within the forest.

In this study, the HLGD data in Network Common Data Form (NetCDF) format
and the HWFP data in comma-separated values (CSV) format were downloaded via
File Transfer Protocol (FTP) in FileZilla Client 3.3.2 software. The Advanced Himawari
Imager (AHI) carried by the Himawari-8 satellite scans the Pacific Ocean hemispheric
region every 10 min, resulting in the production of 142 images over a specific scene per
day [30,56]. The high temporal resolution of the Himawari-8 data makes it possible to
semi-continuously monitor and detect forest fires, even though its spatial resolution is low.
The JAXA Himawari Monitor User’s Guide is available on website https://www.eorc.jaxa.
jp/ptree/userguide.html (accessed on 12 December 2021). Table 1 shows the characteristics
of band 7 (3.85 µm) and band 14 (11.20 µm) selected for this study. These two bands are
the most important bands used for forest-fire monitoring and detection [13,16,30]. This
study acquired 2130 HLGD images and 2130 HWFP images for the fifteen forest-fire events
used as reference fires. To reduce the influence of clouds, we filtered the clouds for each
pixel when calculating the average background brightness temperature. Furthermore, to
improve the running speed, we used the subset data from shapefile batch of ENVI 5.3 to
clip HLGD.

http://bzdt.ch.mnr.gov.cn/
https://www.eorc.jaxa.jp/ptree/userguide.html
https://www.eorc.jaxa.jp/ptree/userguide.html
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Table 1. Bands of Himawari-8 HLGD, Sentinel 2, and Landsat 8 imagery used in current study.

Satellite Sensor Band Number Band Width (µm) Spatial Resolution (m)

Himawari-8 AHI
7 3.74~3.96 2000
14 11.10~11.30 2000

Sentinel 2 MSI

2 0.46~0.52 10
3 0.54~0.58 10
4 0.65~0.68 10
8 0.79~0.90 10

Landsat 8 OLI

2 0.45~0.51 30
3 0.53~0.59 30
4 0.64~0.67 30
5 0.85~0.88 30
8 0.50~0.68 15

The Sentinel 2 satellite data were downloaded from https://earthexplorer.usgs.gov/
(accessed on 15 December 2021) as Level 1C product. This product was orthorectified to top-
of-atmosphere (TOA) reflectance. The Sentinel 2 satellite data were packaged into images
according to the spatial resolution of 10 m (band 2, 3, 4, and 8), 20 m (bands 5, 6, 7, 8b, 11,
and 12), and 60 m (bands 1, 9, and 10), respectively. The Sentinel 2 TOA reflectance data
were processed to bottom-of-atmosphere (BOA) reflectance after radiometric calibration
and atmospheric correction using Sen2cor (V2.8). Table 1 shows the characteristics of
band 2 (Blue), band 3 (Green), band 4 (Red), and band 8 (NIR) selected for this study.

In this study, we used Landsat 8 OLI/TIRS C2 L1 data from https://earthexplorer.usgs.
gov/ (accessed on 18 December 2021). The OLI/Landsat 8 multispectral and panchromatic
data were processed to obtain the data-fusion result, using NNDiffuse Pan Sharpening in
the ENVI 5.3 software. Table 1 shows the characteristics of band 2 (Blue), band 3 (Green),
band 4 (Red), band 5 (NIR), and band 8 (Pan) of Landsat 8 selected for this study.

2.3. Input Data Preparation

Using Visual Studio 2012 software based on C# programming (https://github.com/
HZXu1/MPU_PSA.git, accessed on 10 May 2022), we batch-processed the 142 HWFP
daily images and extracted and saved hotspot information in a CSV file. Furthermore, all
hotspot information of the 142 HWFP images, especially the earliest UTC time of every
forest-fire event, was obtained using ArcGIS 10.4 software through the tabulated collected
fire information (TCFI). For example, taking the first wildfire event (i.e., 1HeCo, which
is the serial number of forest-fire event) (Figure 3), the red dot inside the yellow circle
in the HWFP image gives the location of a hotspot in the IR images detected 64 times
that day, as indicated in the third red circle (Figure 3b). False fires in the HWFP images
were eliminated by comparing them to the TCFI data and burned area base map, and a
Modified Himawari-8 Wild Fire Product (M-HWFP) was obtained. Combining the base
map and TCFI data, we can see that the earliest monitoring time of the forest-fire event was
11:32 am (UTC time). Then, the M-HWFP data and the preprocessed HLGD data obtained
at the timepoint closest to a fire’s starting time in a target area were used as input to the
Visual Studio 2012 software based on C# programming.

2.4. Ground Truth Data

Tabulated collected fire information (TCFI) as provided by the Department of Emer-
gency Management of Hunan Province was used as ground truth data. Information about
each fire event includes location, weather, starting and extinguishing times, damaged
area, and cause. The Department of Emergency Management of Hunan Province confirms
and reports forest-fire events when a forest fire occurs (Figure 4). Field measurements,
including those pertaining to OriFF and damaged areas from a forest fire, were performed
by well-trained personnel with global navigation satellite system survey equipment and
unmanned aerial vehicles (UAV. The type of platform was Phantom 4 Pro V2.0, and the

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://github.com/HZXu1/MPU_PSA.git
https://github.com/HZXu1/MPU_PSA.git
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sensor was 1-inch CMOS with 20 million effective pixels. After the route was designed,
the data were automatically collected and stored in the fuselage memory card). From the
TCFI data between 2018 and 2021, the fifteen forest-fire events that resulted in the most
environmental damage were selected as reference data.
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2.5. The Proposed MPU-PSA Model

The proposed MPU-PSA model consists of two major procedures: (1) pixel-unmixing
analysis using Newton’s method, and (2) derivation of forest-fire spatial distribution
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information using pixel-Swapping algorithm (PSA). We used the MPU-PSA method to
improve determination of the spatial locations of forest fires at a subpixel scale. The
M-HWFP and B7_14 datasets were processed using the MPU-PSA method to obtain the
final result. Based on the Himawari-8 satellite data, each pixel was evenly divided into
5 × 5 subpixels. The spatial resolution of each subpixel was thus 400 m. The final result
was forest-fire spatial distribution information in a mixed pixel.

2.5.1. Mixed Pixel-Unmixing (MPU) Analysis

The Planck function for emittance at wavelength λ of a blackbody at kinetic tempera-
ture T is shown in Equation (1):

Mλ,T =
2πhc2

λ5(exphc/kTλ−1)
=

C1

λ5(expC2/λ·T −1)
(1)

The method for satellite identification of surface temperature fields at subpixel res-
olution was proposed by Dozier [20]. Assuming a mixed pixel is composed of active fire
with high temperature in proportion P (where 0 ≤ P ≤ 1) and a background with normal
temperature in the remaining proportion (1− P), radiance of a mixed pixel can be expressed
by the following Equation (2):

Li = P× Li, f ire + (1− P)× Li,bg= P× C1

πλi
5(expC2/λi ·Ti, f ire −1)

+ (1− P)× C1

πλi
5(expC2/λi ·Ti,bg −1)

(2)

where subscript i indicates the i-th band; Li is the radiance at i-th band (W·m−2·µm−1·sr−1);
Li, fire the target forest-fire radiance (W·m−2·µm−1·sr−1); Li, bg the background (bg) ra-
diance (W·m−2·µm−1·sr−1); C1 and C2 are the first (3.74 × 10−16 W·m2) and second
(1.44 × 10−2 m·K) Planck constants, respectively; λi is the wavelength (µm) of i-th band;
and Ti, fire and Ti,bg are the temperature (K) of the target forest fire and the background,
respectively. We chose band 7 and band 14 in this study, and the radiances of a mixed pixel
for band 7 and band 14 were given as below according to Equation (2).{

L7 = P× L7, f ire + (1− P)× L7,bg
L14 = P× L14, f ire + (1− P)× L14,bg

(3)

where

L7, f ire =
C1

πλ7
5(exp

C2/λ7 ·T7, f ire −1)
, L7,bg = C1

πλ7
5(exp

C2/λ7 ·T7,bg −1)
, L14, f ire =

C1

πλ14
5(exp

C2/λ14 ·T14, f ire −1)
, and

L14,bg = C1

πλ14
5(exp

C2/λ14 ·T14,bg −1)

Rearranging Equation (3), we obtained Equation (4), where we introduced two objec-
tive functions, F(P, T7 f ire) and G(P, T14 f ire): F(P, T7, f ire) = −L7 + P× C1

πλ7
5(exp

C2/λ7 ·T7 f ire −1)
+ (1− P)× C1

πλ7
5(exp

C2/λ7 ·T7bg −1)
= 0

G(P, T14, f ire) = −L14 + P× C1

πλ14
5(exp

C2/λ14 ·T14, f ire −1)
+ (1− P)× C1

πλ14
5(exp

C2/λ14 ·T14,bg −1)
= 0

(4)

Solutions for P, T7, f ire, and T14, f ire were sought through solving F(P, T7 f ire) = 0 and
G(P, T14 f ire) = 0. There are several methods to solve the above nonlinear equations. We
used Newton’s method with iteration accuracy of 10−4 to obtain P and Ti, fire (i = 7 and 14).

2.5.2. Pixel-Swapping Algorithm (PSA)

Atkinson [44] proposed the PSA method, which was designed to process an image
of land cover proportions in K = 2 classes. In this study, PSA needed to be carried out on
the basis of forest-fire abundance information. Thus, the PSA method was applied based
on the unmixing results of mixed pixels (Section 2.5.1). If 10 × 10 (=100) subpixels are to
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be mapped within each mixed pixel, a land cover class (with or without forest fire) with a
proportion of 57 percent would mean that 57 subpixels were allocated to that class.

PSA is comprised of three basic steps. Firstly, for every subpixel, the attractiveness
A(pc

i ) of a subpixel pi in c-th class is predicted as a distance-weighted function of its j = 1,
2, . . . , J neighbors:

A(pc
i ) =

J

∑
j=1

λijz(xc
j ) (5)

where z(xc
j ) is the value of j-th subpixel belonging to c-th class, and λij is a distance depen-

dent weight predicted by Equation (6):

λij = exp(
−hij

α
) (6)

where hij is the distance between two subpixels, pi and pj, and a is the non-linear parameter
of the exponential model. Secondly, once the attractiveness of each subpixel has been
predicted based on the current arrangement of subpixel classes, the subpixel algorithm
ranks the values on a pixel-by-pixel basis. For each pixel, the least attractive subpixel
currently allocated to a “1” (i.e., a “1” surrounded mainly by “0”s) is stored (shown in
Equation (7)):

candidate A = (xc
i : A(pc

i ) = min(A) | z(xc
i ) = 1) (7)

The most attractive subpixel currently allocated to a “0” (i.e., a “0” surrounded mainly
by “1”s) is also stored (shown in Equation (8)):

candidate B = (xc
j : A(pc

j ) = max(A)
∣∣∣ z(xc

j ) = 0) (8)

Lastly, classes of subpixels are swapped as follows: if the attractiveness of the least
attractive subpixel is less than that of the most attractive subpixel, the classes are swapped
for the subpixels in question (shown in Equation (9)):

z(xc
i ) = 0

z(xc
j ) = 1

}
i f Ai < Aj (9)

If it is more attractive, no change is made.

2.6. Accuracy Assessment

In forestry firefighting, firefighters must arrive at the OriFF location as soon as possible
to extinguish the fire. Therefore, it is important to know the distance between the estimated
OriFF location and the actual OriFF location. It is necessary to compare the FFLS and
M-HWFP datasets to decide which derived OriFF is closer to the actual OriFF. To this end,
we added Euclidean distance as one of the accuracy-evaluation indexes. Moreover, using
distance was able show more intuitively whether the M-HWFP data or the FFLS data had
better OriFF estimation; and using distance could also reflect the positioning accuracy
more intuitively. To evaluate the performance of the MPU-PSA for OriFF detection, fifteen
forest-fire events with TCFI data were selected as references, in order to assess: (1) the
accuracy of distance comparison analysis (distance from the M-HWFP-estimated OriFF or
from the FFLS-estimated OriFF to the actual OriFF), and (2) accuracy-comparison analysis
(forest-fire positioning accuracy comparison between M-HWFP and FFLS). Three widely
used indexes were calculated for the evaluation: Euclidean distance, root mean square
error (RMSE), and mean absolute error (MAE). The two metrics, RMSE and MAE, are
measures of the difference between the values predicted by the model and those of the
actual phenomenon [57]. The lower the RMSE and MAE, the better the precision and
accuracy of the model [58]. The RMSE is significantly sensitive to large values and outliers,
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and the MAE is suitable to describe uniformly distributed errors [59,60]. Therefore, it is
necessary to combine RMSE with MAE to evaluate the variation in model errors [61,62].
They can be formulated as follows:

dM-HWFP-OriFF =
√
(xi − xj)

2 + (yi − yj)
2 (10)

dFFLS-OriFF =
√
(xi − xj)

2 + (yi − yj)
2 (11)

To illustrate the better positioning accuracy of dFFLS-OriFF, we introduced positioning-
precision rate as given below:

positioning− precision rate =
dM-HWFP-OriFF − dFFLS-OriFF

dM-HWFP-OriFF
% (12)

where dM-HWFP-OriFF is the Euclidean distance between the M-HWFP-estimated OriFF and
the actual OriFF; dFFLS-OriFF is the Euclidean distance between the FFLS-estimated OriFF
and the actual OriFF; (xi, yi) and (xj, yj) are coordinates of samples in two-dimensional
space. The second and third indices are RMSE and MAE, as given below:

RMSE =

√√√√ 1
m

m

∑
i=1

(di −
∧
di)

2

(13)

MAE =
1
m

m

∑
i=1

∣∣∣∣(di −
∧
di)

∣∣∣∣ (14)

where
∧
di represents the estimated fire locations in FFLS of fire event i that were obtained

using the MPU-PSA method; di is the actual OriFF of fire event i from the TCFI data; and
m (=15) is the number of all forest-fire events evaluated; RMSE and MAE were calculated
for both M-HWFP and FFLS relative to the actual OriFFs.

3. Results
3.1. Forest-Fire Detection

For convenience, we used green triangles to represent the actual OriFFs, or the true
forest-fire locations. We used purple dots to represent the M-HWFP-estimated OriFFs,
and red rectangles to represent the FFLS-estimated OriFFs, which have subpixels of 400 m
by 400 m. As shown in Figure 5, among the fifteen forest-fire events, red rectangles
(i.e., locations of FFLS-estimated OriFFs) and green triangles (i.e., locations of actual OriFFs)
of fourteen forest-fire events were surrounded by purple dots (i.e., locations of M-HWFP-
estimated OriFFs). It can be clearly seen that the red rectangles are closer than the purple
dots to the green triangles. Eight green triangles are closest to or even overlap with the
subpixel results. The red line represents the county boundary. We can see that among
the fourteen forest-fire events, nine occurred at the junction of counties. Combining this
knowledge with geographic information system (GIS) analysis, we can infer that these
places have denser forests or more forest fuel, factors which need further verification. In
Figure 6, green triangles again represent the actual OriFF locations, purple dots represent
forest-fire locations detected by Himawari-8 satellite, and red rectangles represent the
locations of the FFLS-estimated OriFFs, as in Figure 5. Sentinel 2 was the first choice for
the base map, but if there were no suitable Sentinel 2 data for the forest-fire event area, we
used Landsat 8 instead. From Figure 6, it can be seen that among the forest vegetation, the
area burnt by the fire can be easily recognized by visual interpretation.
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Figure 5. Positioning-accuracy comparison between M-HWFP and FFLS in detecting fire locations
in various counties. OriFF represents origin of forest fire. The location-detection of the forest fires
occurred in (a) Hengdong County (1HeCo), (b) Leiyang County (2LeCo), (c) Liling County (3LiCo),
(d) Hongjiang County (4HoCo), (e) the junction of Hengnan County and Anren County (5HeCo),
(f) Lanshan County (6LaCo), (g) Guiyang County (7GuCo), (h) Fenghuang County (8FeCo), (i) Jiahe
County (9JiCo), (j) Jiahe County (10JiCo), (k) Guidong County (11GuCo), (l) Xintian County (12XiCo),
(m) Beihu County (13BeCo), (n) Sangzhi County (14SaCo), and (o) Ningxiang County (15NiCo).
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Figure 6. Locations of fifteen forest-fire events detected at subpixel level by the new MPU-PSA
method. The improved location-detection of the forest fires occurred in (a) Hengdong County
(1HeCo), (b) Leiyang County (2LeCo), (c) Liling County (3LiCo), (d) Hongjiang County (4HoCo),
(e) the junction of Hengnan County and Anren County (5HeCo), (f) Lanshan County (6LaCo),
(g) Guiyang County (7GuCo), (h) Fenghuang County (8FeCo), (i) Jiahe County (9JiCo), (j) Jiahe
County (10JiCo), (k) Guidong County (11GuCo), (l) Xintian County (12XiCo), (m) Beihu County
(13BeCo), (n) Sangzhi County (14SaCo), and (o) Ningxiang County (15NiCo).
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Therefore, we can conclude that fire locations determined at subpixel level in FFLS
were closer to the actual OriFF locations, while fire locations determined at pixel level in
M-HWFP were further away from the actual OriFF locations. These results demonstrate
that the MPU-PSA technique has the advantage of detecting fire locations at subpixel level,
thus performs more accurately than traditional forest-fire detection method at pixel level.

3.2. Comparison of M-HWFP and FFLS in Positioning Accuracy

Comparative analysis results from dM-HWFP-OriFF and dFFLS-OriFF indices data are
shown in Table 2 to illustrate the better performance of FFLS in comparison with M-
HWFP in locating forest fires. M-HWFP provides the pixel-level fire locations, which
were retrieved from the infrared band (IR) images of the Himawari-8 satellite using the
method developed by JAXA/EORC [63,64]. Using the proposed method, we attempted
to obtain more precise spatial locations of OriFFs than those obtained using traditional
forest-fire detection methods, such as M-HWFP. Knowing the exact locations of forest fires
is imperative in effective forestry firefighting, especially in virgin and dense forests among
high mountains with bumpy or even no roads. As shown in Table 2, the coordinates of
fire locations are projected coordinates with easting and northing in meters. Taking the
first forest-fire event (i.e., 1HeCo) as an example, TCFI data showed that the forest fire
started at 12:00 UTC on 24 September 2019, and the closest timepoint to forest-fire starting
time recorded by Himawari-8 satellite was 11:30 UTC on 24 September 2019. In Table 2,
dM-HWFP-OriFF and dFFLS-OriFF are 6294.90 m and 1573.00 m, respectively. Therefore, for the
first forest-fire event (i.e., 1HeCo), the FFLS-estimated OriFF was closer to the actual OriFF
than the M-HWFP-estimated OriFF, with a positioning-precision rate of 75.01%.

As shown in Figure 7 and Table 2, the positioning-precision rates of the fifteen forest-
fire events all exceeded 50%. The mean dM-HWFP-OriFF, dFFLS-OriFF, and positioning-precision
rate were 3362.21 m, 1294.00 m, and 60.99%, respectively. The largest positioning-precision
rate was 79.58%, and the lowest positioning-precision rate was 51.28%. The positioning-
precision rates of two forest-fire events exceeded 70.00%, and the positioning-precision
rates of five forest-fire events exceeded 60.00%. The MPU-PSA method has an advantage in
monitoring OriFFs over the traditional forest-fire detection method.
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Table 2. Positioning-accuracy comparison of M-HWFP to OriFF and FFLS to OriFF. PPR represents
positioning-precision rate.

Num.

Easting and Northing
Total

dM-HWFP-OriFF
(m)

Total
dFFLS-OriFF

(m)

PPR
(%)

OriFF M-HWFP FFLS

Easting
(m)

Northing
(m)

Easting
(m)

Northing
(m)

Easting
(m)

Northing
(m)

1HeCo

705,596.58 3,006,410.92 704,082.66 3,008,048.47 704,954.05 3,006,231.03

6294.90 1573.00 75.01
705,596.58 3,006,410.92 706,064.56 3,008,081.20 705,343.10 3,006,680.72
705,596.58 3,006,410.92 704,119.06 3,005,832.40 705,739.46 3,006,687.27
705,596.58 3,006,410.92 706,101.31 3,005,865.10 705,746.79 3,006,244.13

2LeCo
702,756.60 2,923,687.72 701,458.01 2,923,778.10 702,698.15 2,924,196.13

2008.86 866.57 56.86702,756.60 2,923,687.72 703,453.15 2,923,809.56 703,104.11 2,923,759.34

3LiCo
731,319.58 3,035,796.60 731,290.37 3,037,348.07 731,360.44 3,035,955.75

2216.78 452.59 79.58731,319.58 3,035,796.60 731,332.09 3,035,131.68 731,368.78 3,035,512.54

4HoCo
389,661.48 3,015,656.00 387,151.62 3,015,747.42 390,419.76 3,015,657.80

4722.92 1912.50 59.51389,661.48 3,015,656.00 389,111.73 3,013,514.02 390,815.69 3,015,654.38

5HeCo
708,216.34 2,960,200.00 706,831.09 2,961,544.35 707,705.02 2,959,734.72

4592.03 1754.73 61.79708,216.34 2,960,200.00 706,867.31 2,959,328.37 708,095.58 2,960,184.38
708,216.34 2,960,200.00 708,856.95 2,959,361.04 708,508.02 2,959,304.68

6LaCo
630,975.42 2,807,970.71 630,761.87 2,809,876.75 630,434.73 2,808,518.79

2281.77 942.67 58.69630,975.42 2,807,970.71 630,783.42 2,807,661.70 630,841.40 2,808,079.76

7GuCo
688,789.37 2,866,830.81 688,294.29 2,868,175.04 688,365.96 2,866,811.21

2419.37 1046.73 56.74688,789.37 2,866,830.81 688,326.07 2,865,959.45 688,372.32 2,866,368.16

8FeCo
369,975.51 3,102,917.48 370,279.78 3,104,551.89 370,363.30 3,102,703.42

2307.95 897.46 61.11369,975.51 3,102,917.48 370,255.77 3,102,336.03 370,368.09 3,103,146.51

9JiCo
631,515.70 2,846,529.30 630,393.03 2,847,533.50 631,671.98 2,846,185.04

4242.42 1821.94 57.05631,515.70 2,846,529.30 630,414.86 2,845,318.35 631,680.80 2,845,299.13
631,515.70 2,846,529.30 632,421.46 2,845,338.26 632,077.63 2,845,746.08

10JiCo
645,860.26 2,839,339.22 644,533.72 2,838,818.48 645,793.16 2,839,244.63

2269.30 747.91 67.04645,860.26 2,839,339.22 646,541.41 2,838,840.48 646,199.49 2,838,806.07

11GuCo
790,268.92 2,875,627.18 790,351.29 2,876,689.63 790,025.81 2,874,871.95

2230.77 1013.74 54.56790,268.92 2,875,627.18 790,400.46 2,874,473.01 790,416.67 2,875,324.08

12XiCo
631,319.73 2,845,985.37 630,393.03 2,847,533.50 631,671.99 2,846,185.04

4206.16 1631.44 61.21631,319.73 2,845,985.37 630,414.86 2,845,318.35 631,676.40 2,845,742.08
631319.73 2,845,985.37 632,421.46 2,845,338.26 632,077.64 2,845,746.07

13BeCo
687,060.14 2,844,208.01 686,604.09 2,845,990.97 686,280.65 2,844,182.18

2320.74 1130.68 51.28687,060.14 2,844,208.01 686,635.30 2,843,775.45 686,675.78 2,844,630.86

14SaCo
404,309.30 3,255,150.96 403,012.85 3,257,151.48 405,033.63 3,255,261.12

5136.11 2351.74 54.21404,309.30 3,255,150.96 404,952.70 3,257,135.00 404,653.13 3,256,150.69
404,309.30 3,255,150.96 404,934.07 3,254,918.86 404,261.44 3,255,710.81

15NiCo
599,212.52 3,119,992.26 598,124.89 3,121,978.22 598,986.92 3,120,578.12

3183.05 1266.23 60.22599,212.52 3,119,992.26 600,106.15 3,119,778.82 599,779.36 3,119,698.53

Average 3362.21 1294.00 60.99

3.3. Accuracy Comparison between M-HWFP and FFLS

We chose two commonly used accuracy-evaluation indexes, RMSE and MAE, to
evaluate the accuracy of M-HWFP and FFLS. Compared with M-HWFP, FFLS showed
more accurate spatial location of OriFFs. Table 3 shows RMSE and MAE values of M-
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HWFP and FFLS datasets for the fifteen forest-fire events. Taking the first forest-fire event
(i.e., 1HeCo) as an example, M-HWFP has RMSE = 1486.79 m and MAE = 1258.98 m, while
FFLS produced by the MPU-PSA method has RMSE = 381.95 m, decreased by 74.31%; and
MAE = 314.60 m, decreased by 75.01%. As shown in Table 3, the largest decreases in RMSE
and MAE were 80.35% and 79.58%, respectively; and the smallest decreases in RMSE and
MAE were 50.50% and 51.28%, respectively. For the 15 reference forest-fire events, the
decrease in RMSE and MAE exceeded 50.00%. There was one forest-fire event with an
RMSE decrease exceeding 80.00%, and there were six forest-fire events with RMSE decrease
exceeding 60.00%. There were two forest-fire events with an MAE decrease exceeding
70.00%, and seven forest-fire events with an MAE decrease exceeding 60.00%. Furthermore,
the average RMSE and MAE of M-HWFP were 1225.52 m and 992.12 m, respectively, owing
to the low spatial resolution of the Himawari-8 satellite. On the other hand, the average
RMSE and MAE of FFLS were 474.93 m and 387.13 m, respectively. FFLS generally showed
a more refined detection of spatial location of forest fires than M-HWFP.

Table 3. Accuracy comparison of M-HWFP and FFLS.

Num.

RMSE MAE

M-HWFP (m) FFLS (m) Decrease of RMSE (%) M-HWFP (m) FFLS (m) Decrease of MAE (%)

1HeCo 1486.79 381.95 74.31 1258.98 314.60 75.01
2LeCo 855.29 359.53 57.96 669.62 288.86 56.86
3LiCo 1193.77 234.63 80.35 1108.39 226.30 79.58
4HoCo 1673.17 690.51 58.73 1180.73 478.13 59.51
5HeCo 1218.20 525.25 56.88 918.41 350.95 61.79
6LaCo 1380.39 557.94 59.58 1140.88 471.34 58.69
7GuCo 1230.04 532.74 56.69 1209.69 523.37 56.74
8FeCo 891.70 317.33 64.41 576.99 224.36 61.11
9JiCo 1251.74 550.63 56.01 1060.61 455.49 57.06

10JiCo 740.75 287.33 61.21 453.86 149.58 67.04
11GuCo 596.27 295.13 50.50 318.68 144.82 54.56
12XiCo 1240.13 495.49 60.05 1051.54 407.86 61.21
13BeCo 1345.00 568.12 57.76 1160.37 565.34 51.28
14SaCo 1868.81 810.39 56.64 1712.04 783.91 54.21
15NiCo 1410.81 516.95 63.36 1061.02 422.08 60.22

Average 1225.52 474.93 60.96 992.12 387.13 60.99

4. Discussion

Traditionally, forest-fire detection has mainly relied on artificial ground patrols and
watchtowers [65]. Slow acquisition of fire information, such as location and starting time,
using the conventional methods often lead to delayed action and ultimately to forest-
fire disasters. The advent of remote-sensing techniques, such as satellite-based [66,67],
aerial-based [68], and ground-surveillance-camera-based [69] techniques, offers researchers
alternative or even better methods for forest-fire detection and monitoring. Meteorological
satellites are widely used in forest-fire detection and monitoring because of their high
temporal resolution. For example, Jang et al. [13] detected most forest fires successfully
based on the Himawari-8 satellite data. In this study, we could monitor and detect forest
fires every 10 min using the Himawari-8 satellite data. The high temporal resolution makes
it possible to detect forest fires in almost real time.

However, forest-fire monitoring at pixel scale can cause large errors in fire locations.
The ability of subpixels to specify the distribution location of mixed pixel composition
could somewhat improve this situation [31,32]. Burnt-area estimation at subpixel level
using Advanced Very-High-Resolution Radiometer (AVHRR) data has a mean error of
6.5% [70]. In this study, we proposed the MPU-PSA method to detect OriFFs. Compared
with M-HWFP, OriFF detection by the new method (MPU-PSA) has higher positioning
accuracy. On the one hand, the subpixel result (i.e., FFLS) maintains the high temporal
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resolution of the Himawari-8 satellite but provides more accurate positions of forest fires.
Identification of fire locations at subpixel level enhanced forest-fire monitoring. It is of great
importance that forest fires are extinguished in a timely manner at their OriFF locations.
The MPU-PSA method was successfully applied to fifteen forest fires in Hunan province,
China. However, in future research, it should be a priority to carry out research to validate
and conduct the MPU-PSA in other regions. Furthermore, it is necessary to further improve
forest-fire positioning accuracy at subpixel scale by improving the algorithm.

5. Conclusions

In this study, we proposed a forest-fire detection model for forest-fire detection at
subpixel level (MPU-PSA), and applied the model to the Himawari-8 satellite data for fire
detection. The proposed model involves two main procedures: (1) pixel-unmixing analysis
to obtain forest-fire distribution, and (2) adaptation of the pixel-swapping algorithm to
generate the FFLS dataset for OriFF estimation. The MPU-PSA method was applied to
fifteen forest-fire events occurring in Hunan Province, China. Compared with the M-
HWFP product, the FFLS dataset has better positioning accuracy, which was reflected in
three accuracy-evaluation indices: Euclidean Distance, RMSE, and MAE. Positioning error
was significantly improved, decreasing from 3362.21 m to 1294.00 m (with the average
positioning-precision rate being 60.99%). The mean RMSE decreased from 1225.52 m to
474.93 m (decrease rate = 60.96%), and the mean MAE decreased from 992.12 m to 387.13 m
(decrease rate = 60.99%). All these results show that (1) the MPU-PSA method developed
in this study can estimate forest-fire locations at subpixel level, which is more accurate
than the conventional pixel-level method, especially for geostationary satellite products,
such as the Himawari-8 Wild Fire Product, which has low spatial resolution but high
temporal resolution, and (2) the FFLS product with geographic information can provide
more accurate OriFF locations than the M-HWFP product. This new forest-fire detection
technique can assist in forest-fire extinguishment by quickly and accurately detecting
OriFF locations.
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