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Abstract: Karst landscapes have an abundance of enclosed depressions. Many studies have detected
depressions and have calculated geomorphometric characteristics with computer techniques. These
outcomes are somewhat determined by the methods and data used. We aim to highlight the applica-
bility of high-resolution relief laser scanning data in geomorphological studies of karst depressions.
We set two goals: geomorphometrically to characterize depressions in different karst plateaus and to
examine the influence of data preprocessing and detection methods on the results. The study was
performed in three areas of the Slovene Dinaric Karst using the following steps: preprocessing digital
elevation models (DEMs), enclosed depression detection, calculating geomorphometric characteris-
tics, and comparing the characteristics of selected areas. We discovered that different combinations
of methods influenced the number and geomorphometric characteristics of depressions. The range
of detected depressions in the three areas were 442–491, 364–403, and 366–504, and the share of
the depressions’ area confirmed with all the approaches was 23%, 29%, and 47%, which resulted in
different geomorphometric properties. Comparisons between the study areas were also influenced
by the methods, which was confirmed by the Mann–Whitney test. We concluded that preprocessing
of high-resolution relief data and the detection methods in karst environments significantly impact
analyses and must be taken into account when interpreting geomorphometric results.

Keywords: geographic information systems; digital elevation model (DEM); LiDAR; doline; geomor-
phology; geomorphometry

1. Introduction

Karst landscapes cover an extensive area of the Earth. According to Goldscheider et al. [1],
about 15.2% of carbonate rock on land (outside glaciated areas) is at or near the surface
and on which karst can develop. The best-known karst areas in the world include the
Dinaric Karst, which stretches along the western coast of the Adriatic Sea from Italy to
Albania. The karst of the southern part of Slovenia is part of the Dinaric Karst. Karst
covers 9530 km2 of Slovenia [2], which is just under half of the country. Karst boasts
an abundance of landforms, most often dolines and other enclosed karst depressions,
mostly located in forest-covered areas [3]. Karst depressions are often used as one of the
diagnostic indicators to determine a karst area [4]. Different terms are used for terrain
depressions (karst depressions, dolines, sinkholes, etc.); however, in view of the diversity
of Dinaric karst depressions, we decided to use a general term—enclosed karst depressions
(hereinafter karst depressions).

In the Dinaric Karst, there are differences between karst depressions—as well as
natural dolines and collapse dolines, dolines anthropogenically altered for agricultural
purposes are also common near settlements. The last is the so-called cultivated dolines, and
they have anthropogenically levelled bottoms with a deeper soil layer, which make them
more suitable for farming than the surrounding areas [5]. In general, the natural rocky
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and rugged karst landscape is often a limiting factor for agriculture and other economic
activities, and it is often difficult to cross and map natural phenomena in the field. Due to
the diversity of the bedrock and the aforementioned human influence, karst depressions
have different shapes [6–9]. A review of the recent literature shows a number of karst
depression detecting analyses, mostly focusing on the most common types of depression—
round and ellipsoid [10–19]. In addition, round-shaped depressions have also been detected
in non-karstic environments [20].

Most studies are based on high-resolution topography data, such as digital elevation
models (DEMs), with a cell resolution of a few meters (e.g., [10,12]) to LiDAR elevation
models, with a cell resolution of up to one meter (e.g., [13–18]). Studies have primarily
focused on high-resolution DEMs, especially LiDAR-derived, which are becoming more
and more detailed and fine-scaled, and enable geomorphometric analyses at different
spatial scales, including the micro-scale for studying micro-features, such as solution
features on rocks.

In our study, we focused on medium-sized karst features—enclosed karst depressions—
as the most widespread and well-known karst surface landforms and, lately, also the most
studied karst landforms [6–20]. In this decade, we have witnessed a switch toward the
application of high-resolution LiDAR DEMs and the fast development of detection methods
and geomorphometric analyses. In the future, technological development in remote sensing
and laser scanning technology will enable even more detailed and fine-scaled DEMs. This
quality has recently been achieved by using terrestrial laser scanners (TLS), which are
mostly used for local studies covering small areas. There are some obstacles in forested
areas due to dense and high vegetation cover. Removing the vegetation cover is also
a methodological issue when using aerial laser scanning data because we consider that
fine-scale laser DEM is influenced by vegetation noise. Such noise can be decreased by
preprocessing. However, it can be assumed that with the progress in DEM data acquisition,
preprocessing methods will become even more necessary.

Secondly, a number of computer methods can be utilized for detecting depressions;
with the advancement of technology and improved resolution of spatial data, authors are
increasingly choosing semi-automatic and automatic methods instead of manual digiti-
zation [19]. However, even new machine learning techniques need an input of learning
samples in order to train their algorithm [7]. A certain determination of karst depressions
is therefore still needed. Bauer [15] divided methods into three categories: (1) delineation
of depressions based on the outermost contour line (e.g., [8]), (2) watershed-based doline
delineation [19,21,22], and (3) filled-DEM based doline delineation [11–14,16]. One of the
most recent automatic studies detected karst depressions for the entire surface area of
Slovenia [9,23] by using the U-Net machine learning method.

The results of analyses of complex data can also differ significantly [24]. In general, in a
set of detected landforms, the calculation of their geomorphometric or other characteristics,
and their categorization, are influenced by the methods used (for example, when classifying
landscapes [25,26]). From the geomorphometric perspective, the most problematic is the
upper rim definition, which has already been discussed by several authors [27–32].

Input data from the same data source can also be preprocessed in many different
ways. Telbisz et al. [16] compared different data sources (topographical map, contour
line interpolation, laser scanning point cloud) and observed differences among them.
Doctor et al. [10] also used preprocessing of DEM in order to remove some artificial
influences (e.g., roads). When preparing data (e.g., removing noise), the method of DEM
smoothing or small depression filling could also be used on karst terrains [12,16,18,31].
DEM smoothing on rocky karst includes some methodological issues since this type of
landscape is characterized by underground water flow, creating concentric depressions
on the surface. This is even more noticeable when analyzing forested areas, where the
density of laser scanned points is lower, and data noise is present due to the classification
of cloud points and vegetation removal, so preprocessing with smoothing or filling of the
DEM before analysis is necessary (e.g., [16]). At the same time, smoothing obscures certain
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depressions, so a comparison with the basic, non-smoothed, or non-filled DEM is also
necessary. Consequently, this is a very complex process since the seemingly numerous
flaws (noise) on the surface can actually be depressions of various sizes (even under
1 m). The problem is that accidental flaws (noise) are difficult to separate from actual
depressions on the surface, especially in forests. A possible solution to improve the results
is to smooth the acquired polygons of depressions (e.g., [8]) or sub-select detected polygons
(depressions) based on pre-defined criteria of depth and area [10], which constitutes an
additional intervention into the acquired data.

Since computer approaches require some kind of input (e.g., learning samples), a
researcher cannot avoid influencing the geomorphometric results by selecting the methods.
In other words, a computer can detect certain relief forms, but learning samples still have to
be defined by a researcher [7]. The influence on methods can be related to the preparation
of the data stage (e.g., preprocessing in order to avoid noise) and/or to the object detection
stage (e.g., enclosed depression detection). In our study, we tried to combine different
methods in these two stages and also include different study areas (with different geological
characteristics).

We aimed to identify, characterize, and compare karst depressions of three densely
forested study areas in the NW Dinaric Karst (Slovenia): Kras (with termophilous decid-
uous forest), Logaško-begunjski ravnik (Dinaric fir-beech forest) and Matarsko podolje
(Mediterranean montane mixed forest). Accordingly, we compared various methods used
for enclosed karst depression detection while also taking into account the multitude of
ways laser scanning data of relief can be preprocessed. In other words, the selection of data
preprocessing and detection methods might influence the results. Our goal was, therefore,
to test and compare the results of different existing methods of karst depression detection,
taking into account different preprocessing options of the laser scanning data. The main
object of our study was karst depressions with diameters above 10 m and a depth of over
2 m. The contribution of our study is threefold: comparison and evaluation of differences
in geomorphometric results based on preprocessing of high-resolution DEM, based on
detection methods and based on study area properties.

The remainder of the paper is structured in four sections. In Section 2, the overall
research design is presented, with the research area, data, and methods. Section 3 is
dedicated to the results, which are presented in several subsections and provide information
on the number of detected depressions, their detailed geomorphometric characteristics for
each study area, and the overlapping of depressions. In Section 4, the discussion is focused
on geomorphometric differences between study areas and specificities in the computer-
based geomorphometric research of a karst environment. Section 5 concludes the paper
with its main points.

2. Research Area, Data, and Methods
2.1. Research Area

Slovenia boasts great landscape diversity since it is located at the contact of different
European landscape units [33]. Karst relief covers 43% of Slovenia; different types of karst
are consequently formed, with numerous surface and underground geomorphological
features [3,34]. Geographically and geologically speaking, the Dinaric Karst is part of the
Dinaric Mountains.

Considering the geological and geomorphological diversity of karst landscapes, con-
sequent differences in characteristics of enclosed karst depressions (such as different types
of depressions based on their genesis, size, shape, presence, or absence of anthropogenous
intervention, etc.) are known [34] and were also expected in our DEM analysis. The
research, therefore, encompassed three geologically (different types of carbonate rocks),
geographically (location, elevation, and climate) and biogeographically (vegetation cover)
different karst areas in the Slovene Dinaric Karst (Figure 1): Kras, Logaško-begunjski ravnik,
and Matarsko podolje. Four square kilometers of the forested area were randomly selected
in each region. All three selected areas are geomorphologically classified as carbonate karst
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plains in the midst of larger, predominantly levelled karst areas marked by karst depres-
sions. They are characterized by tectonic stability, thick bedrock layers, rock outcrops, and
a deep groundwater table (over 100 m) [34].
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photographs of the dolines.

Kras is a low Dinaric plateau, composed of Cretaceous limestones. It lies at an
elevation of between 150 m to the NW and 450 m to the SE. In terms of diversity of karst
depressions, solution dolines and collapse dolines dominate, with an average density
of 60 dolines per km2, taking up approximately 12% of the surface area of Kras. They
typically exhibit steep, rocky slopes with large and levelled bottoms, a consequence of
anthropogenic intervention; they are also called cultivated dolines [5,9,34]. The Kras
Plateau was traditionally cultivated, and before World War II (WWII), the region was
characterized almost as karst–rocky desert, where the natural forest had been completely
cut down centuries ago. After WWII, the agricultural land was gradually abandoned, and,
since then, natural afforestation has been in progress. Most of the dolines have recently
been covered by young (up to 70 years old) termophilous deciduous forests, dominated by
Quercus pubescens [5].

Logaško-begunjski ravnik is a wide karst plain at an elevation of between 480 and
610 m. It has formed on Cretaceous limestones, Jurassic dolomites alternating with Jurassic
limestones, and Triassic dolomites that follow in belts from west to east. The network
of dolines, which is mostly solution and collapse by genesis, is very dense with up to
400 dolines per km2. The dolines constitute about 35% of the plain surface area [9]. The area
is traditionally covered by mature and well-developed Dinaric fir-beech forests (Omphalodo-
fagetum) [34]. The most widespread anthropogenic activity is traditional forestry.

Matarsko podolje is a karst plain, levelled out at an elevation between 500 and 680 m.
It is formed on Cretaceous and Paleogene limestones [8]. The network of dolines, which are
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almost exclusively solution by genesis, is less dense, with only a few tens of dolines per km2.
The dolines cover only 7% of the entire plain. As on Kras, the area of Matarsko podolje
also features characteristic anthropogenically reshaped dolines with a levelled bottom.
Compared to the dolines on Kras, the dolines on Matarsko podolje are shallower and have
smaller dimensions [9,19]. Traditionally, the area was used as pastures for centuries, which
were abandoned in the first half of the 20th century and overgrown by Mediterranean-
montane forests dominated by Fagus sylvatica and Corylus avellana in karst depressions and
Pinus negra on shallower soils outside of depressions [5].

The selected study areas are strongly dominated by dense forests; the relief is very
rugged, with rock outcropping mostly covered by thin soil or even without soil, which
creates some areas that are hard to cross and access. Methods for automatic detection
of karst depressions and visualizations based on LiDAR DEM are, therefore, the most
promising and possible ways that allow us to explore karst depressions in these three areas,
even better than with field survey.

2.2. Data

The entire country was scanned with laser scanning (LiDAR) technology in 2011, 2014,
and 2015 in the framework of a national project financed by the Ministry of the Environment
and Spatial Planning. Data layers for surface (relief with buildings and vegetation) and
relief only were prepared with the same methodology [35] and are freely available and
distributed by the Slovenian Environment Agency in the form of a point cloud and ready-
to-use relief raster tiles with a resolution of 1 m. The estimated density of ground points
varies across the country and can be 0.5 per m2 or more [35]. For our areas, the average
densities were between 2.4 and 3.0 per m2. We used the available LiDAR point cloud
already classified as ground (relief) by the provider and created a high-resolution DEM
with a cell resolution of 1 × 1 m for each study area. The raster DEM was used for further
preprocessing to detect enclosed karst depressions and to calculate their geomorphometric
characteristics.

2.3. Methods

The methodological part of the study can be divided into the following sections
(Figure 2):

- Preprocessing a DEM (see Section 2.3.1);
- Detecting enclosed karst depressions (see Section 2.3.2);
- Calculating the geomorphometric characteristics of enclosed karst depressions (see

Section 2.3.3);
- Analyzing the results inside areas (overlapping) (see Section 2.3.4);
- Analyzing the differences in the results between areas (see Section 2.3.5).

Detecting the enclosed karst depressions and calculations of the geomorphometric
characteristics were carried out using the ESRI software, ArcGIS Pro 2.8.2, Redlands,
CA, USA.
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2.3.1. Preprocessing the Input Laser Scanning DEMs

The basic raster data layer of the DEM was preprocessed in two different ways for
each area in order to remove any potential noise in the data. The following tools were used:

(1) Focal statistics—Smoothing using a five-cell circular radius filter;
(2) Fill—Filling the depressions that were shallower than 1 m.

As suggested by Telbisz et al. [16], we used the Focal statistics tool for smoothing the
DEM. This tool makes a calculation for each cell and ascribes to it an average value of all
the surrounding cells in a certain radius. Following Telbisz et al. [16] work with LiDAR
data, we also decided to use a five-cell radius for relief smoothing.

The second tool fills the depressions. This process detects cells that are encircled
by cells with a higher elevation on all sides and therefore represents a theoretical sink.
This kind of depression is filled up to the depth of the z-limit parameter. In our case, the
depressions were filled further up to 1 m.

The two approaches are two of the different methods used to prepare a DEM prior to
geomorphological analyses, such as detecting the connectivity of surface water flow [36] or
(karst) depressions [16,18,32], and which are sensitive to any potential noise in the data [16].

For the sake of better result systematization, code FS5 marks the set of enclosed karst
depressions that were detected based on the smoothed DEM and code F1 marks the set of
enclosed karst depressions that were detected based on the filled DEM.
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2.3.2. Enclosed Karst Depression Detection

The karst depressions were detected in two ways.
The first method, Filled-DEM based doline delineation, detects karst depressions

with theoretical filling and is carried out in several phases; it detects depressions of the first,
second, and third or higher level [10,11]. The authors who used this method subsequently
modified and adapted it or used only part of the method, since their studies were based
mostly on detecting depressions of the first level, i.e., dolines (e.g., [14–16]). For the
purposes of this article, we also used only part of the method and detected karst depressions
of the first level. Using the input data, we used the hydrology toolset to calculate the
flow direction, identify sinks or areas with no surface flow, determine watersheds, and
theoretically filled them to the point at which the water would spill over the depression
rims. Based on the difference in subtracting the theoretically filled depressions from the
input DEM, we delineated the depressions. After preparing the final layer, we retained the
robustness of the polygons in line with the resolution of the input DEM (1 m).

The contour line method is based on searching for completely closed contour lines.
The method involves finding the highest closed contour line, which in theory represents
the rim of a karst depression. A similar approach was applied by Bauer [15] and Verbovšek
and Gabor [8]. Our research pre-set the criterion that depressions had a round shape.
After a trial-and-error examination, we set the circularity index range at 0.75–1.25. The
value for a square is 1.27 and the value for a circle is 1.00; in practice, the most realistically
detected depressions had values up to 1.25, which also led us to set the bottom limit at
0.75. The circularity index is provided in Table 1 (code CIRCB). This helped us to exclude
larger depressions of irregular shapes. To avoid detecting smaller depressions, we set
an additional condition that the polygon must be at least 10 m2. As with the method of
filled-DEM depression delineation, we also prepared the final layer with the robustness of
the polygons according to the resolution of the input DEM (1 m).

Table 1. List of the calculated geomorphometric variables for each individual karst depression used
for detailed analysis.

Code Description

DEPTH Depth (highest elevation − lowest elevation)
AREA Surface area

ELONG Elongation (length of the major axis/length of the minor axis [15])
VOL Volume (surface area × average depth)

CIRCB
Circularity (Circularity index, [15]) Ci =

Ai

π
(

2 Ai
Pi

)2

Ai surface area of a depression, Pi perimeter length of a depression.

RAT_DP Ratio between the depth and the width (depth/perimeter length of the
theoretical circle)

HDIST Horizontal distance between the 2D centroid and the lowest point

ORIENT Orientation of the line centroid–lowest point (in 0–180◦; 0◦ is east,
180◦ is west)

RAT_DD
Ration of the horizontal distance between the 2D centroid to the lowest
point and the length of the major axis (horizontal distance between the 2D

centroid and the lowest point/length of the major axis)
SLOPE Average slope
SH_3 * * Share of cells with a slope ≤ 3◦

VRM_MEAN ** ** Average VRM value
* The slope class was set based on the literature [10,37]. ** VRM—vector ruggedness measure; per
Sappington et al. [38].

Both methods returned a set of depressions. We then eliminated from the sets any
depressions that were too small in relation to the diameter or were too shallow, pointing to
the likelihood that they represented noise in the data and were not truly karst depressions:

- Diameter of the theoretical circle: d ≤ 10 m (d = 2 ×
√

sur f ace area
π );
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- Depth: g ≤ 2 m (g = highest elevation − lowest elevation).

The criteria were set based on the literature, which determined that enclosed karst
depressions and dolines are those with a depth greater than or equal to 2 m and a diameter
greater than or equal to 10 m [10,34]; Kobal et al. [14], for example, selected polygons of
karst depressions to be analyzed based on the same criterion. There was no top limit in
terms of the size (area) or depth of depressions in this study.

The final selection of depressions included only those polygons that were completely
within the area of the 2 km × 2 km studied area.

For further analysis and a better systematization of the results, we distinguished the
results (the set of karst depressions) that were detected with the filled-DEM method by
designating them with the code S1 and the results (set of karst depressions) that were
detected using the contour line method with the code R1.

2.3.3. Calculating the Geomorphometric Characteristics of Karst Depressions

We ascribed to the detected karst depressions the selected geomorphometric variables
based on data regarding the elevation, slope, and other geomorphometric characteristics
(e.g., ruggedness, shape), such as area, perimeter, diameter, depth, elongation, length,
width, orientation, the lowest, highest, and average elevation, slope, and others. The
geomorphological variables listed in Table 1 were used for further analyses. For these
metrics, mean, median, and coefficient of variation were calculated in order to provide basic
statistical parameters for each study area, with a specific combination of methods (settings).
This allowed us to geomorphometrically characterize each study area. The values of the
geomorphometric variables were calculated using geoinformation tools in ArcGIS Pro 2.8.2.

2.3.4. Overlapping the Detected Karst Depressions

An overlapping analysis was carried out on the layers of the detected karst depressions
for each area using the Count overlapping features tool. We added all the cells that were
recognized in each individual approach and calculated the surface area in m2. The final
result of the overlapping analysis is the surface area of the karst depressions as detected by
all six detection approaches.

Additionally, karst depressions detected with different approaches were overlaid and
compared with reference karst depressions that had been digitized based on topographic
maps (1:5000). These maps are the most detailed topographic maps available for the
study areas.

2.3.5. Analyzing the Differences between the Areas

The set of detected karst depressions and their calculated geomorphometric charac-
teristics (see Section 2.3.3) enabled us to compare the geomorphological characteristics
between the study areas and examine whether there is an influence of different approaches
for detecting depressions: that is, (1) the differences in the results of different detection
methods with the same input data (DEM), and (2) the differences in the results of different
input data (DEM) using the same detection method.

The areas were compared based on the set of karst depressions with their calculated
geomorphometric characteristics. In order to determine whether statistically significant dif-
ferences exist between two study areas according to a certain variable, the Mann–Whitney
test was applied. We also calculated the basic statistical characteristics for each individual
area, such as the average, median, and variation coefficient, to compare how the data varies.

3. Results
3.1. The Number of Detected Karst Depressions within the Study Areas

Enclosed karst depressions with diameters above 10 m and depths of over 2 m were
the main object of the study. We calculated their geomorphometric characteristics and used
them further to compare three different areas and to recognize whether data preprocessing
and two different depression detection methods significantly affect the acquired geomor-
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phometric comparisons. We prepared several layer sets of detected karst depressions in
three selected karst areas. The layers representing the results for three different areas
were compared statistically to determine whether we could reach more or less the same
conclusions regarding the features of the depressions regardless of the approach (data
preprocessing method and detecting method).

Six different sets of detected karst depressions were compiled for each study area
(Kras, Matarsko podolje, Logaško-begunjski ravnik):

- By detecting depressions using the filled-DEM method (S1) based on:

# The original DEM (OS);
# DEM smoothing (FS5);
# Filled DEM (F1).

- By detecting depressions using the contour line method (R1) based on:

# The original DEM (OS);
# DEM smoothing (FS5);
# Filled DEM (F1).

According to Table 2 (see also Supplementary Figures S1–S18), the greatest number
of detected depressions by both methods was recorded in the area of Logaško-begunjski
ravnik. Method S1 detected between 475 and 488 karst depressions, and method R1
detected between 442 and 491 depressions. This area, therefore, also has the greatest
depression density. The lowest number of depressions by both methods was detected in
Kras, where the depression density was between 91 and 100.8 depressions per km2. The
situation in Matarsko podolje was exactly the opposite, since approaches S1, FS5, and R1,
FS5 detected the same number of depressions, 504, while approaches S1, F1, and S1, OS
detected significantly fewer depressions (about 130) than approaches R1, F1, and R1, OS
(Table 2).

Table 2. Number of detected karst depressions per study area by both detecting methods and different
input DEMs.

Study Area Logaško-Begunjski Ravnik Kras Matarsko Podolje

Depression detecting
approach S1, F1 S1, FS5 S1, OS S1, F1 S1, FS5 S1, OS S1, F1 S1, FS5 S1, OS

Number 488 475 482 377 403 368 369 504 366
Density (no./km2) 122 118.75 120.5 94.25 100.75 92 92.25 126 91.5

Depression detecting
approach R1, F1 R1, FS5 R1, OS R1, F1 R1, FS5 R1, OS R1, F1 R1, FS5 R1, OS

Number 490 442 491 364 366 364 497 504 498
Density (no./km2) 122.5 110.5 122.75 91 91.5 91 124.25 126 124.5

In the area of Logaško-begunjski ravnik and Kras, approaches S1, F1, and R1, F1, and
S1, OS and R1, OS were the least divergent in the number of detected depressions. The
differences in the detected depressions of these approaches were no more than 13. A greater
deviation was detected between approaches S1, FS5, and R1, FS5, with which the difference
in the detected depressions in the area of Logaško-begunjski ravnik was 33, and 37 in the
area of Kras.

3.2. Geomorphometric Characteristics of Karst Depressions within Individual Areas

The basic geomorphometric characteristics (average, median, variation coefficient) of
karst depressions for the test area in Logaško-begunjski ravnik (Supplementary File; Sup-
plementary Table S1), Kras (Supplementary File; Supplementary Table S2), and Matarsko
podolje (Supplementary File; Supplementary Table S3) were analyzed. Geomorpho-
metric characteristics for each studied area are presented in continuous sub-sections
(Sections 3.2.1–3.2.3).
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3.2.1. Logaško-Begunjski Ravnik

Based on the results, the smoothing of the input DEM causes the formation of milder
and larger depressions, while the concave landform is mostly preserved. As can be seen
from Table S1, some statistical characteristics are very diverse. For example, the mean
surface area (AREA) in method S1 with the basic DEM (OS) is 598 m2, and 794 m2 in the R1
method and the smoothed DEM (FS5); the same case is with mean volume (VOL) being the
greatest for smoothed DEM (FS5) (1738 m3) and exceeded the values for non-processed
and filled DEM by almost 400 m3.

Far fewer differences can be observed, for example, in the mean elongation (ELONG),
which ranged between 1.22 and 1.27 in all the results, which is much more comparable,
so the preprocessing had a smaller impact on this variable. A difference in the utilized
methods R1 and S1 is noticeable, for example, in the mean circularity (CIRCB). Since the R1
method is based on determining round contour lines, the mean circularity values (CIRCB)
are expectedly lower in the R1 than in the S1 method, which points to rounder depressions.

The mean depth also has relatively equal values everywhere (just over 4 m). There
are very small differences when comparing the results with the basic and the filled DEM.
Here it must be emphasized that karst depressions with a depth of under 2 m had already
been excluded at the beginning, but we still anticipated that greater differences would
be detected.

The mean shares of leveled depression bottoms (SH_3), which can potentially indicate
differences between natural and cultivated dolines, have similar values—about 1%. Due to
traditional forest land cover, cultivated dolines are not characteristic of this study area.

3.2.2. Kras

Similar to the case of Logaško-begunjski ravnik, some differences between the geomor-
phometric characteristics were also detected for the area of Kras (Table S2). The mean surface
area (AREA) was between 671 m2 (S1, FS5) and 1325 m2 (R1, FS5), while the mean volume
(VOL) ranged from 1648.63 m3 for S1, OS and up to 5101.63 m3 for R1, FS5. The coefficients
of variation for surface area and volume are the highest (up to 1.51 and 3.29), showing a much
higher diversity of depressions than in the other two study areas. In general, depressions
on the Kras Plateau are much bigger, and almost all were anthropogenically modified
throughout the centuries and used for cultivation. This can also be marked in shares of
leveled depression bottoms (SH_3), which are, on average, much higher (up to 5%) than in the
other two study areas (about 1%).

Similarly, the mean depth values (DEPTH) ranged from 5.23 (S1, OS) up to 6.26 m (R1,
FS5). There are small differences when comparing the results with the basic and the filled
DEM. However, the mean elongation (ELONG) is once again more similar between areas,
with values being between 1.20 and 1.33.

DEMs apparently do not have a lot of noise, and there are also not so many smaller
real depressions.

3.2.3. Matarsko Podolje

The mean surface area (AREA) in Matarsko podlje is between 727 m2 (S1, F1) and
1162 m2 (R1, FS5), while the mean volume (VOL) ranges from 1537 m3 for S1, F1 up to
2667 m3 for R1, FS5. While the trend for surface area and volume is pretty much similar to
Kras Plateau, the coefficients of variance for surface area and volume are lower, showing
lower diversity of depressions than on Kras. In general, depressions in this part of Matarsko
podolje had not been anthropogenically modified since they were used as pastures. The
mean shares of leveled depression bottoms (SH_3) are about 1–3%.

The depths on Matarsko podolje are very similar to those on Logaško-begunjski ravnik,
i.e., between 4.39 and 4.54 m, while the mean surface areas are more diverse (between 726
and 1162 m2). As expected, the influence of DEM filling with 1 m also had less influence on
the end result (Table S3).
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3.3. Overlapping of Karst Depressions within Individual Areas

Some differences in karst depressions within individual areas can also be visualized by
overlapping the resulting layers. The overlapping exposed firstly differences in the number
of detected landforms and, secondly, in their surfaces. Analysis of karst depression overlap-
ping (Table 3, Figures 3–5) determined how much surface was covered by the depressions
that were detected with each detection approach (each combination of preprocessing and
detection methods). The numbers (1–6) denote how many times the area was detected as
a depression. In two of the selected areas, Kras and Matarsko podolje, the most surfaces
were detected with four out of six approaches, while the least surfaces were detected with
five out of six approaches. The majority of the surfaces on Logaško-begunjski ravnik were
detected in all six ways and the least surfaces in five out of six approaches. The shares of
the depressions’ area confirmed with all the approaches were 23%, 29%, and 47%.

Table 3. Overlapping areas (m2) of the detected karst depressions for each area.

Study Area

Surface Area (m2)

Detected
in 1/6 Ap-
proaches

Detected
in 2/6 Ap-
proaches

Detected
in 3/6 Ap-
proaches

Detected
in 4/6 Ap-
proaches

Detected
in 5/6 Ap-
proaches

Detected
in 6/6 Ap-
proaches

Union of
All

Kras 124,682 101,033 58,087 176,967 8503 141,831 611,103
Matarsko podolje 134,211 89,296 54,272 202,017 10,685 197,927 688,408

Logaško-begunjski ravnik 48,328 54,403 23,201 89,770 15,291 205,789 436,782
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Figure 5. Overlapping of detected karst depressions for the area of Matarsko podolje. The numbers
(1–6) denote how many times the area was detected as a depression (e.g., number 5 denotes that an
area was marked as a depression with five approaches).

When comparing detected karst depressions with the reference layer of karst depres-
sion based on topographic data (1:5,000), it can be observed that differences in the recall
are diverse—between 59% and 95% (Table 4). In general, the detection method R1 pro-
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vided a higher rate of matching with topographically defined karst depressions. There are
only two cases in which S1 had a higher match—when preprocessing DEM with FS5 for
Logaško-begunjski ravnik and Kras. We noticed that, in general, preprocessing DEM with
FS5 resulted in better matching when using detection method S1. In the case of Matarsko
podolje and Kras, the detection method R1 provided the best results when combined with
preprocessing method FS5; in the case of Logaško-begunjski ravnik, this combination is
the worst.

Table 4. Number and share of matching dolines detected by applied approaches compared to dolines
based on the topographic map (TTN5).

Study Area Logaško-Begunjski Ravnik
(nTTN5 = 154) Kras (nTTN5 = 414) Matarsko Podolje

(nTTN5 = 486)

Depression detecting
approach S1, F1 S1, FS5 S1, OS S1, F1 S1, FS5 S1, OS S1, F1 S1, FS5 S1, OS

Total number of detected
dolines 488 475 482 377 403 368 369 504 366

Number of matching
(true positives) 126 142 125 282 338 278 287 427 286

Recall (%) 81.82 92.21 81.17 68.12 81.64 67.15 59.05 87.86 58.85

Precision (%) 25.82 29.89 25.93 74.80 83.87 75.54 77.78 84.72 78.14

Depression detecting
approach R1, F1 R1, FS5 R1, OS R1, F1 R1, FS5 R1, OS R1, F1 R1, FS5 R1, OS

Total number 490 442 491 364 366 364 497 504 498

Number of matching
(true positives) 146 140 147 312 317 312 415 430 415

Recall (%) 94.81 90.91 95.45 75.36 76.57 75.36 85.39 88.48 85.39

Precision (%) 29.80 31.67 29.94 85.71 86.61 85.71 83.50 85.32 83.33

The precisions are above 75% for Kras and Matarsko podolje, but mostly less than
30% for Logaško-begunjski ravnik. The reason might be in a low-quality production of
topographic maps for that area, which is the most densely vegetated.

The differences in matching confirm that the selection of preprocessing and detection
methods are crucial and have a great influence on the results. After comparing the results
with different preprocessing DEMs, we noted that in most cases (except for one), recalls
and precisions with FS5 preprocessing are better than those that were made based on the
original DEM.

4. Discussion
4.1. Discussion on Geomorphometric Differences between the Study Areas

When comparing the differences between areas (e.g., answering the question: ‘Do
karst depressions in Logaško-begunjski ravnik differ from depressions in Kras according
to the geomorphometric characteristics?’), we observed, based on the Mann–Whitney test
(Table 5), that the results were partially coordinated.
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Table 5. Analysis of the differences between areas according to the selected geomorphometric
variables. Statistical significance of the Mann–Whitney test: the grey cells indicate that the areas differ
significantly from one another (with p < 0.05).

Comparison Kras: Matarsko Podolje

Detection and
preprocessing approach AREA VOL

RAT_
CIRCB

RAT_
SH_3HDIST DD ELONG DP ORIENTSLOPE VRM_ DEPTH

MEAN
R1, F1 0 0.001 0.902 0 0.225 0.787 0 0 0 0 0 0.014
R1, FS5 0.005 0.018 0 0 0.345 0.517 0 0 0 0 0 0.003
R1, OS 0 0.001 0.896 0 0.238 0.883 0 0 0 0 0 0.013
S1, F1 0.029 0.001 0 0 0 0 0 0 0.06 0 0 0.766
S1, FS5 0.34 0.015 0 0 0 0 0 0 0.697 0 0 0.023
S1, OS 0 0 0 0 0 0 0 0 0.46 0 0 0.935

Comparison Matarsko Podolje: Logaško-Begunjski Ravnik

Detection and
preprocessing approach AREA VOL

RAT_
CIRCB

RAT_
SH_3HDIST DD ELONG DP ORIENTSLOPE VRM_ DEPTH

MEAN
R1, F1 0 0 0 0 0.292 0.209 0 0.925 0 0 0 0.016
R1, FS5 0 0 0 0 0.463 0.008 0 0.383 0 0 0 0
R1, OS 0 0 0 0 0.274 0.216 0 0.93 0 0 0 0.015
S1, F1 0 0 0 0 0.305 0.623 0.002 0.873 0 0 0 0.014
S1, FS5 0 0 0 0 0.988 0.01 0 0.074 0 0 0 0.001
S1, OS 0 0 0 0 0.386 0.097 0.002 0.991 0 0 0 0.012

Comparison Kras: Logaško-Begunjski Ravnik

Detection and
preprocessing approach AREA VOL

RAT_
CIRCB

RAT_
SH_3HDIST DD ELONG DP ORIENTSLOPE VRM_ DEPTH

MEAN
R1, F1 0.698 0.037 0 0 0.033 0.185 0 0 0 0.376 0 0
R1, FS5 0 0.001 0 0 0.818 0.07 0 0 0.958 0.453 0 0
R1, OS 0.711 0.036 0 0 0.033 0.239 0 0 0 0.406 0 0
S1, F1 0.166 0.785 0 0 0 0 0.058 0 0 0 0.002 0.032
S1, FS5 0 0.003 0 0 0 0 0.089 0 0 0 0.069 0
S1, OS 0.927 0.421 0 0 0.002 0 0.001 0 0.004 0 0 0.048

After the Mann–Whitney test, analysis of the differences between areas according
to individual geomorphometric variables showed that the karst depressions of the study
areas differ significantly among one another in most cases, i.e., according to most geomor-
phometric characteristics. There are some noticeable differences between the analyses of
different sets of karst depressions. Some results can therefore be designated as different
for some pairs of comparisons if a different method of karst depression detection and/or a
differently preprocessed input data (DEM) (Table 4) is used. Some discrepancies should
be highlighted. The most noticeable inconsistency was observed for the elongation (length
of the major axis/length of the minor axis) (ELONG) variable, in which eleven comparisons
determined that there were no differences, but seven comparisons confirmed the said
differences. A similar scenario occurred with the circularity (CIRCB) variable, with which
a similar number of comparisons (eight vs. ten) were confirmed or rejected. In the other
variables, the difference between the areas was confirmed, but there is at least one example
in each that opposes that. The exception is the variable ratio between the horizontal distance to
the centroid (2D) from the lowest point and the length of the major axis (RAT_DD), in which all
the areas differ regardless of the approaches.

4.2. Discussion on Smoothing of High-Resolution DEM of Karst Landscape
4.2.1. The Issues Related to Forest Cover and Vegetation Filtering

Many studies were referenced in this manuscript in relation to the detection and
characterisation of enclosed karst depressions, mostly dolines, but only rarely have methods
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been tested in the presence of forest-tree canopies. As Kobal et al. [14] already highlighted,
tree canopies can decrease the homogeneity of the spatial distribution obtained from
ground hits. This effect depends on the distribution of the canopy density, especially where
high-resolution surveys are conducted because higher emitter frequencies correspond with
lower laser pulse energies and lower penetration capabilities [14].

Based on Tables S1–S3, it can be seen that the highest values of characteristics, such
as surface area and volume of karst depressions for all three study areas, were calculated
when detecting karst depressions based on smoothed (FS5) DEM. When detection methods
were done based on filled (F1) or original (OS) DEM, the values of these characteristics were
lower. It can therefore be confirmed that different preprocessing of DEMs has a noticeable
impact on the final results of the general characteristics of depressions. Characteristics, such
as volume and area, also had higher average values in cases in which karst depressions
were detected based on the contour line method (R1). These results should be further
considered in future geomorphological analyses of karst depressions in similar forested
karst areas with complex geomorphology, a high density of karst depressions, and other
karst phenomena.

When preparing data (e.g., removing noise), the methods of DEM smoothing or small
depression filling can be used [16,18,32], as was done for karst depression (mostly dolines)
detection in the area of the Slovak Karst National Park (Slovakia) by Hofierka et al. [18], in
the Aggtelek Karst (Hungary) by Telbisz et al. [16], and in the Pipestem watershed (North
Dakota, USA) by Wu et al. [32]. The preprocessing of the high-resolution LiDAR DEM
is needed to guarantee that it is “hydrologically correct” for successive analyses [14]. In
our case studies, when comparing areas, some inconsistencies between comparisons of
geomorphometric characteristics based on original DEM and preprocessed DEM were
observed. More inconsistencies occurred if DEM smoothing was used rather than small
depression filling in the data preprocessing (Table 4). The influence of smoothing, which
was noticeable in our study, was also analyzed also by Erdbrügger et al. [39] for different
relief types. They discovered an important impact of DEM smoothing on the results of
flow direction analysis. Since our methods also used some steps of hydrological analysis
(Section 2.3.1), an influence of smoothing was expected and also confirmed. It is also impor-
tant to highlight that different values of filling or selecting different radii when smoothing
the DEM, can impact the final results [16]. Telbisz et al. [16] compared different ways of
filling in the input data of a laser scanning and elevation model based on topographic
maps. They determined that the height of the fill affects the final number of detected
depressions. They also concluded that the characteristics related to size (length, width,
perimeter length) are similar between different sets but less so in terms of the circularity.
Our research can confirm that comparisons of circularity (CIRCB) between study areas were
notably influenced by the preprocessing and detection method.

The effect of the set of initial settings on the final result has, for example, already been
confirmed in an analysis of the subjectivity of a DEM-based data segmentation method [40].
Lidberg et al. [36] analyzed the effect of different resolutions and data preprocessing to
determine surface water flow modelling. They determined that a higher data resolution
was better for modelling, whereas the breaching method turned out to be the most suitable
data preprocessing method and depression filling the least. Gostinčar and Ciglič [41]
compared the detection of relief features with different resolutions and determined that,
according to the Peucker and Douglas method [42], the highest resolution is not necessarily
the best option, since noise was present.

4.2.2. The Issues Related to Human Impacts on Terrain “Smoothness” Due to Agricultural
Land-Use

When studying and geomorphometrically analysing karst areas, especially karst de-
pressions, anthropogenic impacts need to be considered when selecting the preprocessing
of data, as well as in the selection of the detection method. Hard carbonate rocks (limestone
and dolostone) in which the karst depressions are shaped are extremely resistant to weath-
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ering, so anthropogenic remains (e.g., the formation of patterns of stone walls, vernicular
architecture, etc.) can be preserved for millennia (e.g., the UNESCO world-heritage site
Starogradsko polje on Hvar Island). Different agricultural practices, such as rock outcrop-
ping “clearing”, are known in different karst landscapes in Europe, e.g., in the south of
France [43] and also on the Kras Plateau in Slovenia [5,34], where the removal of rock
outcroppings was carried out inside plots, and, years later, the effects of this activity are
visible on a LiDAR image showing the “smoothness” of these plots [5].

For this study, we intentionally selected three karst landscapes with different carbonate
rocks, characterized by karst depressions and covered by dense forest vegetation. In the
study, the influences of preprocessing of DEM were less frequent when comparing Matarsko
podolje and Logaško-begunjski ravnik and more noticeable when comparing these two
areas with Kras (Table 4), where the surface has been traditionally more affected in the
past due to agriculture (e.g., cultivated dolines, clearing of stones from grasslands). This
difference can be confirmed by ruggedness measures for the whole study area (Table 6). In
addition, the higher “smoothness” of the Kras area can be recognized through a measurably
higher share of flat depression bottoms (share of cells with a slope ≤3◦), characteristic of
cultivated dolines (Tables S1–S3).

Table 6. Analysis of terrain ruggedness for the whole surface study area by using the measures of
VRM (vector ruggedness measure) and TRI (terrain ruggedness index), based on the original DEM.

Study Area VRM (Mean ± SD) TRI (Mean ± SD)

Logaško-begunjski ravnik 0.0042 ± 0.0055 0.8248 ± 0.4255
Kras 0.0033 ± 0.0147 0.4606 ± 1.0060

Matarsko podolje 0.0033 ± 0.0061 0.6808 ± 0.4401

4.3. Remote Detection of Karst Depresions as the Best Alternative

The study found that the application of different preprocessing data and different
detection methods can significantly affect the results of the comparison of depression
characteristics in different areas. The influence of the method on the outcome of the
analyses was already illustrated by Bauer [15], who used three different detection methods
to extrapolate different sets of detected depressions (dolines), which also impeded the
interpretation of the results. As with Bauer, in this research as well, all six sets of karst
depressions (per each study area) showed visible and measurable (quantitative) differences
in size (e.g., surface area) as well as shape (e.g., elongation) and volume (Figures 3–5). The
difference in the utilized methods R1 and S1 is noticeable, for example, in the circularity
(CIRCB). Since the R1 approach is based on determining round contour lines, the circularity
values (CIRCB) were expectedly lower in R1 than in the S1 approach, which points to
rounder depressions. The influence of the methodology selection was also observable in
the difference in the number of detected depressions for each area. It should be mentioned
that methods for DEM preprocessing and depression detecting, require certain settings. For
example, smoothing requires the radius, shape, and type of filtering (e.g., mean, modus,
etc.), and the filling requires a depth limit setting. Similarly, the detection method requires
the definition of roundness, i.e., the selection of an appropriate measurement that defines
circularity (see [31] for a list of geomorphometric parameters). These options provide
numerous sub-settings—approaches—which cannot all be tested. Each geomorphometric
approach can therefore involve some kind of bias, and the solution might be the use of
different methods for a multiple-analysis approach.

Despite the high accuracy of LiDAR DEM, additional remote sensing data layers (e.g.,
satellite images, aerial images) can be included to increase the accuracy and success rate
of detecting depressions. In order to detect denuded caves, which are more elongated
depressions than round dolines, Grlj and Grigillo [22] combined the DEM and satellite
data. Hoai et al. [44] used thermal depression imaging to detect dolines, which were
further segmented and classified using machine learning. Unlike methods that focus
on detecting individual shapes, so-called comprehensive classification methods focus on



Remote Sens. 2022, 14, 2416 17 of 20

classifying the landscape as a whole. Analysts try to determine certain spatial patterns
for larger areas of a certain landscape. For example, the visibility network method for a
comprehensive classification of different landscape types (where the focus is not on an
individual shape but a comprehensive feature of a selected landscape) has also been tested
in synthetic DEMs [45]. The methods of comprehensive relief classification were developed
by Drăguţ and Eisank [46], who classified the surface of the entire planet, and by Wieczorek
and Migon [47], who classified SW Poland. The karst depressions that were detected
using geoinformation technologies were either further classified by various authors into
different types, or their various statistical characteristics were calculated (e.g., [8,9,16]).
However, in addition to all the referenced calculation methods, different visualizations
of high-resolution DEMs for remote areas are developing [48], which will give additional
perspective to landform features in a study on high-resolution digital elevation models.

In any case, methods for karst depressions detection are suitable for identification,
general spatial analysis, and calculation of their morphometric characteristics. Such meth-
ods allow the easy and inexpensive application to other areas, including over large scales,
and thus provides several advantages over manual mapping, especially when study areas
are difficult to access and forested, as well as when time investment and field costs are
considered [49]. A combination of remote sensing with extensive field surveys will always
provide the best and most reliable results. Unfortunately, there will always exist some
remote and difficult of access regions on the Earth’s surface and/or even on other planets
(e.g., Mars) where, so far, remote sensing is the only existing and the safest method for the
geomorphometric study.

Nevertheless, methods for karst depression detection and the use of remote sensing
data have considerable potential for application in large-scale analyses in many fields in
addition to geomorphology and karstology, including geology, botany, zoology, tourism,
spatial planning, and nature conservation [5,49–52].

5. Conclusions

The study highlights the influence of data preprocessing and various methods for karst
depression detection. We confirmed that both have a significant effect on the results, in
some cases to the extent that the results are statistically different when comparing different
study areas. We observed that different combinations of methods influenced the number
and geomorphometric characteristics of depressions. The range of detected depressions in
the three study areas was 442–491, 364–403, and 366–504, and the shares of depressions’
areas confirmed with all the approaches were 23%, 29%, and 47%. This also resulted in the
calculation of different geomorphometric properties. We noticed that the preprocessing
and detection methods used had an impact on most geomorphometric variables. Higher
inconsistencies occurred in the case of smoothing DEM than if smaller depressions were
filled in the data preprocessing. In light of the results, we determined that it is crucial for
each study to clearly present the entire process, including data preprocessing, since this
guarantees the most comprehensive transparency.

Nevertheless, the main questions remain partially open: Can we reach some general
conclusions considering which method should be preferably used for individual karst type
area? Which methodological approach should be used for different successive analyses? In
theory, it would be easier to select the most suitable methodological process by comparing
results with detailed geomorphometric measurements carried out in the field. This is the
only way to determine which method comes closest to the real state in nature. However, it
has to be highlighted that many areas in the Dinaric Mountains and other densely forested
karst landscapes are not easily accessible, and remote sensing might be the only option
to detect certain relief features. It can be expected that future studies will use even more
precise and high-resolution DEMs, which will enable fine-scale geomorphometric analyses.
With fast progress in DEM data acquisition, preprocessing methods will become even more
necessary.
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In addition to its methods, the results of this study also have great potential to be
used in further environmental studies. Our future study will focus on the connectivity
between karst depressions on the surface and underground karst caves. Specifically,
the resulting layers of detected depressions will be compared (overlaid) with the layer
of underground cave systems. In such a way, the locations of karst depressions above
the cave systems will be determined and further studied in greater detail from (vertical)
hydrological connectivity. Such potential connections can only be found by (semi) automatic
determination of depressions for wide areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14102416/s1, Figure S1: Detected karst depressions in Kras
area based on R1 method and DTM F1.; Figure S2: Detected karst depressions in Kras area based on
R1 method and DTM FS5.; Figure S3: Detected karst depressions in Kras area based on R1 method
and DTM OS.; Figure S4: Detected karst depressions in Kras area based on S1 method and DTM
F1.; Figure S5: Detected karst depressions in Kras area based on S1 method and DTM FS5.; Figure
S6: Detected karst depressions in Kras area based on S1 method and DTM OS.; Figure S7: Detected
karst depressions in Matarsko podolje area based on R1 method and DTM F1.; Figure S8: Detected
karst depressions in Matarsko podolje area based on R1 method and DTM FS5.; Figure S9: Detected
karst depressions in Matarsko podolje area based on R1 method and DTM OS.; Figure S10: Detected
karst depressions in Matarsko podolje area based on S1 method and DTM F1.; Figure S11: Detected
karst depressions in Matarsko podolje area based on S1 method and DTM FS5.; Figure S12: Detected
karst depressions in Matarsko podolje area based on S1 method and DTM OS.; Figure S13: Detected
karst depressions in Logaško-begunjski ravnik area based on R1 method and DTM F1.; Figure S14:
Detected karst depressions in Logaško-begunjski ravnik area based on R1 method and DTM FS5.;
Figure S15: Detected karst depressions in Logaško-begunjski ravnik area based on R1 method and
DTM OS.; Figure S16: Detected karst depressions in Logaško-begunjski ravnik area based on S1
method and DTM F1.; Figure S17: Detected karst depressions in Logaško-begunjski ravnik area based
on S1 method and DTM FS5.; Figure S18: Detected karst depressions in Logaško-begunjski ravnik area
based on S1 method and DTM OS.; Table S1: The geomorphometric characteristics of karst depressions
for the test area in Logaško-begunjski ravnik (according to two detecting methods and input data
preprocessing). CV—coefficient of variation.; Table S2: The geomorphometric characteristics of
karst depressions for the test area in Kras (according to two detecting methods and input data
preprocessing). CV—coefficient of variation.; Table S3: The geomorphometric characteristics of karst
depressions for the test area in Matarsko podolje (according to two detecting methods and input data
reprocessing). CV—coefficient of variation.
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