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Abstract: Cloud droplets size distribution (DSD) is one of the significant characteristics for liquid
clouds. It plays an important role for the aerosol–droplet–cloud mechanism and variation in cloud
microphysics. However, the minuscule sampling space is insufficient for the observation of whole
DSD when using high-magnification optical systems. In this paper, we propose an observation
method for cloud droplets ranging from 2 to 16 µm, by which the balance relationship between
sampling space and optical magnification is realized. The method combines an in-line digital
holographic interferometer (DHI) with the optical magnification of 5.89× and spatial stitching
technique. The minimum size in DSD is extended to 2 µm, which improves the integrity of size
distribution. Simultaneously, the stability of DSD is enhanced by increasing the tenfold sampling
volume of cloud droplets. The comparative experiment between the in-line DHI and fog monitor
demonstrates that the DSD obtained by this method is reliable, which can be used for the analysis
of microphysical parameters. In the Beijing Aerosol and Cloud Interaction Chamber (BACIC), the
observation results show that the size of cloud droplets follows the Gamma distribution, which is
consistent with the theoretical DSD. The results of cloud microphysical parameters indicate that
each pair of parameters has a positive correlation, and then the validity of observation method is
confirmed. Additionally, the high-concentration aerosol condition significantly mitigates the effect of
random turbulence and enhances the robustness of the microphysical parameter data.

Keywords: liquid cloud; size distribution; microphysical characteristics; cloud droplet observation;
digital holography

1. Introduction

Cloud microphysics, which is used for the investigation of precipitation mechanisms
and construction of climate models [1–5], is one of the important parameters for investigat-
ing clouds and climates. In order to simulate the cloud processes under different conditions,
many research institutions have established different types of cloud chambers, such as
the Beijing Aerosol and Cloud Interaction Chamber (BACIC), Michigan Technological
University Π chamber, and European Council for Nuclear Research cloud chamber [6,7].
The reproducible experimental processes are carried out in cloud chamber with variable ex-
perimental conditions of temperature, humidity, and number concentration of aerosols [8].
Desai et al. [9] observed the cloud droplets size distribution (DSD) and number concentra-
tion in a Π cloud chamber with an in-line digital holographic interferometer (DHI), in order
to observe the DSD variation caused by condensation growth processes. However, due
to the limit of optical magnification (2.85×), the observed smallest droplet size was 7 µm.
Chandrakar et al. [10] used a Phase-Doppler Interferometer to measure the diameter of
cloud droplets and estimated the DSD in a Π cloud chamber. The author suggested that the
number concentration of smaller droplets was underestimated. During the measurement,
the smallest credible droplet size was 7.5 µm. In the natural environment, Beals et al. [11]
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measured centimeter-scale heterogeneous cloud mixing based on digital holography. The
DSD was divided into three channels, and the smallest credible droplet size was 10 µm.
However, the size of liquid cloud droplets is usually 2–100 µm [12–15]. Here, the size is the
diameter of a droplet. Especially with the increase in the number of cloud condensation
nuclei (CCN) [16–25], the number of droplets close to 2 µm is increased. Hence, in order
to investigate physical processes such as condensation and collision in the cloud, 2 µm
droplets should be measured in a cloud chamber or high-altitude cloud layer to acquire the
complete DSD.

A Charge Coupled Device (CCD) or Complementary Metal-Oxide-Semiconductor Tran-
sistor Device (CMOS) is used to record digital holograms [26–30]. The recording processes
and processing procedures of holograms are greatly simplified by using a DHI [31–36]. Due to
the advantages of fast, real-time, non-contact, and full-field measurement, DHI is regarded
as a technology for simultaneous observation of dynamic multi-parameter physical fields.
It has been successfully applied in the fields of particle three-dimensional motion [37–42],
biological cell imaging [43–47], holographic subsurface radar [48,49], and other fields. In
this paper, the in-line DHI with high optical resolution is proposed to observe the droplets
ranging from 2 to 16 µm in the BACIC. In order to increase the proportion of small droplets,
the high concentration CCN is added to BACIC. In the absence of the droplets ranging
from 2 to 6 µm, the experimental results show that the pattern of microphysical parameters
is changed, and the reliability of observation data is reduced. Some important patterns
are ignored, and even the opposite patterns are caused in cloud microphysical processes.
The research contributes to data support for the theoretical analysis of cloud physical
processes and development of parameterization schemes. Cloud microphysical data is
provided for research in the fields of weather, climate, artificial weather modification, and
atmospheric chemistry.

2. Theory

In in-line DHI, the mutual interference between a droplet and its twin image is small.
When a plane wave is used to irradiate droplets, the diffracted light of the droplets (as
the object light) interferes with the undisturbed plane wave (as the reference light) and
is recorded as a digital hologram by a CMOS. By using numerical reconstruction, a two-
dimensional amplitude distribution with the reconstruction distance zr can be obtained on
the reconstruction plane, given by [50]

UR(u, v) =
1
jλ

x

∞

R(x, y)IH(x, y)
exp

(
jk
√
(u− x)2 + (v− y)2 + zr2

)
√
(u− x)2 + (v− y)2 + zr2

dxdy, (1)

where, λ is the wavelength, R(x, y) is the reference light, IH(x, y) is the intensity of interfer-
ence fringes on the recording medium, k is the wave number. When zr = zi (i = 1, 2, 3, . . . ),
the droplets with the reconstruction distance zi in the reconstructed hologram are focused,
and other droplets are out of focus.

However, it is more suitable for batch processing to sample the 12 mm length on the
z-axis at equal interval of 0.35 mm. So, zr can be regarded as a constant set in advance. The
reference light of the in-line DHI is a parallel beam, so R(x, y) = 1. With the convolution
operation, the integral of Equation (1) can be expressed as [50,51]

UR(u, v) = IH(x, y)⊗ g(x, y)

g(x, y) = 1
jλ

exp
(

jk
√

x2+y2+zr2
)

√
x2+y2+zr2

. (2)
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Since the convolution operation in Equation (2) is still complicated, the frequency
domain multiplication operation can be used instead to reduce the complexity. Therefore,
Equation (2) is expressed by Fourier transform as

UR(u, v) = F−1{F [IH(x, y)]F [g(x, y)]}. (3)

The 35 reconstruction images UR(u,v) obtained by sampling are used to identify the
focused droplets to obtain the three-dimensional positions and diameters of droplets. The
number of droplets in the sampling space is counted as Nc, and the number concentration
N can be expressed as Nc divided by volume V. Diameters of all droplets are averaged, the
mean volume diameter (MVD) can be obtained as

MVD =
Nc

∑
i=1

li, (4)

where, li is the diameter of the i-th droplet and Nc is the number of droplets in sampling
space. Through the statistics of droplet size information in 35 reconstructed images, the
actual DSD can be acquired. The above distribution is considered to obey the Gamma
distribution. It can be expressed by a corrected Gamma distribution function n(l), given by

n(l) = al5 exp(−blc), (5)

where, a, b, and c are three fitting parameters of n(l). They are assigned by the principle of
least square method, and the residual sum of squares of Equation (5) is the smallest. The
effective diameter (ED) can be calculated based on n(l), given by

ED =

∫ ∞
0 l3n(l)dl∫ ∞
0 l2n(l)dl

, (6)

Here, MVD and number concentration N are directly obtained from the holographic
measurement result, which does not depend on the fitting result of n(l). Hence, MVD is
used for the analysis of microphysical variations instead of ED, and n(l) is only used to
verify the integrity of size distribution. The diameter of each droplet in sampling space
can be used to calculate the liquid water content (LWC) of the current environment [52],
given by

LWC =
Nc

∑
i=1

4πρc

3V

(
li
2

)3
, (7)

where, ρc is the density of water and V represents the volume of sampling space.

3. Experimental Setup

The evolution processes of cloud can be simulated by expanded form in the BACIC. By
continuously reducing pressure and temperature, the aerosols acting as CCN become cloud
droplets under high relative humidity conditions. In the experiment, a high-resolution DHI
is used to measure the microphysical parameters in the BACIC, as shown in Figure 1. The
Condensation Particles Counter (CPC) is used to measure the aerosol number concentration
and the DHI is placed on the experimental platform at the bottom. The cloud chamber is a
cylindrical structure (the diameter of 2.6 m and volume of 70.5 m3) with approximately uni-
form distribution of cloud droplets at the bottom. In DHI, a frequency-doubled solid-state
laser produced by the German LASOS company is used as the light source. The wavelength
is 532 nm and the output power is 120 mW. In order to ensure the stability of the laser in
complex environments, a beam splitting prism with a transmission–reflection ratio of 99:1 is
used to divide the beam into two parts. In total, 1% of the beam is reflected to the photodi-
ode (PD) to measure the energy fluctuation of the laser caused by environment temperature
and feed it back to the laser control system. The promotion integration differentiation (PID)
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algorithm dynamically adjusts the drive current of the laser. A total of 99% of the light
beam is collimated and expanded acting as a broad beam using three aspherical lenses
(L1–L3), and irradiates the measured cloud droplets. The diameters of L1, L2, and L3 are 10,
30, and 40 mm, respectively. The interference image formed by the droplet diffracted light
and the unmodulated transmitted light is zoomed 5.89 times by the microscope lens (ML).
The working distance is 20 mm from the ML. The enlarged image is recorded by a CMOS.
The minimum exposure time and resolution are 10 µs and 5120 H × 5120 W, respectively.
The minimum sampling frequency of CMOS at full resolution is 15 Hz. The chip of CMOS
is produced by China Daheng (Group) Company. In order to reduce the influence of field
curvature and distortion, the pixels of 3200 W × 3200 H in the central area of CMOS are
used. Therefore, the sampling area in the x-y section is 1.35 × 1.35 mm, the sampling
distance along the beam direction (z-axis) is 12 mm, and the zero point of the z-axis is set
on the focal plane of ML. A polarizer (P) is placed behind the ML to improve the contrast
of interference fringes.
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Figure 1. The measurement method of the DHI.

Due to the limitation of target surface size of commercial cameras, high resolution
and sample volume are a contradictory relationship. By limiting the sampling volume, the
holographic device achieves a high resolution. To ensure complete the observation of 2 µm
particles, the sampling volume is reduced to 0.2187 cm3. The USAF1951 resolution board is
observed to verify the optical resolution of the DHI. Figure 2 shows the reconstructed im-
ages at −6, 0, and 6 mm on the z-axis. The smallest distinguishable line pairs in Figure 2a–c
are labeled 7–6, and the corresponding line width is 2.19 µm. By observing standard particle
glass plates with diameters of 2, 10, and 20 µm, the accuracy of diameter identification is
verified. The particles of 2 and 10 µm are arranged in a square array at an interval of 8 times
the diameter, and the interval of 20 µm particles is set to 12 times the diameter. The image
algorithms of corrosion and expansion are used for particle identification, which results
in a deviation of 1 equivalent pixel. So, the theoretical error of diameter measurement
is ± 0.42 µm. The reconstructed image of the particle glass plate at 6 mm from the focal
plane is shown in Figure 3. In Figure 3a–c, 795, 236, and 36 particles are identified, and the
measurement uncertainties are (2.05 ± 0.53) µm, (10.12 ± 0.86) µm, and (19.89 ± 1.24) µm,
respectively. In the cloud chamber, the number of particles in the sampling space of DHI
is usually less than 50, so the accuracy of cloud droplet identification is higher than the
particle glass plate.

In order to promote the application of in-line DHI in meteorological detection and
atmospheric cloud microphysics research, it is necessary to carry out various comparison
experiments with recognized cloud droplet detection instruments. The fog monitor [53–60]
is widely used in mountain stations and cloud chambers to observe the cloud and fog
processes. The measurement results of fog monitors are considered reliable by the majority
of researchers. Therefore, we chose the fog monitor as the reference device to verify the
accuracy of the holographic device in the measurement of cloud droplet size, number
concentration N, and other parameters. In this cloud chamber measurement experiment,
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the holographic device and the fog monitor are placed 15 cm apart on the experimental
platform at the bottom of the cloud chamber. Due to the fact that the distance between
two devices is narrow, it can be considered that the cloud droplet groups measured by
two devices are highly similar. Then, the most important item in the comparison of
measurement results is the size distribution of cloud droplets. The DSDs of fog monitors
and in-line DHI are divided by the sampling volume for normalization. Additionally, the
DSDs of two devices are nearly identical, as illustrated in Figure 4. The measurement result
of the fog monitor is represented by the bold black line and the measurement result of the
in-line DHI used in the experiment is represented by the green bar graph.
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Typically, researchers are interested in the size range corresponding to the maximum
value of the DSD, which is used to denote the center of the size distribution. The centers of
the size distributions in Figure 4a–d are all 6–7 µm, indicating that the four size distributions
collected exhibit similar characteristics. On the one hand, the DSD of two instruments is
concentrated at 4–8 µm, as a result of cloud droplet competition for growth. Therefore, the
observed cloud droplet exhibits a normal distribution or Gamma distribution. Here, the
competitive growth refers to the fact that, as the cloud chamber expands, the majority of
CCNs absorb water vapor at the same rate in order to grow in volume. Cloud chamber
expansion is achieved by extracting the internal gas. Due to the gas exchange in the
extraction processes, a large amount of turbulent flow field is introduced into the cloud
chamber. Simultaneously, the entrainment of dry and wet air is also formed. A part of
CCN is accelerated by the turbulent flow field, while another part was entrained by moist
and dry air, thereby slowing the growth rate. On the other hand, two devices have similar
characteristics in the gradient change in the size distribution. The ascending gradient of the
cloud droplet size distribution remains slow and uniform below 6 µm, while the descending
gradient increases above 6 µm. However, there are slight differences in the results of the two
devices due to the difference in measurement principle and observation volume. Compared
with the DSD shape of the fog monitor, the DSD shape measured by the holographic device
has a larger gradient of rising and falling. Simultaneously, the measurement value of the
holographic device in the range of 3–4 µm is less than that of the fog monitor. Except
for Figure 4c, the measured values of the holographic device in the range of 8–12 µm are
less than that of the fog monitor. These differences can be explained by the measurement
principle of the fog monitor. This modifies the spatial distribution of cloud droplets to a
certain extent, bringing the resultant DSD closer to statistical distribution, and improving
the uniformity of the change in the entire DSD shape. The measurement method of DHI
does not alter the spatial distribution of cloud droplets. The gradient of size distribution
varies significantly due to the volume (0.219 cm3) constraint of the sampling space. As a
result, each device has distinct advantages and disadvantages. In summary, the DSDs of
the DHI and fog monitor are nearly identical, which satisfies the requirements for cloud
droplet observation and subsequent cloud microphysical parameter analysis.

The size distribution of cloud droplets can be used to determine the state of cloud
droplets at various times. However, the analysis of these distribution characteristics in
time series should be performed using the parameter of MVD. In meteorological research,
more attention is paid to the formation and dissipation processes of cloud droplets. The
dissipation stage lasted approximately 60 s, and 600 holograms are processed to obtain the
time-series contrast curve of MVD, as shown in Figure 5. Here, the sampling frequency of
the holographic device is 10 Hz, while the sampling frequency of the fog monitor is 1 Hz.
To facilitate data comparison, the frequency of the holographic device is reduced to 1 Hz by
averaging 10 data points, as shown in Figure 5a. The MVD curves of both devices reflect
the dissipating pattern of cloud droplets. Within 60 s, the MVD of both devices followed a
similar downward pattern, demonstrating the reliability of holographic device. The MVD
of the droplet spectrometer is generally 2 µm higher than that of the holographic device
during the last 20 s. This is because the holographic device has a “0 value” during the 20 s,
as indicated by the three points with ordinates of 0 in Figure 5a. The binary transitions
between 0 and a fixed value are referred to as “zero-sampling”. To more clearly represent
this “zero-sampling”, the sampling frequency of DHI is reduced from 10 to only 5 Hz,
as shown in Figure 5b. From the 30th to the 60th second, there are 48 “zero-sampling”
points out of 150 data points, which is quite a novel phenomenon. Combined with the
related research of Desai et al. [9] in turbulent cloud entrainment, they proposed that the
change in the average droplet diameter at the entrainment boundary is binary, abruptly
jumping between 0 and a fixed value, which corresponds to the “zero-sampling” effect in
Figure 5b. As a result, the dissipation of cloud droplets leads to the appearance of a large
number of entrained and mixed regions in the BACIC. Here, the phenomenon of “zero-
sampling” indicates that the distribution of cloud droplets is extremely uneven during
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the cloud dissipation. It can be considered that the spatial distribution characteristics
of cloud droplets are still retained in the cloud microphysical parameters obtained by
three-dimensional measurement. Therefore, the DHI device also contributes to the study of
small-scale phenomena such as clusters, voids, and random condensation in clouds, which
is an exciting area of research to pursue.
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4. Results Analysis and Discussion
4.1. Size Distribution

The cloud chamber is used as a device for simulating the cloud processes, and the ex-
ternal gas is inhaled by a filter device to fill the interior with aerosol particles. Experiments
in the cloud chamber are carried out to verify the accuracy of cloud droplet measurements
and the reliability of the software for real-time reproduction of digital holograms. By
spraying small liquid droplets (mean diameter 50 µm) above the cloud chamber, the water
vapor content in the BACIC is increased. After the spraying operation is completed, the
pressure is reduced at a rate of 61 hPa per minute, and cloud droplets are generated 20 s
later. The cloud processes last about 5 min, the pressure is reduced by 307 hPa, and the
temperature is reduced by 9.5 K. The experimental conditions of the cloud chamber in three
experiments are set to the same value, and the environmental parameters of the initial state
are relative humidity (95%), temperature (296.2 K), and pressure (998 hPa). The sampling
frequency of the in-line DHIis set to 10 Hz for stable image acquisition. In the experiment,
the first 10 holograms are averaged to obtain the background hologram of the 11th holo-
gram. By subtracting the obtained background image from the 11th hologram, the noise
such as background light is removed. Except for the first 10 holograms, every hologram is
processed by the above method. The processes from the hologram to reconstructed image
and droplet recognition are shown in Figure 6. During the sampling processes of 12 mm
in the z-axis direction at a 0.35 mm interval, the droplet recognition algorithm is used
for cloud droplet detection in 35 reconstructed images. Here, the recognition processing
of five cloud droplets in the hologram is shown in detail. By droplet recognition, the x,
y, and z axis coordinates and diameters of droplets are obtained. Software processes of
real-time reconstruction are shown in Figure 7. The steps of droplet recognition are marked
by dashed lines, which correspond to the schematic diagram of Figure 6.

DHI is used as a three-dimensional display technology for cloud droplet measure-
ments. The three-dimensional position and size of droplets are obtained at the same time,
as shown in Figure 8a–k. DSD can be obtained by counting the diameters of all droplets,
and the DSD shape reflects the characteristics of droplet size. The 5 min cloud processes in
the first experiment are recorded, and the DSD at the 90th second is provided in Figure 8m.
The fitting curve follows the Gamma distribution, and the area between 2 and 6 µm exceeds
half of the total area. Hence, for environments with high aerosol number concentrations,
the full distribution of DSD can be improved by using an in-line DHI to observe droplets
greater than or equal to 2 µm.
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According to the statistical results of 3000 holograms at the first experiment, the
number of droplets in each hologram is found to be between 30 and 50. There are not
enough overall size characteristics to be represented. The 10 sampling areas are spliced
along the positive x-axis in time series to expand the sampling space and reduce the
randomness of data, as shown in the sampling area of Figure 8k. The spliced area is a
rectangular parallelepiped of 13.5 × 1.35 × 12 mm, and the sampling frequency is reduced
to 1 Hz. The DSD is usually divided into 1 µm channels according to cloud microphysics
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theory, as shown in Figures 8m and 9. The experimental processes were observed in three
experiments for analyzing the influence of aerosol number concentration at the DSD.
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Figure 8. The three-dimensional distribution and DSD in the 90th second. (a–j) show the 10 three-
dimensional distributions of cloud droplets in the detection area within 1 s. (k) The three-dimensional
distribution fused by 10 distributions. (m) The DSD corresponding to the 90th second.

In three experiments, aerosol number concentrations Na measured by CPC are 10,390,
9150, and 7370 cm−3, respectively. The CCN in the cloud chamber is reduced from the first
experiment to the third experiment. By distinction of size, the DSD is divided into smaller
droplets (2 µm–lmid), medium droplets (lmid–lmid+1), and oversized droplets (lmid+1–16 µm),
as shown in Figure 9a. Figure 9a–c show the three size distributions at equal intervals
in the first experiment. The value of lmid is 5 µm, and the proportion of smaller droplets
is significantly higher than oversized droplets. This is due to the reduced average water
vapor absorption of the droplets at high aerosol number concentration. The lmid increased
to 6 µm in the second experiment as shown in Figure 9d–f. Under the condition that Na
is reduced by 11.9%, the proportion of smaller droplets is close to oversized droplets. In
the third experiment, the aerosol number concentration of the experiment is reduced by
19.4%, and lmid remains at 6 µm. However, the proportion of smaller droplets is already
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less than that of oversized droplets, as shown in Figure 9g–i. The above results describe
that the right shift of DSD is caused by the decrease in Na, and the proportion of smaller
droplets is gradually reduced. This indicates that the competitive growth of droplets is
weakened as the total number of droplets decreases, resulting in the increase in droplet size.
Therefore, compared with lmid, the change in Na can be more reflected by the proportion of
smaller droplets.
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Figure 9. The DSD in cloud chamber. (a–c) show the size distribution with Na = 10,390 cm−3. (d–f) show
the size distribution with Na = 9150 cm−3. (g–i) show the size distribution with Na = 7370 cm−3.

The contribution of each size channel is counted. From Figure 10a, the number
concentration is represented by the height of histogram, and the range of mean diameter
is reflected in the line graph. The overall number concentration is reduced, and the mean
diameter is slowly increasing. As for 2 µm–lmid, Figure 10b shows the proportion of the
divided three types of droplet sizes. The proportion of smaller droplets in the entire DSD is
reduced from 45.47% to 38.70% in the second experiment, and then reduced to 21.26% in
the third experiment. Therefore, the statistical result shows that the proportion of smaller
droplets is positively correlated with Na.
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and oversized droplets.

4.2. Microphysical Parameters

The droplet size characteristics at the current moment can be reflected by the DHI
in the real-time detection processes. However, the expanding cloud processes last 5 min.
The entire experimental processes obviously cannot be represented by the DSD within
1 s. Therefore, the time-series variations in the DSD are transformed into microphysical
variations, such as the number concentration N and the LWC. In Figure 11a,c, the data is
low-pass filtered to show the pattern of the whole processes. As the N of cloud droplets
is increased and decreased by fluctuations, the processes of cloud droplet growth and
dissipation are reflected. Due to the weak upward and downward patterns, the original
data of MVD is used, as shown in Figure 11b. The comparison results of parameters at the
three concentrations show that the decrease in N, the increase in MVD, and the decrease in
LWC are caused by the decrease in Na. At the same time, the pattern of LWC is basically
the same as N, and the rate of increase or decrease is related to MVD. However, due to
the long-term growth processes (2.1–2.8 min) at Na = 7370 cm−3, the values of other LWC
curves are exceeded, as shown in Figure 11c. It is worth noting that the MVD curve rises
rapidly at 2.2–2.8 min, as shown in Figure 11b. This indicates that the monotonic growth of
LWC is caused by the volatility growth of MVD. Here, the ratio of standard deviation to
average value is usually used to characterize the deviation degree of data, denoted as S.
As the proportion of 2–6 µm droplets is reduced, the S of N is 0.198, 0.248, and 0.335, the S
of MVD is 0.058, 0.066, and 0.132, and the S of LWC is 0.162, 0.259, and 0.416, respectively.
Hence, the decrease in the measurement stability of cloud microphysical parameters is
caused by the decrease in the proportion of 2–6 µm droplets.

For the whole cloud processes, the growth and dissipation processes of cloud droplets
are usually divided by the rising and falling patterns of N. Due to the influence of the
turbulent field and the limitation of the sampling volume, multiple wave crests appear on
the time series curve of N. Here, the maximum value in the wave crest is considered as the
sign of the end of the growth phase, and its corresponding time is the duration of cloud
droplet growth. With the increase in Na, the growth time of cloud droplets under the three
aerosol concentrations is 2.9, 2.4, and 1.5 min, respectively. This shows that, with the same
initial water vapor content, the greater the number of CCNs per unit volume, the easier it
is to reach the saturation state of water vapor absorption. Here, the MVD curve maintained
a downward pattern between 4.0 and 6.0 min, especially the green curve corresponding to
the lowest concentration. Therefore, the last 60 s are used to compare holographic devices
with fog monitors.
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Figure 11. The microphysical parameters of cloud droplets under the different aerosol number
concentrations. (a) Time-series variation in N. (b) Time-series variation in MVD. (c) Time-series
variation in LWC.

In order to investigate the influence of the integrity of DSD on the microphysical
processes, the 2–6 µm droplets in the third experiment are deleted, as shown in Figure 12.
From the dotted area in Figure 12a, due to the random turbulence in cloud chamber, there
are ascending, descending, and ascending processes at 1.0–1.2, 1.2–1.3, and 2.1–2.7 min,
respectively. However, for the MVD with 2–6 µm droplets deleted, the steady variation
at 2.1–2.7 min does not conform to the upward pattern of original curve. The absence
of upward pattern is caused by the incomplete DSD, and the actual change in cloud is
ignored. For the observing system, the absence of such a process is essentially considered
the defect of data reliability. From the dotted area in Figure 12b, for the LWC with missing
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droplets of 2–6 µm, the monotonic growth processes are reduced from 2.0–2.7 to 2.1–2.4 min.
Compared with Figure 12a, the upward pattern is completely reversed to the downward
pattern at 2.5 min. The faint fluctuations of 2.7–3.6 min are turned into two prominent
wave crests. This shows that the interference of turbulence is enlarged by the absence of
droplets. The above results indicate that the absence of 2–6 µm in DSD changes the actual
pattern of cloud processes in some periods and reduces the reliability of observation data
to cloud variations.
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Figure 12. The changes in microphysical parameters at Na = 7370 cm−3. (a) The original MVD and
the MVD without 2–6 µm droplets. (b) The original LWC and the LWC without 2–6 µm droplets.

The microphysical parameters can reflect the quantity and size characteristics of
particles. Among them, the N and LWC are primarily used to describe quantitative charac-
teristics, while the MVD, ED, and LWC are primarily used to describe size characteristics.
The correlation between N and LWC is shown in Figure 13a,b for Na of 9150 and 7370 cm−3.
According to the results of the linear fitting of LWC, there is a positive correlation between
N and LWC at both concentrations. In the analysis of Figure 11, the change pattern of N and
LWC curves is similar, which is a manifestation of positive correlation. It is worth noting
that as N increases, the fluctuation range of LWC is gradually increased. Especially under
the condition that Na is 7370 cm−3, the maximum fluctuation difference reaches 0.14 g cm−3.
Correlations of N and LWC with Na of 9150 and 7370 cm−3 are shown in Figure 13a,b. The
results of the linear fitting reveal a positive correlation between ED and MVD. Unlike the
fluctuation change in LWC, the fluctuation change in ED around the fitted curve is kept to
a maximum of 1.3 µm in Figure 13c. In Figure 13d, this fluctuation is limited to a range of
no more than 2.1 µm. In this case, the fluctuation of the curve represents a data bias, and
the fitted curve represents an estimate of the data that approaches the true value. Thus, the
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increase in aerosol concentration reduces the deviation degree of the data and improves
the anti-interference ability of the data, which is also called the robustness.
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Figure 13. Microphysical parameter correlation curves are shown for Na of 9150 and 7370 cm−3,
respectively. (a,b) show the relationship between N and LWC. (c,d) show the relationship between
ED and MVD.

To conduct a qualitative analysis of the potential association between MVD and N,
we classify the aerosol concentrations across three experiments into three categories based
on their numerical magnitude: high, moderate, and low. In Figure 14, the fitting curve for
MVD maintained an upward pattern as the number concentration increased, demonstrating
a slight positive correlation between MVD and N. Notably, the data distributions at the
three concentrations showed obvious stratification. There are two main reasons for the
stratification. On the one hand, the values of Na differ by more than 1000 cm−3 in three
experiments. A large concentration gradient results in the stratification of MVD. On
the other hand, the maximum deviation distance between discrete point and fit curve is
less than 2 µm in Figure 14. The limited deviation distance also causes the stratification.
In addition, there are some differences in the dispersion degree of data between three
concentrations. When N is in the range from 800 to 1100 cm−3, the dispersion degree of
data is increased as the aerosol concentration is decreased. With the high-concentration
condition of aerosol, the fitted curve grows approximately linearly at N in the range of
800–1400 cm−3, which is consistent with the theoretically proportional relationship. Since
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the fluctuation in the fitted curve is mainly affected by the uneven distribution under the
action of turbulence, the high-concentration aerosol condition effectively weakens this
effect and enhances the robustness of the data.
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Figure 14. Correlation analysis between N and MVD at three different aerosol concentration levels:
high, moderate, and low.

Here, the correlation analysis is performed on several cloud microphysical parameters
in Figures 13 and 14. The concentration of aerosols directly influences the correlation
between any two microphysical parameters. Regardless of whether Figures 13 or 14 is
shown, the data distribution associated with the high concentration is denser, and the
data deviation is smaller in the vicinity of the fitted curve. This indicates that DHI device
may be better suited for particle detection at higher concentrations of particles. Naturally,
there is a limit to the aerosol concentration inside the cloud chamber for cloud droplet
observation experiments. Simultaneously, as DHI is a three-dimensional imaging device,
the extremely high density of cloud droplets will result in increased particle overlap,
lowering the accuracy of particle identification. Therefore, the initial aerosol concentration
around 9150 cm−3 is an optimal choice.

5. Conclusions

In the paper, the observation method based on DHI of the liquid cloud droplets with
the size of 2–16 µm is proposed for extending the observed DSD in the BACIC. With the
USAF 1951 resolution plate and the glass plate of 2 µm particles, the minimum reliable
size observed by DHI is 2 µm. The sampling volume is increased tenfold by stitching
three-dimensional space along the x-axis. After the particle identification, the 3D position
and DSD of cloud droplets are obtained. The comparative experimental results demonstrate
that the DSDs observed by the DHI and fog monitor follow the Gamma distribution, and
that the measured results of MVD are highly comparable. The analysis results of DSD
reveal that the absence of the droplets with the size of 2–6 µm alters several patterns of
microphysical parameters, and then the reliability of some observational data on cloud
variations is diminished. As a result, the minimum size in DSD should be extended
to 2 µm. The measured results of cloud microphysical parameters indicate a stronger
positive correlation and increased robustness between microphysical parameters under the
condition of high concentration aerosols. To further research the interaction mechanism
of cloud microphysics and turbulence, an engineering prototype with higher sampling
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frequency is required. Future research will examine the mechanism by which aerosol
concentration influences the fluctuation of microphysical parameters.
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