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Abstract: Soil moisture is one of the most important components of all the soil properties affecting the
global hydrologic cycle. Optical remote sensing technology is one of the main parts of soil moisture
estimation. In this study, we promote a soil moisture-estimating method with applications regarding
various soil organic matters. The results indicate that the soil organic matter had a significant spectral
feature at wavelengths larger than 900 nm. The existence of soil organic matter would lead to darker
soil, and this feature was similar to the soil moisture. Meanwhile, the effect of the soil organic matter
on its reflectance overlaps with the effect of soil moisture on its reflected spectrum. This can lead
to the underestimation of the soil moisture content, with an MRE of 21.87%. To reduce this effect,
the absorption of the soil organic matter was considered based on the Lambert–Beer law. Then, we
established an SMCg-estimating model based on the radiative transform theory while considering
the effect of the soil organic matter. The results showed that the effect of the soil organic matter can
be effectively reduced and the accuracy of the soil moisture estimation was increased, while MRE
decreased from 21.87% to 6.53%.

Keywords: soil moisture content; soil organic matter; optical remote sensing; absorption coefficient;
hyperspectral imaging; radiative transform model

1. Introduction

Soil moisture plays a significant role in the fields of climate science, agriculture, soil
science, and hydrologic cycle science, among others [1,2]. As a key factor, soil moisture
affects the rainfall-runoff process in land–atmosphere interactions and regulates the net
ecosystem exchange [3]. Soil moisture also contributes to the primary production of global
vegetation and the inter-annual carbon cycle. Research has shown that soil moisture affects
the global annual photosynthesis total, decreasing it by 15% [4]. In dryland regions, soil
moisture affects evapotranspiration and atmospheric moisture fluxes, determines the rate
of vegetation growth, and affects agriculture production [5]. Therefore, it is important
to monitor soil moisture in the terrestrial water cycle and ecosystem, especially to obtain
spatial and temporal soil moisture data.

The conventional measuring methods of soil moisture content include the thermo-
gravimetric method, time domain reflectometry (TDR) [6], heat flux soil moisture sen-
sors [7], and micro electro mechanical system (MEMS) [8]. These methods always require
high amounts of labor, time, and money. To acquire more high quality soil moisture ob-
servations, scientists applied many more methods, such as the international soil moisture
network (ISMN) [9]. Most of them can only monitor specific locations and provide tem-
porally continuous observational data. However, soil moisture has significantly spatial
heterogeneity, even for a few meters, but these methods are inadequate for representing the
spatial distribution of soil moisture at a large scale. In order to obtain spatially averaged
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large-scale soil moisture data, remote sensing technology with spatial resolutions of tens of
meters to tens of kilometers is applied.

Remote sensing technology provides an extreme advantage for the monitoring and
estimating large-scale near-surface soil properties, especially for soil moisture. Remote
sensing technology for soil moisture estimation has been applied since 1970s [10]. Optical,
thermal, and microwave remote sensing techniques were considered promising methods
for spatially explicit measurements of soil moisture [11–13]. In optical remote sensing, the
bands with wavelengths ranging from 350 nm to 2500 nm were used to estimate the soil
moisture [14]. In thermal infrared remote sensing, the bands with wavelengths ranging
from 3500 to 14,000 nm were used for soil moisture estimation. Thermal infrared remote
sensing retrieved the soil moisture by land surface temperature (LST) determined via
evapotranspiration [15]. Microwave remote sensing can exploit the vast disparity of the
dielectric permittivity of the water, air and solids present. The dielectric properties of the
soil phases would change with the soil texture, soil moisture and soil salinity. Small changes
in the soil moisture content would affect the emissivity and backscattering of microwaves
at the soil surface [16]. By analyzing the change of the complex permittivity of the soil, soil
moisture information can be extracted from microwave remote sensing. Low-frequency
microwave data, such as P-band, L-band, C-band, and X-band data, have commonly
been used to retrieve soil moisture [14]. At the same time, the microwave remote sensing
provided here continues to provide the availability of large-scale data products, such as
SMOS (soil moisture and ocean salinity) and SMAP (soil moisture active passive) [17].
Passive and active microwave remote sensing were the most effective techniques for soil
moisture monitoring at the global scale [14]. However, the emission of the natural object
was weak at the frequencies in which the soil moisture was sensitive; the microwave remote
sensing commonly had a coarse spatial resolution in order to detect the weak emission [18].

Optical remote sensing is one of the most commonly used soil moisture monitoring
methods; this was proposed to estimate the soil moisture using broadband or narrowband
optical remote sensors [19]. The soil reflectance spectrum is an important node for soil
moisture retrieval at both the small and large scales. To establish the relationship between
soil moisture content and reflectance, numerous studies of soil moisture estimation methods
by remote sensing were conducted. In the optical methods, the statistical method and
physical method were simultaneously developed.

In statistical methods, the relationship between soil moisture content and spectral
reflectance was extensively studied in previous research [20,21]. The spectral index is
one of the most frequently used methods in soil moisture inversion. The normalized
difference vegetation index (NDVI) is the prominent index that links weekly or monthly
SSM (surface soil moisture) and soil reflectance. Chen et al. experienced an advantage of
NDVI in predicting SMC in Australia with a confidence interval of more than 0.99, but the
NDVI lagged behind soil moisture content by one month, which severely constrained its
development [22,23]. In addition, the normalized difference soil moisture index (NSMI)
was established to investigate the empirical relationship between soil reflectance and SMC;
reflectance values at 1800 and 2119 nm were combined to predict SMC with an R2 of
0.61 [24]. Subsequently, the samples of larger area soil moisture estimation using NSMI
were verified with an R2 of 0.819, but the applicability of this method is limited by its
lack of range regarding different soil types [25]. The perpendicular drought index (PDI)
and modified perpendicular drought index (MDPI) proposed by Ghulam also presented
a potential application for the prediction of SMC, considering both soil moisture and
vegetation growth. However, they were constrained by an existing fixed soil line related to
the soil type [26,27]. To conclude, the spectral index methods derived from specific spectral
bands have inevitably limited conditions.

In addition, statistical methods are closely related to machine learning [28–30], which
is also an overwhelming area of interest in this field. Morellos used the support vector
machine and cubist model to predict soil moisture content, and the R2 values were 0.76
and 0.88, respectively [31]. Sajjad Ahmad used support vector machine, artificial neutral
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network model (ANN), and multivariate linear regression model (MLR) to predict soil
moisture content and found that the method of the SVM performed better than ANN
and MLR models for the prediction of soil moisture content with RMSE less than 2% [32].
Among these studies, the relationship between soil properties and its reflectance was
calculated by a black box model; then, a statistical estimation method depended measured
dataset was established.

In general, statistical methods can often achieve a high measurement accuracy for
particular conditions and research areas. However, the shortcomings of these methods
are lower robustness and lacking physical explanation of radiation transmission. These
methods do not explain the physical and chemical processing of light passing though the
soil surface and play special roles regarding the biological properties of soil in the soil
reflectance spectral and their effects on the light transmission. At the same time, these
methods with weak robustness cannot be applied to a large region which shows significant
spatial heterogeneity of the soil composition [33].

Compared with statistical methods, physical methods of soil moisture estimation are
mainly based on radiative transfer theory [34–36]. Radiative transfer models of soil were
published and improved the soil moisture estimation. Based on the Kubelka–Munk two-
flux radiative transfer theory, Kubelka and Munk developed a Kubelka–Munk model to
analyze the relationship between the reflectance and the parameter calculated from a light
absorption and a light scattering coefficient [37]. Sadeghi improved the Kubelka–Munk
two-flux radiative transfer model to estimate SMC while considering the effects of the
absorption by soil water and soil particles and the scattering caused by the soil particles.
This research found the optimal bands to predict SMC with high applicability have an
RMSE of 0.036 [38].

The Hapke model, which is a soil bi-directional reflectance model, is widely used to
estimate soil moisture [39]. Based on the Hapke model, Yang developed the SWAP-Hapke
model, which considers the bidirectional reflectance distribution function of soil moisture,
and is used to estimate the soil moisture with an RMSE of soil moisture estimation of 0.813.
The results demonstrated that the mode has good accuracy precision [40]. Bablet et al.
developed a multilayer radiative transfer (MARMIT) model of soil reflectance simulation.
In his study, a multiple scatter in the soil layer was considered and the simulated results
were consistent with measured reflectance and its RMSE was only 5% [34]. Subsequently,
an improved version of the MARMIT model called MARMIT-2 was developed. The diffuse
light in the water layer and the mixing of spectral reflectance were considered into the
model. This model showed better simulated results for higher moisture content with a
higher accuracy [41].

Some research focused on the influence of the soil properties on its reflectance using
statistical or physical methods. A large amount of previous research shows that soil
properties such as soil organic matter, soil texture, soil type, and soil salinity would affect
the process of light absorption, scattering, and reflectance, as well as having an effect on soil
reflectance at different wavelengths [42]. For example, the absorption peak of soil moisture
is normal at around 1400 nm and 1900 nm [43]. However, research showed that the clay
minerals have an effect on the soil reflectance around 1400 nm and 2200 nm [44]. Organic
matters with various function groups have a significant effect on the wavelengths around
1100 nm, 1600 nm, 1700 nm, and 1900 nm [42]. Without doubt, the spectral confusion of
those absorption features of the soil components affect the accuracy of the soil moisture
estimation using optical remote sensing.

Soil organic matter (SOM) is one of the main components of soil, as well as one of the
contributors of the soil reflectance spectra. The main effects of soil organic matter on spectra
reflectance are caused by the vibration overtones of certain functional groups, such as C-H,
O-H, C=O, N-H, which correspond to the bands of 1400 nm, 1700 nm, 1860 nm, 2150 nm,
2300 nm and 2240 nm [45]. However, with the overlapping of various bands, the featured
bands of the specific soils are determined by the contents of different functional groups and
organic matters. The results varied from study to study. Boško Miloš proposed that the
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wavelengths of 435 nm, 500 nm, 1050 nm, 1420 nm, 1425 nm, 1875 nm, 1910 nm, 1915 nm,
1925 nm, 1960 nm, 2170 nm, 2200 nm, 2260 nm, 2315 nm, and 2380 nm all contribute to
the prediction of SOM [46]. Islam mentioned that the whole spectral range (VIS-NIR)
was better for the prediction of SOM [47], because soil organic matter decreases the soil
reflectance in the all VIS-NIR bands, especially for soil organic matter contents of more
than 2% [47,48]. As a main contributor to the soil spectrum, the effect of the organic matter
on soil reflectance cannot be ignored. Therefore, it is important to consider the influence of
soil organic matter on the inversion of the estimation of other soil properties, especially for
the soil moisture content.

In this study, a soil moisture estimation method, which considered the effect of the
soil organic matter, was demonstrated. To achieve these goals, soil samples were collected,
and soil properties and their reflectance data were measured. Then, an improved method
of soil moisture estimation was developed by using these experimental data. The aims of
this study were to (1) analyze the effects of organic matter on the soil reflectance spectrum;
(2) establish an estimation model for soil moisture which considers the organic matter effect
on the soil reflectance; (3) evaluate the accuracy of the improved model. This study can
provide a reference for soil moisture estimation at various soil organic matter conditions.

2. Materials and Methods
2.1. Study Area

The study target area of this paper is Songnen Plain, which is located in the middle
of Song Liao Basin in the northeast of China (Figure 1). This region features a temperate
monsoon climate, with an annual precipitation of 500–600 mm. Songnen Plain is an
important grain production area of China, producing soybean, wheat, and corn. At the
same time, Songnen Plain is one of the three famous big black soil regions in the world [49].
With abundant soil organic matter, rather high active accumulated temperature, and fine
hydrothermal conditions, soil moisture and soil organic matter naturally play vital roles in
maintaining crop yields. Therefore, it is of great value to study the combined effects of the
interaction between soil water and organic matter on the spectral reflectance and accurately
estimate the soil moisture content.
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2.2. Field Measurement

The soil samples used in this research were collected from Anda City in the east of
Songnen Plain. A total of twenty soil samples were collected at a depth of 10 cm in April
2015, and the GPS coordinate of each sampling point was recorded. Each soil sample was
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divided into two subgroups. The first group was used to measure the reflectance of wet soil
samples. Then, these samples were treated by natural air dying in a laboratory to measure
the reflectance of air-dried soil samples, soil moisture content, and organic matter content.
The soil samples of the second group were treated by air, crushing and screening; then,
samples were gathered together to obtain the gradient moisture content of soil samples.
The water is titrated into air-dry soil samples by leaching. Finally, sixteen sample data sets
of moisture content gradients were obtained.

The soil moisture content used in this paper is the mass percentage of water in the
soil. Specifically, the thermos–gravimetric technique (oven-drying) was employed for
measuring the soil moisture content in this paper [50]. Owing to its extensive application,
the thermos–gravimetric technique is regarded as the standard reference for soil moisture
content measurement.

The first step was to weigh the original soil samples; the mass of soil samples (Ms)
was derived. The next step was to put soil samples into the oven, drying at 105 ◦C for 24 h,
and subsequently, the mass of dried soil samples (Md) was recorded [51], and the formula
of gravimetric moisture content (SMCg) of the soil was expressed as following:

SMCg =
Ms −Md

Ms
× 100% =

Mw

Ms
× 100% (1)

Ms is the mass of wet soil sample; Md is the mass of dried soil sample; Mw is the mass
of soil water; SMCg is the soil gravimetric moisture content.

The content of soil organic matter is determined using the vitriol acid-potassium
dichromate wet oxidation method; the details regarding this can be found in the study of
Li [52].

The statistical information of the field samples can be found in Table 1. The mean soil
moisture was 25.88%. The minimum and maximum soil moisture were 17.53% and 55.21%,
respectively. The mean, minimum, and maximum the soil organic matter were 38.438 g/kg,
17.946 g/kg, and 81.211 g/kg, respectively. The soil type was Haplic Chernozems. The
soil texture included sandy clay loam (3 samples), sandy loam soil (1 sample), loamy clay
(8 samples), clay soil (4 samples), and loam soil (2 samples).

Table 1. Descriptive statistics of soil properties.

Statistical
Variable

SMCg (%)
Organic

Matter (g/kg)
Soil Particle Size Distribution

Sand (%) Slit (%) Clay (%)

Minimum 17.53 17.946 39.03 14.97 10.12
Maximum 55.21 81.211 59.14 35.90 34.65

Mean 25.88 38.438 51.95 28.94 19.11

The soil samples were measured using a portable spectrometer SVC HR-1024i (Spectra
Vista Co., New York, NY, USA) and the reflectance from 350 nm to 2500 nm was obtained
for each soil sample. Laboratory spectra were measured in dark conditions using a halogen
lamp (Lowel Light Pro, JCV 14.5 V-50 WC). A 25◦ field of view fiber was used to measure
spectral measurements. In addition, each sample was measured 10 times and averaged
to minimize the instrument noise and effects of the environmental conditions. A calibra-
tion was performed before and after the measurement of each sample by using a white
panel [53].

2.3. Method
2.3.1. Soil Reflectance Simulation Based on Radiative Transfer Theory

The radiative transfer model is proved to be an effective method to simulate soil
reflectance spectral. In this study, a simplified approach to reality was applied. Wet soil was
considered as a dry soil covered with a thin layer of water based on a previous study [54].
The thickness of the water layer was L (cm). Light was reflected and transmitted when it
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passed thought the water layer and soil layer. A fraction of the light was reflected with
a reflectance of r12 at the air–water interface. The other part of light was transmitted
from the air layer to the water layer with a transmissivity of t12. Then, the light was
diffusely scattered through internal multiple reflections between the water–air interface
and water–soil interface. The reflectance of water–soil and water–air was Rd and r12. These
multiple reflections increased the absorption probability of the water layer. In addition, the
reflectance of the soil was the sum of the fraction of the multiple reflected light thought out
of the water–air interface. The procedure of the scatting and transmitting of light can be
found in Figure 2.
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The mathematical process was shown as following:
1©: r12, which represented the directly reflectance at the air–water interface.
2©: t12, which represented the transmissivity when the light passed through the air-

water interface.
3©: t12Tw, which represented the energy of the light reached the water–soil interface

at the first time. In addition, Tw was the transmittance when the light passed though the
water layer.

4©: t12T2
W Rd, which represented the energy reached to the water–air interface. Rd was

the reflectance of the water–soil interface.
5©: t12T2

W Rdt21, which represented the fraction of the reflected energy passed though
the water–air interfaces at the first time, where the t21 was the transmissivity when the light
passed though the water–air interface and t21 = 1

n2 t12, when n = n1/n2, n1 and n2 was the
refractivity of the air and water, respectively [55].

6©: t12T3
W Rdr21, which represented the energy reached to the water–soil interface at

the second time, where r12 was the reflectance of the water–air interface, which can be
calculated by integrating the reflectivity over the entire hemisphere based the method of
the Stern.

7©: t12T4
W R2

dr21, which represented the energy reached to the water-air interface at the
second time.

8© : t12T4
W R2

dr21t21, which represented the fraction of the reflected energy passed
though the water–air interface at the second time.

Based on multiple layer radiative transfer model in Figure 2, the soil reflectance Rmod
can be written as following:

Rmod = 1©+ 5©+ 8©+ · · ·
= r12 + t12T2

wRdt21 + t12T4
wR2

dt21r21 + · · ·
= r12 + t12T2

wRdt21
(
1 + T2

wRdr21 + · · ·
) (2)
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In addition, the expression in brackets was a geometric series of T2
wRdr21, so Rmod can

be expressed as:

Rmod = r12 +
t12T2

wRdt21

1− r21RdT2
w

(3)

Tw was the transmittance in water layer which affected by the absorption of pure
water. In addition, Tw can be calculated by the Lambert–Beer law.

TW = e−ε(λ)×L (4)

where ε(λ) was the absorption coefficient of pure water and L was the thickness of water
layer which was a variable correlated to the soil moisture content. Using the cost function
to minimize the distance between simulated reflectance and measured reflectance, we can
obtain L, which was the effective water layer thickness of soil samples.

χ2(L) =

√√√√∑λ2
λ1
(Rmeas(λ)− Rmod(λ, L))2

numλ
(5)

Rmeas(λ) was the measured reflectance; Rmod(λ, L) was the simulated reflectance. λ1
and λ2 was the lower and upper bounds of the wavelength range; numλ was the number
of bands.

Each measured reflectance Rmeas(λ) matched a unique soil sample and had only one
soil moisture content. To obtain the relationship between SMCg and L, the statistics method
was applied, and the relationship between SMCg and L can be represented as the following:

SMCg = f (L
)

(6)

SMCg was the soil moisture content; L was the thickness of the water layer. When we
obtained the soil moisture content and its reflectance dataset, the thickness of the water
layer can be calculated by Equation (5); then, the function of f (L) between SMCg and L also
can be established. Finally, the SMCg can be estimated based on this function of f (L).

2.3.2. Modified Soil Moisture Content Estimating Model with Considering SOM

In addition to soil moisture content, soil organic matter, soil salt content, and soil
type will also affect the soil reflectance spectrum. Stevens et al. found that soil reflectance
increases after removing the soil organic matter of samples [56]. Chen found that soil
reflectance has a significant negative correlation with soil organic matter [57]. Although
soil organic matters existed in soil in various forms, soil organic matter was assumed to be
an absorption element which affected soil reflectance spectrum. In this paper, we assumed
that a part of the soil organic matter can be dissolved into water and increase the absorption
of the water layer.

According to the Lambert–Beer law, the light absorption of the solute was related to
the concentration of analyte, and Formula (4) can be written as

TW = e−ε(λ)×L×c (7)

Generally, c is the concentration of the soil organic matter dissolved in the water.
However, the accurate measurement of this variable was difficult, even to the point of
being unrealistic. Therefore, we assumed that the dissolved soil organic matter was the
logarithm’s function related to soil organic matter. Eventually, the transmittance of organic
matter solution changed into following:

TWS = e−ε(λ)×L×logSOM (8)
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We defined µ(λ) as a specific absorption of soil organic matter:

µ(λ) = ε(λ)× logSOM (9)

Then, the TWS was affected by the absorption of water layer, including the dissolved
soil organic matter.

TWS = e−µ(λ)∗L (10)

For every soil, the absorption characteristics change with the variation of soil organic
matter and soil moisture. Finally, the simulated reflectance Rmod can be written as

Rmods = r12 +
t12t21Rde−2µ(λ)∗L

1− r21Rde−2µ(λ)∗L
(11)

Finally, Equation (11) is a soil reflectance simulating model which considers soil
organic matter. Once soil organic matter and spectral data are obtained, soil moisture can
be estimated using this modified model under various organic matter conditions.

2.4. Accuracy Verification

To quantify the accuracy of our model, we chose the correlation coefficient (R2), root–
mean–square error (RMSE), and mean relative error (MRE) as the evaluation criteria, and
the calculating equations were used as in the following:

R2 = 1− ∑n
i=1
(
y′i − yi

)2

∑n
i=1
(
y′i − y

)2 (12)

MRE =
1
n ∑n

i=1

∣∣yi − y′i
∣∣

yi
× 100% (13)

RMSE =

√
1
n ∑n

i=1

(
yi − y′i

)2 (14)

where yi, y′i, and y were the measured value, the predicted value, and the average of the
measured value, respectively. In addition, n was the number of the samples.

3. Results
3.1. Effect of Soil Moisture on Its Spectra

To analyze the interference of soil moisture on soil spectra, artificial gradient moisture
content soil samples were selected for spectral measurement. Their moisture content range
was from 0.47% to 32.8%; these samples represented the water situations from extreme
drought to saturation. In addition, the effect of the soil moisture on the spectrum was
presented (Figure 2). The results showed that soil reflectance basically declines with the
increase in soil moisture content in the VIS-NIR band (400–2500 nm). The soil moisture spec-
tra had two absorption peaks at around 1400 nm and 1900 nm [58–60]. With the increase in
the soil moisture, the intensity of absorption particularly increased in these two bands [61].
R.A. Viscarra Rossel mentioned that this phenomenon is caused by fundamental absorption
by OH− groups in water molecules [44]. With the increase in the soil moisture content, the
number of OH− groups increased and, thereby, the absorption quantity increased. In the
end, the absorption peaks became deepened, as shown in Figure 3.

At the beginning of the field of soil moisture spectra research, Idso proposed that there
was a linear relationship between soil reflectance and soil moisture content [62]. However,
Liu Weidong proposed that the linear relationship was poorly fitted for higher moisture
levels, and this view of the linear relationship was eventually overturned [63].
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Figure 3. The soil reflectance of gradient moisture content.

3.2. Modeling of the Soil Moisture Estimation

Our goal was to predict soil moisture content using the soil reflectance spectra. How-
ever, the L, which was the thickness of the effective water layer, was an imaginary variable
and cannot be measured in the real world. Therefore, we used the manufactured gradient
moisture content dataset to simulate reflectance; then, the thickness of the effective water
layer was calculated by using Formula (5). The scattering plot between the SMCg and L is
shown in Figure 4. The thickness of the water layer firstly increased with the soil moisture
content at a rapid speed, and then, the growth rate gradually fell as the soil moisture
became closer to saturation.
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The statistical relationship between SMCg and L was established through regression
analysis. We found that the logarithm function was best fitted. The formula can be written
as followed:

SMCg = 51.312 + 5.403× ln L (15)

where L is the thickness of water layer and SMCg is the soil moisture content. In this
experiment, 51.312 and 5.403 were the specific parameters determined by soil properties.
Then, we used the correlation coefficient R2, RMSE, and MRE to evaluate the accuracy of the
model. In addition, the R2, RMSE, and MRE were 0.848, 4.847%, and 16.066%, respectively.
The scatter plot and the fitting curve are shown in the Figure 4.
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To verify the accuracy, the R2 and RMSE between the predicted SMCg and measured
SMCg are shown in Figure 5. The R2 and RMSE of this method were 0.847 and 4.847%,
respectively. This method proved to be effective in predicting the gradient soil moisture
content without the interference of other soil properties.
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3.3. Effects of Soil Organic Matter on Its Spectrum

The radiative transfer model was a good choice for simulating the soil spectrum under
varying conditions. To verify the accuracy of the multilayer radiative transfer established
above, the reflectance of sixteen samples was simulated and the correlation coefficient
between the measured and predicted reflectance was calculated. The results are shown
in the Table 2. Compared with the simulated and measured reflectance, most of the
correlation coefficients range from 0.8 to 1.0. Then, the average of the RMSE and MRE
between the simulated and measured reflectance was calculated. The average, maximum,
and minimum values of the RMSE were 0.0563%, 0.0839%, and 0.0268%, respectively. The
average, maximum, and minimum values of the MRE were 38.774%, 72.758%, and 9.514%,
respectively. The results indicate that this model can be used to explain light transmission
in soil moisture.

Table 2. The correlation coefficient of the measured and simulated reflectance.

R2 0.9–1.0 0.8–0.9 0.7–0.8 0.5–0.7

Amount 3 10 2 1

To specify the effects of soil organic matter on the spectra, we used the real soil
moisture content to calculate the corresponding water layer thickness based on the method
mentioned above. Then, soil reflectance corresponding to the soil moisture content was
simulated using the multilayer radiative transform theory shown above. The simulated
soil reflectance was considered as a spectrum of soil with the influence of soil moisture
only. The comparation between the measured and simulated reflectance with the same soil
moisture can show the effects of soil organic matter on the reflected spectra.

Five selected soil samples and their simulated reflectance values with the same soil
moisture were presented in the Figure 6. The Rmodn represented the simulated reflectance
of the nth sample and Rn represented the measured reflectance of the nth. The difference
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between the measured and simulated reflectance was significant. Compared with the
simulated reflectance, the measured reflectance was notably smaller than the simulated
results in the full bands. In addition, the simulated absorption peaks at 1400 nm and
1900 nm were notably shallower than the measured ones. Apart from the simulated error,
the difference mainly came from the difference in soil properties. The biggest difference
between the two soil properties was whether they contained organic matter, and the main
question was whether this affected their place on the soil reflection spectrum. The answer to
this was yes. The soil organic matter made the soil reflectance dark. This result is consistent
with the previous study. Moslem Ladoni mentioned that the higher the content of organic
matter that exists in the soil, the darker the soil appears. In addition, the soil organic matter
decreases overall reflectance and thereby improves the difficulty of measuring other soil
properties [64].
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The soil reflectance spectra showed two absorption peaks at around 1400 nm and
1900 nm, as the characteristic bands of soil moisture, corresponding to the characteristic
bands of soil moisture. However, compared with the manufactured gradient soil moisture
content presented in Figure 3, Figure 6 shows soils with generally consistent moisture
content and different organic matters showed a complex spectral trend. Their spectral
performance on the full bands varies with the content of soil organic matter.

Meanwhile, another five soil samples with similar soil moisture and various soil
organic matters were selected, and the reflectance was plotted in Figure 7. Soil samples
with different organic matter contents showed absorption characteristics in divergent
bands. Figure 7 shows that the effect of SOM was smaller at wavelengths lower that
900 nm, compared with wavelengths higher than 900 nm. In addition, this effect caused
by SOM varied band-by-bands. However, this effect was not noted at around 1900 nm.
The results also show that 1930 nm was a spectral feature of soil organic matter; the soil
reflectance tended to decrease with the increase in soil organic content. The main reason for
this is that it corresponds to the effects of the C=O functional group in carboxylic acid [44].
Figure 7 also indicates that the SOM affected the soil reflectance and led to the decreasing
trend found in the soil spectrum, in which the soil moisture gradient was disturbed.

Owing to the disturbance of organic matter, the predicted value of soil moisture content
is, thus, not as accurate as before. To conclude, both SOM and SMCg have a negative effect
on soil reflectance; the higher contents of soil moisture and soil organic matter are both
related to the lower reflectance, showing a synergistic effect. Their cooperation possibly
leads to a higher predicted soil moisture content. Therefore, a generalized measurement
of soil moisture considering the influence of soil organic matter can result in an inferior
measurement accuracy.
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3.4. A modified Model for SMCg Prediction

During field investigation, it is impossible that the experimental conditions are as
satisfactory as those in the laboratory. As a main component of the soil, soil organic
matter definitely varied in different regions, and various soil organic matters affect the
soil reflectance at varying degrees, and this effect reduces the accuracy of the soil moisture
estimation based on the soil reflectance [53,65,66].

Our method focused on the attenuation process of light in the water layer, which
refers to the absorption ability of soil organic matter. The absorption coefficient had a
linear relationship with the concentration of the specific solution based on the Lambert–
Beer law. Limited by reality, the absorption coefficient of soil organic matter cannot be
measured accurately due to the uncertainty of the composition of the soil organic matter.
For convenience, the content of the soil organic matter was used to replace the soil organic
matter dissolved in water. In addition, the logarithm of SOM was applied to replace the
dissolved SOM, which contributes to a novel absorption coefficient of soil by using the
Formula (9). The absorption coefficient represents the absorption capacity of soil moisture
while considering the effect of the soil organic matter. Higher organic matter content meant
a stronger ability of light absorption. Thus, the effects of soil organic matter on the radiative
transfer model were successfully taken into consideration during the soil moisture content
estimation.

A better fitting result can be obtained between the measured reflectance and the mod-
elling reflectance after the calibration step of the absorption coefficient. A new logarithmic
equation was established between SMCg, L, and SOM,

SMCg = 59.359 + 6.778× ln(L× log(SOM)) (16)

where L was the thickness of water layer, SMCg was the soil moisture content, and SOM
was the content of the soil organic matter. In addition, 6.778 and 59.359 were the specific
parameters fitted by the different soil properties. The determination coefficient was 0.767.
The RMSE and MRE were 1.62% and 6.53%, respectively (Figure 8). The modification of
the absorption coefficient, the thicker water layer, and the new curve refitting processes
were added to the traditional approach. Thus, SMCg under various soil organic contents
can be predicted.
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Figure 8. The scattering plot between SMCg and L with the various SOM.

To validate the accuracy of the modified model, several evaluation indexes (R2, RMSE, RME)
were employed to compare the performances of two models. In addition, the comparation results
are shown in Table 3.

Table 3. The comparation of the original and modified model.

Model R2 RMSE (%) MRE (%)

Original model 0.607 5.61 21.87
Modified model 0.767 1.62 6.53

When the soil moisture content was estimated using the model established in Sec-
tion 3.2, the R2 between the estimated and measured result was only 0.607, and RMSE
and MRE were 5.61% and 21.87% (Figure 9a). In addition, the estimated results showed
an underestimation of the soil moisture content. The reason for this may be that the or-
ganic matter existing in the soil disturbed the sensitivity of the soil reflectance spectrum
in its moisture content. Compared with the results from the measurements which did not
consider the soil organic matter, a multi-factor model performed better. The R2 was 0.767,
while the RMSE and MRE were 1.62% and 6.53% (Figure 9b), respectively. The estimated
results were closer to the measured data, and the MRE was reduced by 2.35 times.

The box plot was also assigned to present the accuracy of the modified model (Figure 10).
The length of the blue column was the distance between the measured SMCg and the
predicted SMCg using the original model, and the red column was that of the modified
model. The shorter column meant the lower error between the measured SMCg and
predicted SMCg. We randomly choose eight soil samples in our experiment. In addition,
the results showed the precision of all samples was improved. With shorter red columns,
the modified model can guarantee a better accuracy for the predicted SMCg under various
organic matter soils.
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Figure 9. The scattering plot between the estimated and measured SMCg: (a) the scattering plot
between the measured and predicted SMCg using the original model; (b) the scattering plot between
the measured and predicted SMCg using the modified model.
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4. Discussion
4.1. The Effects of Soil Reflectance Spectra

Soil moisture is an important factor affecting the hydrologic cycle in land–atmosphere
interactions and regulates the net ecosystem exchange [1,2]. Soil moisture also contributes
to global vegetation primary production and the inter-annual carbon cycle [4]. At the same
time, soil moisture affects evapotranspiration and atmospheric moisture fluxes, determines
vegetation growth, and affects the agriculture production [5].

Therefore, it is important to monitor soil moisture in the terrestrial water cycle and
ecosystem, especially to obtain spatial and temporal soil moisture data.

With the development of hyperspectral remote sensing technology, the soil moisture
content prediction using VIS-NIR (400–2500 nm) remote sensing had already received
extensive attention for its fast speed and convenience. While studying the contribution of
soil moisture to spectra, it is the common view that the soil reflectance basically decreases
with the increase in soil moisture content in the VIS-NIR band (400–2500 nm), and there are
two major absorption peaks around 1400 nm and 1900 nm caused by the strong absorption
of OH groups existing in water [64]. In addition, these results were consistent with our
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research, as shown in Figure 3. The absorption peak of the soil moisture spectrum made it
possible to measure SMCg through optical remote sensing [67,68].

Although previous research reached an agreement on the performance of soil moisture
spectra, the spectral features of soil organic matter were rather complex to determine.
Opinions were widely divided regarding the feature bands of soil organic matter. Qinghu
Jiang mentioned that the prominent absorption peaks of organic matter are presented at
around 1420 nm, 1950 nm, and 2200 nm [69]. Lee attributed 2243 nm, 2246 nm, 2483 nm, and
2486 nm to the featured bands of soil organic carbon [70]. R.A. Viscarra Rossel, in his review,
postulated that different kinds of organic matter showed various absorption peaks for their
different overtones and combinations in the VIS-NIR bands [44]. Specific soil reflectance
turned out to be related to the specific organic components at specific wavelengths for their
various functional groups [71]. In this paper, a spectral feature of soil organic matter at
the wavelength of the 1930 nm and the absorption depth changed with the variety in the
content of the soil organic matter. This spectral feature corresponded to the effects of the
C=O functional group in carboxylic acid [44]. We also found that soil reflectance tends to
decrease as soil organic content increases when SMCg is at the same level. The absorption
effect of the C=O functional groups in 1930 nm band is thus concluded.

Generally, the higher content of organic matter in soils led to a darker surface with
a lower reflection and stronger absorption of the light [72]. Al-Abbas noticed that soil
reflectance had a significant negative relationship with soil organic matter [73]. Similarly,
Figure 6 in our article showed that the simulated reflectance without the interfere of soil
organic matter was rather higher than the measured reflectance, which demonstrated
that the existence of soil organic matter caused a decrease in reflectance in the VIS-NIR
(400–2500 nm) bands. This result was consistent with the conclusion of Alexandre’s re-
search [74]. Various functional groups in organic matter caused multitude absorption
features of the spectra, leading to the overall decline of soil reflectance. In addition, it could
thus be a better choice that all bands are used to calculate the effects of soil organic matter
on spectra.

Although the effects of soil organic matter on soil were not as strong as that of the
soil moisture spectra, the existing soil organic matter partly masked the performance of
soil moisture spectra. In addition, this phenomenon leads to an irregular disturbance on
the soil spectrum and it increases the difficulty of the soil moisture retrieval using the
surface reflectance spectrum. Thereby, an inaccurate predicted value of SMCg is shown
in Figure 9a. Compared with the gradient moisture data, the correlation coefficient R2

dropped from 0.847 to 0.607, and RMSE raised from 4.84% to 5.61%. This shows that
various soil properties, such as soil type, soil salt content, and soil organic matter, led to
the disturbance of the soil reflectance spectrum and the SMCg prediction. Therefore, it was
important to propose a method of SMCg estimation which considers the existence of other
soil properties.

4.2. A general Model to Predict SMCg

In previous research, Somers introduced an exponential model to predict SMCg, and he
found that soil organic matter had the strongest relationship with the absorption coefficient
of water among various soil properties. The accuracy of the prediction model improved
immensely with R2 from 0.59 to 0.82 when a calibration of the specific absorption coefficient
related to SOM was executed [75].

In this study, we verified this assumption and further developed a multilayer radiative
transform model based on this assumption. This was a radiative transfer method based on
the absorption of light energy passing though the water layer in soil, which was also one of
the most commonly used methods. An apparent default for this method was that there was
an intermediate variable L linking soil moisture and reflectance. The thickness of water
layer L was fitted by using spectral data, and a math step to build the relationship between
L and SMCg was processed. Then, the SMCg was estimated by using the model established
between L and SMCg. It could be more convenient if we directly obtained the SMCg from
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spectra data. Muller suggested that an attenuation factor as(λ) could be used replace the
standard absorption coefficient. Thus, L could be replaced by SMCg and this SMCg can
be predicted by using the exponent model [76]. This idea showed an improvement in the
SMCg-estimating model which can be referred to in future studies.

In addition, we modified the absorption coefficient soil according to their organic
matter content and a new absorption coefficient based on the Lambert–Beer law was used.
Therefore, an SMCg prediction model considering soil organic matter was derived. The
SMCg prediction results were satisfactory, with a high accuracy based on modified model.
The method performed well with the coefficient of R2 determination, arriving 0.767. Using
RMSE and MRE as the evaluation criterions, their values were 1.62% and 6.53%, respectively.
The accuracy of the model significantly improved, in contrast with the traditional approach.
However, compared with the gradient SMCg data, the accuracy of the model still needed
to be improved. Nevertheless, this modified model showed the advantage that the SOM
was considered as an interfering factor and the impact of the SOM can be mitigated during
the SMCg estimation. However, it was noteworthy that these soil moisture estimation
methods using spectral reflectance were widely used on bare soils [18,77]. In addition, the
relationship between soil reflectance and soil moisture was commonly data-dependent
and easily affected by vegetation covers, soil texture, surface roughness, and soil physical
components [78]. To overcome these limitations, the normalized form of transforming of
two or more spectral reflections was developed for soil moisture mapping. The normalized
difference vegetation index (NDVI) was used to infer the soil moisture condition. In
addition, some indices were developed for soil drought monitoring and had an ability to
infer soil moisture conditions. Ghulam et al. developed a modified perpendicular drought
index (MPDI) to monitor soil moisture using fractional vegetation cover for the removal
of vegetation information and Tao, et al. modified this model [27,79]. This is similar to
using a red and NIR spectral feature space to investigate the soil moisture over vegetation
areas [18].

In sum, the prime objective of this paper was to build a general model for predicting
soil moisture content based on the multilayer radiative transfer model. The results showed
that the multilayer radiative transfer model is an effective and convenient method for
describing the light transmission process in soil, making it easy to describe the impact
of soil properties on the reflected soil spectrum. In this search, we applied this radiative
transfer method to develop an SMCg-estimating model which considers the effect of soil
organic matter on its reflectance. In addition, the results indicated that the effect of the
soil organic matter cannot be ignored, as the SMCg estimation was performed at various
contents of the soil organic matter. A modified model of soil moisture estimation was
proposed, and the accuracy of the soil moisture estimated was acceptable. Compared with
the statistical model, the parameter-fitting process can be omitted, which is considered the
shortcoming for most models [34,38]. In addition, this research can provide a reference for
SMCg estimation with various soil properties using VIS-NIR remote sensing.

5. Conclusions

In this work, a multilayer radiative transform model is proposed to estimate the soil
moisture content while considering a variety of soil organic matters. Then, laboratory data
were used to validate the accuracy of the modified model; the conclusions followed.

(1) Water in the soil showed a significant spectral feature, especially for 1400 nm and
1900 nm. In addition, the soil surface is darker as the soil moisture increases. Most previous
studies indicated that these spectral features can be used to estimate soil moisture with a
good accuracy.

(2) The existence of soil organic matter shows up as being darked regarding the soil
reflectance. This feature was similar to the soil moisture. However, the influence of the soil
organic matter on soil reflectance overlaps with the effect of soil moisture on its reflected
spectrum. This can lead to the underestimation of the soil moisture content. Therefore,
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the effect of the soil organic matter reduces the accuracy of soil moisture estimation and
increases the error rate and uncertainty of the estimation results.

(3) The multilayer radiative transform model provides an effective method for predict-
ing SMCg with strong interpretability and transferability. In this research, we promoted
a modified SMCg-estimating model which was developed by radiative transform theory
while considering the effect of the soil organic matter. The accuracy of the soil moisture
estimation was increased, with MRE decreasing from 21.87% to 6.53%.
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