
 

 

 

 
Remote Sens. 2022, 14, 2410. https://doi.org/10.3390/rs14102410 www.mdpi.com/journal/remotesensing 

Article 

Surface Water Dynamics from Space: A Round Robin  

Intercomparison of Using Optical and SAR High-Resolution 

Satellite Observations for Regional Surface Water Detection 

Christian Tottrup 1,*, Daniel Druce 1, Rasmus Probst Meyer 1, Mads Christensen 1, Michael Riffler 2,  

Bjoern Dulleck 2, Philipp Rastner 2, Katerina Jupova 3, Tomas Sokoup 3, Arjen Haag 4, Mauricio C. R. Cordeiro 5, 

Jean-Michel Martinez 5, Jonas Franke 6, Maximilian Schwarz 7, Victoria Vanthof 8, Suxia Liu 9, Haowei Zhou 10,  

David Marzi 11, Rudiyanto Rudiyanto 12, Mark Thompson 13, Jens Hiestermann 13, Hamed Alemohammad 14,  

Antoine Masse 15, Christophe Sannier 15, Sonam Wangchuk 16, Guy Schumann 17, Laura Giustarini 17,  

Jason Hallowes 18, Kel Markert 19 and Marc Paganini 20 

1 DHI A/S, 2970 Hørsholm, Denmark; dadr@dhigroup.com (D.D.); rame@dhigroup.com (R.P.M.); 

madc@dhigroup.com (M.C.) 
2 GeoVille GmbH, 6020 Innsbruck, Austria; riffler@geoville.com (M.R.); dulleck@geoville.com (B.D.);  

rastner@geoville.com (P.R.) 
3 Gisat s.r.o., 170 00 Praha, Czech Republic; katerina.jupova@gisat.cz (K.J.); tomas.soukup@gisat.cz (T.S.) 
4 Deltares, 2629 HV Delft, The Netherlands; arjen.haag@deltares.nl 
5 Géosciences Environnement Toulouse (GET), Unité Mixte de Recherche 5563, IRD/CNRS/Université,  

31400 Toulouse, France; mauricio@ana.gov.br (M.C.R.C.); jean-michel.martinez@ird.fr (J.-M.M.)  
6 Remote Sensing Solutions GmbH, 81673 München, Germany; franke@rssgmbh.de 
7 Department of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; 

schwarz@rssgmbh.de 
8 Faculty of Environment, University of Waterloo, Waterloo, ON N2L 3G1, Canada; vrvantho@uwaterloo.ca 
9 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and 

Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; liusx@igsnrr.ac.cn 
10 College of Resources and Environment, Sino-Danish Center, University of Chinese Academy of Sciences, 

Beijing 100049, China; zhouhw.18b@igsnrr.ac.cn 
11 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;  

david.marzi01@universitadipavia.it 
12 Program of Crop Science, Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu,  

Kuala Nerus 21030, Terengganu, Malaysia; rudiyanto@umt.edu.my 
13 GeoTerraImage (Pty) Ltd., Pretoria 0184, South Africa; mark.thompson@geoterraimage.com (M.T.);  

jens.hiestermann@geoterraimage.com (J.H.) 
14 Radiant Earth Foundation, Washington, DC 20005, USA; hamed@radiant.earth 
15 Group CLS, 31400 Toulouse, France; amasse@groupcls.com (A.M.); csannier@groupcls.com (C.S.) 
16 Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; 

s.wangchuk@vu.nl 
17 RSS-Hydro SARLS, 3593 Dudelange, Luxembourg; gschumann@rss-hydro.lu (G.S.);  

lgiustarini@rss-hydro.lu (L.G.) 
18 EkoSource Insight (Pty) Ltd., Johannesburg 2196, South Africa; jhallowes@ekosource.co.za 
19 SERVIR-Mekong, Bangkok 10400, Thailand; kel.markert@nasa.gov 
20 European Space Agency, ESRIN, 00044 Frascati, Italy; marc.paganini@esa.int 

* Correspondence: cto@dhigroup.com 

Abstract: Climate change, increasing population and changes in land use are all rapidly driving the 

need to be able to better understand surface water dynamics. The targets set by the United Nations 

under Sustainable Development Goal 6 in relation to freshwater ecosystems also make accurate 

surface water monitoring increasingly vital. However, the last decades have seen a steady decline 

in in situ hydrological monitoring and the availability of the growing volume of environmental data 

from free and open satellite systems is increasingly being recognized as an essential tool for 

largescale monitoring of water resources. The scientific literature holds many promising studies on 

satellite-based surface-water mapping, but a systematic evaluation has been lacking. Therefore, a 

round robin exercise was organized to conduct an intercomparison of 14 different satellite-based 
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approaches for monitoring inland surface dynamics with Sentinel-1, Sentinel-2, and Landsat 8 im-

agery. The objective was to achieve a better understanding of the pros and cons of different sensors 

and models for surface water detection and monitoring. Results indicate that, while using a single 

sensor approach (applying either optical or radar satellite data) can provide comprehensive results 

for very specific localities, a dual sensor approach (combining data from both optical and radar 

satellites) is the most effective way to undertake largescale national and regional surface water map-

ping across bioclimatic gradients. 

Keywords: surface water dynamics; SAR and optical data; data fusion; water resource management; 

Sustainable Development Goal 6 

 

1. Introduction 

Water is key to sustainable development, being critical for socioeconomic develop-

ment, energy and food production, and healthy ecosystems. Today water scarcity affects 

more than 40 percent of the world’s population and is projected to rise further, exacer-

bated by climate change [1]. As the global population grows, there is an increasing need 

to balance the competing demands for water resources and have more efficient ways to 

manage water supply. The importance of ensuring the availability and sustainable man-

agement of water for all has been increasingly addressed in the global political agenda, as 

seen with the Sixth Sustainable Development Goal (SDG) of the United Nations 2030 

Agenda for Sustainable Development [2] and the adoption of an International Decade 

2018-2028 for Action on ‘Water for Sustainable Development’ by the UN General Assem-

bly [3]. As the demand for freshwater increases, the importance of monitoring changes in 

surface waters is gaining more attention, but many countries are still lacking data to mon-

itor the extent of their inland waters and their intra- and interannual changes. 

Earth Observation (EO) is an essential source of information, which can complement 

national hydrometric data and services and support countries to operationally monitor 

changes to their surface waters. Ever since the launch of the first Earth observation satel-

lites in the early 1970s, the mapping and monitoring of surface water has been a subject 

that attracts interest from researchers and practitioners in hydrology, environmental con-

servation, and water resource management. The field has gradually evolved and been in-

centivized by the steady buildup of long-term archives of global satellite data and com-

puter resources for analyzing those data. A significant breakthrough in the adoption of 

EO solutions for water=related topics has been the European Commission Joint Research 

Center’s Global Surface Water Explorer [JRC-GSWE] [4] and the Global Land Analysis 

and Discovery Group’s Global Surface Water Dynamics [GLAD-GSWD] [5]. Despite these 

developments and the long track record of related successful case studies on surface water 

mapping, there is still a lack of clear, robust, efficient, user-oriented methods and guide-

lines that allow for the use of EO data at scale and on an operational basis for surface water 

mapping and monitoring. 

The mapping of surface water with either optical or Synthetic Aperture Radar (SAR) 

data has been reviewed in several papers (e.g., [6,7]) and with a series of more recent pa-

pers focusing on the combined use of optical and SAR data [8–11]. This development is 

directly related to the Sentinel program under the European Copernicus initiative [12] 

Through the Copernicus Sentinel mission, optical and SAR data in high resolution (10 m) 

have become globally available free of charge and with a short latency of a few days or 

less. The next leap in EO-based surface water detection will need to take full advantage of 

this enhanced observation capacity, which offers unprecedented opportunities to develop 

robust and cost-effective EO methods to monitor the seasonal and annual variations of 

surface waters. These EO methods and associated information products can be embedded 

in national processes for more evidence-based water policies and efficient reporting on 

the global water agenda. This is why the European Space Agency (ESA) has launched the 
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WorldWater project with a principal aim of strengthening EO capacities in countries to 

better monitor their inland waterbodies (lakes, reservoirs, rivers, and estuaries) and, con-

sequently, better fulfil their commitments on water resource management and water se-

curity in the different water-related global agendas such as the 2030 Agenda on Sustaina-

ble Development [2], the 2015 Paris Agreement on climate change [13] and the Sendai 

Framework for Disaster Risk Reduction [14]. 

The overarching goal of the WorldWater project is to develop robust and scalable EO 

solutions for inland surface water monitoring, which can be exploited by a large commu-

nity of stakeholders involved in water management from local water supplies to national 

water strategies, including transboundary river basin management plans and global as-

sessment of surface water changes. As part of the project goal, a round robin exercise has 

been organized to conduct an intercomparison of EO algorithms for surface water detec-

tion, using the latest generation of free and open satellite data from Sentinel-1, Sentinel-2, 

and Landsat 8. The round robin was open to researchers, companies, and other developers 

of satellite-based algorithms for surface water detection. The precondition for participat-

ing in the round robin was a peer-reviewed algorithm for surface water detection based 

on (or adaptable to) Sentinel-1, Sentinel-2, and/or Landsat 8. Non-peer reviewed algo-

rithms were accepted provided that adequate supplementary documentation and justifi-

cation could be provided. In this paper, we present the results of the WorldWater round 

robin intercomparison and use them as the basis for discussing the pros and cons of dif-

ferent approaches to detect and monitor surface waters from Earth observation data. By 

using various statistical tests, we evaluate the quantitative performance of the individual 

algorithms and use the findings to draw some qualitative considerations about their per-

formance. The focus is not on the algorithms themselves, as they have already proved 

themselves (cf. peer-reviewed or in an operational setting), but rather, on the underlying 

data model, that is, whether the algorithms are relying on single sensor inputs or whether 

they are using a dual sensor approach. Ideally, the best performing algorithms can pro-

vide spatially and temporally consistent timeseries of surface water extent dynamics that 

meet the user requirements, not only in terms of accuracy but also in terms of transpar-

ency, cost, and transferability. The aim is to contribute to the development of a new set of 

best practices for surface water monitoring, as well as identifying shortfalls and areas of 

further research. 

2. Materials and Methods 

2.1. Test Sites and Input Data 

All participants in the round robin were required to produce monthly maps of inland, 

open surface waters at 10-m spatial resolution for 2 consecutive years over three test sites 

(100 × 100 km) located in 3 different countries: Colombia, Mexico, and Zambia. Optionally, 

participants could also submit results for an additional two test sites located in Gabon and 

Greenland (cf. Figure 1). Test site locations were selected to cover various eco-and climatic 

regions as well as to include major challenges for EO-based surface water mapping, in-

cluding sites influenced by topography, clouds, canopy shading, fire scars, urban areas, 

and regions with permanent low backscatter (e.g., flat and impervious areas, sandy sur-

faces). The sites also included a diversity of waterbodies ranging from large waterbodies 

(wind and wave effects) to smaller waterbodies of both a permanent and seasonal nature, 

as well as waterbodies impacted by water constituents and shallow waters influenced by 

bottom reflectance. The input datasets, made available to all participants, included all Sen-

tinel 1, Sentinel 2, and Landsat 8 images acquired over the test sites from July 2018 to June 

2020. Use of ancillary datasets (such as Digital Elevation Model (DEMs) and a priori sur-

face water maps) were allowed, but under the condition they were publicly available, e.g., 

the Copernicus DEM [15] and JRC-GSWE [4]. 
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Figure 1. Location map of the test sites annotated with their dominant eco-region(s). 

2.2. Surface Water Detection Models 

The following sections provide a high-level summary of the fourteen contributions 

to the round robin intercomparison. Each contribution is referred to as a model in order 

to emphasis that the focus on the intercomparison was to evaluate the performance of the 

underlying data models, i.e., whether the surface water detection was based on optical 

data only (O), SAR data only (S), or integration of both optical and SAR data (O + S).  

Model A [O + S] uses a histogram segmentation method to separate imagery from 

Sentinel-1, Sentinel-2, and Landsat 8 into water and non-water classes [16,17]. Specifically, 

it carries out edge detection followed by procedures to help obtain a bimodal distribution 

on which Otsu’s method is carried out to automatically derive an optimal threshold. This 

model was specifically designed for fast and largescale water detection to assist in flood 

relief efforts. Similar methods exist that attempt to obtain local thresholds over small sec-

tions of each image [18], which can potentially yield more accurate results but at the ex-

pense of computational speed. A postprocessing step is applied on the monthly water 

maps derived separately from optical and SAR imagery, where water pixels are con-

strained to areas that are hydrologically likely to contain water, with the full timeseries of 

maps derived from optical imagery included as an additional constraint for the SAR-de-

rived maps. Finally, the optical and SAR-based maps are merged to produce a single wa-

ter map per month. 

Model B [O + S] This surface water detection approach is based on Sentinel-2 im-

agery as the primary water detection dataset, with the all-weather capabilities of Sentinel-

1 SAR imagery being used to “fill-in” cloud-obscured water surfaces. SAR data “in-filling” 

was restricted to raster cells previously detected as having recorded a surface water con-

tent from longer-term data modelling results (circa 2016 and forwards) in order to mini-

mize SAR-generated commission errors in the target month. The water surface modelling 

procedure is based on a set of decision-tree-generated rules that have been derived from 

a comprehensive set of water and non-water feature reference points distributed across 

South Africa. The reference dataset consists of ±60,000 sample points that represent a wide 

range of seasonal and geographical variations in both water (i.e., turbidity, depth) and 
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non-water surface conditions with potentially similar spectral characteristics, such as burn 

scars, terrain shadows, and dark, non-vegetated surfaces from both natural and man-

made environments. Collectively, these points ensure full representation of all spectral 

characteristics required in the water detection modelling process. The monthly surface 

water datasets represent the median surface water extent for that month, rather than the 

average or (absolute) maximum extent, as a result of the multidate image acquisition date 

compositing approach used to model water features [19,20]. 

Model C [O + S] uses a random forest classifier to map surface waterbodies pixel by 

pixel by taking advantage of the strength of both optical and SAR data in an integrated 

manner [21]. For optical data, the model relies on a maximum value of the NDWI compo-

site created using both Level-1 and L-2 Sentinel-2 data. The model depends on a minimum 

radar backscatter intensity, from both VV and VH polarizations, of a composite for senti-

nel-1 SAR data. Relying composite images minimizes disturbances from clouds, turbidity, 

and shadows for the optical data and speckles, lake ice, and radar shadows for the SAR 

data. The model also uses DEM as a feature to remove false positives over a steeper ter-

rain. All the workflows are implemented in Google Earth Engine for ease of transferability 

and reproducibility. 

Model D [O + S] applied a combined histogram-thresholding and edge-detection 

approach to estimate monthly surface water extent from monthly, cloud-free Sentinel-1, 

Sentinel-2, and Landsat-8 scenes. Following cloud masking for optical scenes, we applied 

the Edge-Otsu algorithm to create binary land and water maps for each scene [17,22]. For 

a complete description and application of the Edge algorithm, see Markert et al., 2020. To 

initially segment water, histogram-thresholding was performed using the Normalized 

Difference Water Index (NDWI) index for optical scenes and the VV-median band for SAR 

scenes within already buffered surface water polygons from Pekel et al., 2016. A second 

segmentation was applied to full scenes to segment water and non-water, irrespective of 

initial water polygons. The MERIT DEM [23] was then used to derive a Height Above 

Nearest Drainage (HAND) model [24] and on regions less than 30 m in height relative to 

the nearest drainage. Final monthly surface water products combined both optical and 

SAR water maps by selecting the optical land–water prediction when available, and oth-

erwise selecting the SAR-identified water pixel. Given that cloud-free optical images seg-

ment water with higher accuracy than SAR, this approach reduces error during less 

cloudy periods. 

Model E [S] is a fully automated approach that uses dynamic thresholds to classify 

individual Sentinel-1 scenes. The scene-dependent thresholds to classify water are defined 

through the use of existing geospatial information of permanent water areas, e.g., data 

from the Global Surface Water Explorer (GSWE) [4]. The S-1 backscatter values of perma-

nent water areas are derived per scene and are then statistically analyzed by using per-

centiles to eliminate outliers and a combination of mean and standard deviation to define 

the individual classification threshold. In opposite to a fixed threshold, this standardized 

statistical approach allows for the definition of dynamic classification thresholds per scene 

in order to account for variations in backscatter caused by various factors. The individu-

ally classified scenes are then combined to monthly surface water composites, in which 

false positives (mainly radar shadows) are removed by the use of the Multi-resolution 

Valley Bottom Flatness (MrVBF) index [25] derived from the Copernicus Digital Elevation 

Model (DEM). The automated, computationally efficient classification approach has been 

shown to capture seasonal changes in surface water accurately, but also shows some lim-

itations in non-vegetated sandy areas, in which false positives occur. 

Model F [O + S] used combinations of monthly percentile composite images from 

Sentinel-1 and Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Water Index (NDWI), Land Surface Water Index (LSWI), Normalized Difference Snow 

Index (NDSI), red, NIR, and SWIR1 bands from the greenest monthly Sentinel-2 images 

as covariates for the mapping of monthly surface water extent in Colombia, Mexico, Zam-

bia, and Gabon. For Greenland, covariates from Sentinel-1 were excluded and replaced by 
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monthly minimum NDVI from Sentinel-2 [26]. Training datasets (water–non-water) were 

generated using a stratified, random sample of points based on Global Surface Water data 

[4] and visual inspections of spectra profile based on k-means clustering results. Random 

forest classifier was used for classification. 

Model G [S] This approach applies a novel Convolutional Neural Network (CNN) 

model applied to Sentinel-1 observations to detect surface water. The JRC GSWE product 

was used as training data, and several finetuning strategies were implemented to improve 

accuracy of the model in places with complex landcover types. The resulting surface water 

product has a 10-m spatial resolution, is not impacted by cloud coverage, and can be run 

in near-real time to detect any surface water changes [27]. 

Model H [O] uses a thresholding method based on a combination of water indexes 

(MNDWI > NDVI or MNDWI > EVI) to extract surface water extent from monthly com-

posite Sentinel-2 MSI images. Different from the conventional thresholding method, this 

algorithm does not need to determine the threshold artificially. To obtain more accurate 

surface water extent maps, the clouds and cloud shadows pixels, buildup pixels, and 

snow/ice pixels were removed by auxiliary datasets in preprocessing, and the surface wa-

ter maps with residual non-water pixels were furtherly denoised in postprocessing. For 

incomplete monthly surface water extent maps, the surface water frequency map was uti-

lized to fill the gaps caused by clouds and cloud shadows. These methods had been 

proved effective and accurate in the construction of surface water extent continuous 

timeseries [28]. 

Model I [O] uses a multidimensional clustering analysis based on reflectance values 

and water indices to identify water pixels using optical scenes individually. To achieve 

high-performance and low memory consumption for high resolution images, this process 

is applied to a random subsample of the image’s pixels and then coupled with a Naïve 

Bayes classifier responsible for generalizing the results to the complete scene. The ad-

vantage of using an unsupervised approach such as clustering is that the water pixels 

group is identified automatically by comparing it to other clusters (targets) in the scene. 

Therefore, the algorithm doesn’t require ancillary data, pretraining, or any threshold cal-

ibration, and it is independent of the sensor and the coverage being analyzed. These ideas 

make it simple to apply the model to a great variety of conditions [29]. As the original 

algorithm was designed for operational use on single scenes, the monthly water surface 

has been derived by combining subsequent water masks through an upvote logic that 

considers as water those pixels that received at least two votes. 

Model J [S] This model is based on an unsupervised k-means-clustering algorithm 

and aims to extract monthly inland waterbody extents over wide areas using multitem-

poral Sentinel-1 SAR data. To account for slope-induced backscatter differences caused by 

hills and mountains, due to the slanted acquisition geometry of SAR systems, the model 

included a radiometric terrain correction, as this step is not applied in the standard Senti-

nel-1 preprocessing chain. Moreover, the methodology added a multitemporal speckle 

noise filter which provides better results than a spatial filter applied independently to 

each SAR image. Seed points for the k-means model are then retrieved by randomly sam-

pling the water layer of the ESA CCI GlobCover Land Cover map [30]. Each sample is 

represented by a set of temporal features suitable for water characterization in SAR data, 

such as the mean backscattering value, the maximum value, minimum value, and four 

“quarter composites” obtained by averaging in time all the Sentinel-1 acquisitions availa-

ble within each quarter of a year. After the k-means clustering, applied with k = 4, the 

water cluster is selected by considering a majority voting procedure within the multi-pol-

ygon water boundaries of the GlobCover map. Since it is based on SAR data, the method-

ology can be applied in every weather and lighting condition. Being an unsupervised 

technique, it is quick, robust, and can be applied automatically over any region of the 

World [31]. 

Model L [O] uses the simple yet robust band ratio Normalized Difference Vegetation 

Index (NDVI) on Sentinel-2 images, screened with the cloud mask processor available in 
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ESA’s SNAP software. Despite the rather simplistic nature of the NDVI band ratio algo-

rithm, results reported in other studies of this type are encouraging (e.g., [26]). Further-

more, the aim of choosing this approach was to test the application of simple and fast 

algorithms for processing large amounts of images in a short time. We implemented the 

processing on the Web Advanced Space Developer Interface (WASDI) to process all im-

ages without the need for downloading large data quantities on a personal computer [32].  

Model M [O + S] uses an efficient and opensource supervised Random Forest classi-

fier system based on Geographic Object-Based Image Analysis (GEOBIA) [33]. It relies on 

two main components, which are feature extraction based on attribute profiles and a semi-

supervised classification using a Random Forest Algorithm. The first step consists of com-

puting features based on Sentinel-2 L1C without cloud detection (MNDWI) and DEM 

(SRTM or ArcticDEM for Greenland) and extraction of spatial features (object area). The 

ground truths are automatically extracted from GlobalSurfaceWater data (Pekel et al., 

2016). The output from this model is maps of monthly surface water extent and a confi-

dence index. The same automatic system is applied for all 5 test areas. 

Model N [O + S] is based on a combination of different image-binarization tech-

niques applied on monthly aggregated Sentinel-1, Sentinel-2, and Landsat-8 imagery. Dy-

namic, tile-based thresholding [34,35] is conducted on both SAR and optical inputs. In 

addition, adaptive thresholding [36] and seeded region growing [37] on each initially de-

tected waterbody is performed on the monthly SAR imagery. Finally, fuzzy-logic classifi-

cation refinement reduces water lookalikes and misclassifications (e.g., radar shadows) 

from the SAR-based water masks [38,39]. 

Model O [O + S] uses a multivariate logistic regression model to estimate monthly 

surface water extent from the combined usages of Sentinel-1, Sentinel-2, and Landsat-8 

imagery. Models that rely upon linear distributions are often simpler and generalize well 

and, therefore, do not require high-quality training labels. Yet, since land–water classifi-

cation has some nonlinear exceptions, such as clouds, shadows, and snow, the approach 

integrates logic-based masking to reduce the impact from problematic areas through spe-

cific thresholds or basic decision trees. The final approach has proved to be accurate whilst 

at the same time maintaining computational efficiency and simplicity that facilitates anal-

ysis and understanding at scale [8]. 

2.3. Validation and Evaluation 

These water detection models were evaluated individually and in cross-comparison 

using independent reference data collected from the test sites. A fundamental premise for 

sound scientific validation is to use reference data of higher quality than the product to be 

validated. There are two ways to ensure higher quality in the reference data: (i) by using 

a reference data source with a better resolution than the data used for production (i.e., 

verification by higher data) and/or (ii) by using a more accurate measurement or interpre-

tation than being used for production (i.e., verification by higher method). A further re-

quirement on the reference data is the ability to provide sufficient spatial and temporal 

representation to accurately label each unit in the sample; i.e., the ideal reference data are: 

(i) available for the entire region of interest, (ii) representative of the attribute at the date 

of interest, and (iii) available at a low cost. The balance between these criteria is often 

difficult to achieve and why tradeoffs and compromises may be needed when generating 

the final set of reference data. In the case of the round robin validation, a two-step ap-

proach was followed: (i) sample based validation (pixel based) and labelled using the pro-

duction imagery (verification by higher method) and (ii) object extraction accuracy (area 

based) and using PlanetScope data as a reference (verification by higher data). The sam-

ple-based validation has the advantage of delivering reference data, which can be directly 

matched (in space and time) to the validation input, whereas the PlanetScope data offer 

the advantage of better capturing and, hence, better evaluation of smaller and narrower 

waterbodies/features. Still, the acquisition and interpretation of PlanetScope data is costly, 

and their representation is therefore restricted in space and time. In a final step, the 
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temporal consistency of the optical, SAR, and dual sensor-mapping approaches were eval-

uated by comparing the total areal water extent mapped within each test site and across 

the monthly timeseries. Each validation and evaluation step is described in more detail 

below. 

2.3.1. Sample Based Validation 

Stratified random sampling was used to generate reference points over each 100 × 

100 km test site and within three strata across the land–water continuum: permanent wa-

ter, seasonal water, and non-water. The three strata were generated from the JRC-GSWE 

long-term water occurrence and defined according to the following thresholds: perma-

nent water > 90%; 0% < seasonal water < 90%, and non-water = 0%. In all test sites, the 

target class “water” is a rare occurrence. In the case of rare occurrences, statistical equa-

tions does not allow for proper estimation of sample sizes, but stratified random sampling 

affords the option to increase the sample size in classes and/or regions that occupy a small 

proportion of area to thereby help reduce the standard errors of class/region-specific ac-

curacy estimates [40]. It was our aim to ensure a minimum of 50 samples in each stratum, 

while using subsequent sample size allocations to provide a proportional allocation of 

samples in better accordance with the actual area of the different strata within each test 

site. In addition, the expected variance within each stratum was also considered; i.e., the 

transitional strata are expected to have the highest variance, and why it has a higher sam-

ple allocation. Thus, by taking area and expected variance into account, the following 

sample allocations were applied for the five test sites (cf. Table 1). 

Table 1. Sample size allocations for the 5 test sites used in the round robin. 

 Colombia Gabon Greenland Mexico Zambia 

 per month total per month total per month total per month total per month total 

Land 140 840 75 450 60 180 140 840 90 540 

Transition zone 140 840 150 900 90 270 140 840 190 1140 

Water 20 120 60 360 100 300 20 120 40 240 

TOTAL 300 1800 285 1710 250 750 300 1800 320 1920 

In total, 7.980 samples were allocated across the five test sites and six time periods 

representing every second month of the year 2019 (January, March, May, July, September, 

November). Each sample point was assigned to be either water or non-water by two in-

dependent and experienced interpreters using blind visual interpretations of monthly 

Sentinel-1 and -2 composites. To harmonize and achieve consistent reference labelling, a 

standard validation interface was used to ensure interpreters were looking at same area 

and using the same reference data and the predefined set of classes. In cases where the 

interpreters disagreed, a quality manager intervened to seek consensus. If consensus 

could not be agreed upon, the sample was rejected. For each sample we extracted, the 

respective water classifications and the final set of samples were used to derive standard 

metrics for accuracy assessments, i.e., overall accuracy (OA), producer accuracy (PA), and 

user accuracy (UA). For this analysis, all pixels in the individual round robin classifica-

tions not classified as water were considered to be non-water; i.e., the non-water class also 

included pixels being masked (e.g., due to clouds). 

2.3.2. Object Extraction Accuracy 

Traditionally, stratified point sampling will, in most instances, under-sample Small 

Waterbodies (SWB) simply because SWBs only represent a fraction of the total water area, 

even though they may by far exceed the larger waterbodies in numbers [41]. To deal with 

the issue of SWBs, we complemented the more conventional stratification, sampling, and 

confusion matrix-type accuracy assessments with an evaluation of object extraction accu-

racy based on area-based accuracy metrics and the use of higher spatial resolution but 
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single date (i.e., time-limited) PlanetScope data. An independent reference dataset was 

created from the classification and interpretation of imagery from Planet. The acquired 

data was PlanetScope Level 3B (Ortho Scene Products) in 3-m spatial resolution and with 

4 spectral bands (RGB, NIR) (https://www.planet.com/products/planet-imagery/, ac-

cessed on 10 January 2022). The PlanetScope data was acquired within the coverage of 

each of the test sites and for two areas of approximately 25 km2. The exact coverage was 

determined by size and type of waterbodies, i.e., covering areas with small waterbodies 

relative to the test site in general and representing both lakes/reservoirs and streams/riv-

ers. For each PlanetScope coverage, we applied a supervised Gradient Boosting 

(lightGBM) algorithm [42] to generate water masks using the convolution layers derived 

from spatial filtering of Planet imagery as the explanatory variables and manually derived 

training samples for water and land (cf. non-water) as the response variable. The Gradient 

Boosting typically involved a couple of iterations to optimize results, and before finaliza-

tion, all water masks were manually checked and corrected to ensure high quality. Once 

analyzed, the PlanetScope data was used to evaluate the object extraction accuracy of the 

water classifications derived using Sentinel data. 

The accuracy evaluation of object extraction is based on object matching, and we fo-

cused on two elements related to this, namely: object matching and area-based accuracy 

measures [43]. The central idea of object matching is to estimate the maximum overlap 

area by computing the coincidence degree, ����, between two objects. 

���� =
1

2
�
��,� ∩ ��,�

��,�
+
��,� ∩ ��,�

��,�
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where ��,�  denotes the area of the ith-evaluated object, ��,� is the area of the jth reference 

object, and ��,� ∩ ��,� represents the intersection area. For an evaluated object and candi-

date reference objects, each coincidence degree will be computed. Two objects will be 

judged as being a matching pair if the area of the coincidence degree is at a maximum, i.e., 

Amax equals 1. 

The maximum overlap object matching is complemented by three area-based accu-

racy measures (i.e., correctness, completeness, and quality). Correctness (����) is defined 

as the ratio of the correctly extracted area (��) and the whole extracted area (���), 

whereas completeness (����) refers to the ratio of the correctly extracted area to the ref-

erence area (���). The range of correctness and completeness is 0 to 1. If �� fully corre-

sponds to ���  or ��� , then the value is 1. If there is no overlap between �� and ���  or 

��� , then the value is 0; correctness and completeness interact. For instance, a large ���  

leads to a small correctness value, while a small ���  results in a large completeness value. 

To amend this issue, the quality ����� is designed to provide a measure of quality by 

balancing correctness and completeness. 

����� =
��

��� + ��� − ��
 

The range of quality is 0 to 1. If the water extraction results are the same as the refer-

ence data, then the value is 1. If none of the extracted water area overlaps with the refer-

ence area, then the value is 0. The advantage of area-based accuracy measures compared 

to the sample-based validation relates to the fact that the confusion matrix of the latter 

depends on total pixel number. In contrast, the evaluation results for two cases using area-

based accuracy measures are equivalent because it relies only on the evaluation, and ref-

erence objects are independent of the total pixel number. 

2.3.3. Temporal Consistency Evaluation 

The purpose of temporal consistency evaluation is to identify anomalies in sequences 

of surface water maps. Sudden decreases in surface water can be due not only to drought 

and high reservoir release but also clouds and lack of valid observation. Flooding, on the 

other hand, may cause an increase in surface water, but so could cloud shadows and 
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topographic shading, as well as the impact of low-backscatter areas. More robust water 

detection algorithms should be able to accurately capture actual water dynamics while 

minimizing the influence of the other factors. 

3. Results 

3.1. Water Occurence 

The five test sites used for intercomparison represent very different conditions, 

which can also be inferred by looking at multiannual water occurrence maps for the re-

spective test sites (cf. Figure 2). As explained in Section 2.1, site variability is, on the one 

hand, dictated by geographic location (i.e., from tropical to arctic, coastal to inland, and 

lowland to high land) and, on the other hand, by surface water characteristics. The latter 

is clearly illustrated in the water occurrence maps, which show the differences between 

test sites in terms of size and type of waterbodies, as well as the relative distribution of 

permanent and seasonal water (Figure 2). These different characteristics are important to 

bear in mind when interpreting the validation results, as they will influence the perfor-

mance of the individual algorithm. 

 

Figure 2. Examples of surface water frequency maps over the 5 test sites and as derived by Model 

N. 

3.2. Sample Based Validation 

In Table S1, we provide classification accuracies for the water extraction for all round 

robin submissions and for each of the three mandatory sites, as well as the optional sites, 

where relevant. The general performance of all models can be deemed satisfactory, with 

overall accuracies above or near 90% when looking across the mandatory sites. There is 

more ambiguity when looking at the performance in terms of user and producer accuracy 

and at the level of the individual sites. 

In Figure 3, the classification accuracies have been grouped (median value) by input 

data type, i.e., algorithms using both optical and SAR vs. models based on single-sensor 

inputs (SAR or optical). Figure 3 shows an overall better performance of the combined 

sensor approach compared to single sensor approaches, although the results are not one-

sided when looking at the individual sites or in terms of user and producer accuracies. In 

Colombia, the combined sensor approach performed best in terms of overall accuracy, 

but, at the level of UA and PA, the SAR and Optical models, respectively, outperform the 

combined approach. In Gabon, the SAR approach outperforms the other data models in 

terms of OA, while in Colombia and Zambia, the optical approach has much higher accu-

racies for, respectively, PA and UA. In Mexico, OA and UA are almost equal between the 

data models, but with a noteworthy (+4–5 percentage) drop in producer accuracy for the 

optical data models compared to the SAR and dual sensor models. The observed differ-

ences in UA and PA are closely related to site-specific characteristics. For example, the 

higher UA accuracies achieved in Gabon and Colombia using SAR are an indication of the 

benefit SAR adds in a cloud-prone region. In contrast, SAR produces a lower UA in Zam-

bia and Mexico because of commission errors introduced by dry, sandy surfaces. In both 
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Zambia and Mexico, it was also noted that sunglint in certain months caused erroneous 

cloud masking for certain processors and hence contributed to lowering the PA for the 

optical data model. In Mexico, the UA for SAR is, however, only marginally lower than 

for the optical data model, which is impacted by bottom reflectance from shallow waters 

and turbidity, which both impact the optical properties (cf. spectral signal) of water more 

than the physical state and, therefore, the sensitivity of SAR backscatter (e.g., roughness). 

The Zambia site is dominated by the Kafue flats, an extensive wetland ecosystem subject 

to variable flooding and with a sharp contrast to the surrounding drier landscape, where 

fire is a major natural factor impacting the landscape. The dynamic nature and many con-

founding factors (e.g., fires and emergent vegetation) make Zambia a particularly chal-

lenging site, and it was also where the dual sensor approach displayed it strongest poten-

tial in balancing the individual strengths and weaknesses of optical and SAR data. In 

Greenland, the topography and light conditions are the main challenges. For optical data, 

it means higher commission errors (cf. lower UA) due to shading effects and low sun an-

gles. The SAR model is better at dealing with these issues because it works independent 

of sunlight, and by using ascending and descending SAR scenes, the part of the landscape 

that can be monitored is increased. Still, the influence of low-backscatter areas (e.g., ex-

posed riverbeds and in snow dominated landscapes) means the SAR data model typically 

suffers from commission errors and lower PA. 

It is important to note that, apart from site-specific characteristics, the UA and PA are 

also dictated by how individual algorithms have been implemented, e.g., to what extent 

the individual round robin contributions have favored the importance of commission er-

rors relative to omissions errors. The results will also depend on whether individual 

scenes are classified and then aggregated to a monthly water map or whether the individ-

ual scenes are merged into a monthly composite before water classification. The full accu-

racy statistics for the individual models is provided as supplementary material (cf. Table 

S1). 

 

Figure 3. Accuracy statistics from the WorldWater round robin test sites, individually and overall, 

summarized by model input data type (OA = Overall Accuracy; UA = User Accuracy; PA = Producer 

Accuracy). 

3.3. Object Extraction Accuracy 

The 3-m PlanetScope water classification maps used to evaluate object extraction ac-

curacy are shown in Figure 4. Like the full-size test sites, it is important to notice the 
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variability between the sites. Individually, the PlanetScope data represent SWB regions 

relative to the general water characteristics within their respective test sites, yet, there is 

variability between sites with, e.g., Zambia having larger waterbodies on average than 

Colombia. 

 

Figure 4. False colour PlanetScope QuickLooks and associated water classifications for each AOI 

used in the object-based validation approach (Imagery © 2022 Planet Labs Inc.). 

Table S2 provides an overview of the summary statistics for object extraction accu-

racy for each of the three mandatory sites, as well as the optional sites, where relevant. 

There is a large variability between the individual contributions, and yet, with similar 

tendency across the sites i.e., the algorithms that integrate optical data perform better than 

those relying solely on SAR (Figure 5). The lowest overall accuracy is in Colombia, and 
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this is also where the difference between the best optical approaches and the best SAR 

algorithm is greatest (cf. Figure 5). Figure 5 also shows the highest object extraction accu-

racy is in Zambia, which, together with Greenland, has the largest share of waterbodies 

within the test sites (cf. Figure 4). It is also noteworthy the optical data model consistently 

outperforms the SAR data model in all test sites except for Gabon (Figure 5). 

 

Figure 5. Object accuracy statistics from the WorldWater round robin PlanetScope sites, summa-

rized by country and model input data type. 

The findings from the object extraction accuracy analysis indicate that using or inte-

grating optical data into the water detection algorithm is key to achieving accurate water 

object definitions. How important depends on the average size of the waterbodies and the 

surrounding landscape. In Colombia, where the average waterbody size/width is smaller 

compared to other sites, the difference between the optical algorithms and the SAR-only 

approaches are the largest. This is explained by the characteristics of the input data, with 

key spectral water detection bands from Sentinel-2 available only in 10-m spatial resolu-

tion, while the true spatial resolution of Sentinel-1 is understood to be closer to 20 × 20 m, 

although data from the widely used Sentinel-1 Ground Range Detected (GRD) product 

are delivered with a pixel spacing of 10 × 10 m. There are also some marked differences 

between the optical algorithms and the SAR only approaches in Mexico, which is likely 

caused by the dry environment and a landscape dominated by large tracts of dry, sandy 

surfaces, as well as the associated challenge for SAR-based water detection [44]. In con-

trast, the difference between optical and SAR is much less pronounced in Zambia and 

Gabon, which is likely related to the larger average size of the waterbodies (Zambia) and 

the dense tropical forest landscape causing a stark land–water contrast (Gabon). 

3.4. Temporal Consistency Evaluation 

The surface water area (km2) was calculated over each test site and for each month in 

the 2-year observation period (cf. July 2018 to June 2020). For each test site, the surface 

water areas were summarized by input data model type, i.e., optical (O), SAR (S), and the 

fused date model (O + S). In Figure 6, the average surface water area was then plotted 

against time with indications of variance (i.e., minimum and maximum observed water 

extent within a given month) and with some key explanatory variables plotted on the 

secondary axis. 
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Figure 6. Monthly surface water area trajectories for the individual test sites and per sensor model. 

For each test site, corresponding timeseries of the key explanatory variables are equally shown, i.e., 

the Humidity and Leaf Area Index from the ERA-5 monthly averaged reanalysis data [45], water 

surface elevation from satellite altimetry [46], solar zenith angle, and cloud cover [47]. 

A comparison of the surface water area temporal development curves shows the var-

iance of the fused Optical–SAR-based algorithms are much less than the single sensor so-

lutions both within and between nearby months. If not directly, then at least indirectly, 

this indicates the fusing algorithms to be more reliable and have less sensitivity to tempo-

rary or seasonal phenomena that can impact water detection, including dry/moist condi-

tions, topographic/canopy shading, and clouds. 

In Colombia, the pure optical methods, in general, returns a higher surface water area 

across the entire timeseries. This can be attributed to false positives from topographic 

shading and ineffective cloud shadow masking, particularly during the humid season. In 

Mexico, where clouds and topography are less of a problem, there are hardly any note-

worthy peaks/dips in the optical development curves. In Colombia and Mexico, the SAR 

peaks correspond to the dry seasons when the vegetation cover is low, resulting in an 

increased influence of low backscatter from dry, sandy surfaces. 

In Zambia, the variance observed in both the optical and SAR data predictions is most 

dominant during the 2019 dry season, which was reported as having been one of the worst 

droughts in Western Zambia in almost 70 years. The exceptionally low water levels during 

this period indicates that droughts and receding water lines are likely to have an impact 

on water classifications. The SAR data are challenged by very dry soils, especially in the 

southern parts of this site, while wildfires represent another challenge for both the optical 

and SAR data model, as the burn scars can be difficult to separate from water. In optical 

imagery, burn scars have low reflectance in the near infrared and visible spectrum, and 

this can lead to spectral confusion with water. As fire also changes the physical and struc-

tural characteristics of the vegetated landscape, it also impacts SAR imagery. After a fire, 
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the backscatter decreases strongly [48], and, as a result, the contrast between land and 

water will be lessened. 

In Gabon, the cloud cover percentage over the test site is, on average, 50%, signifi-

cantly impacting the optical data model, which returns estimates of water extent that 

strongly correlate with the cloud cover percentage. In contrast, the SAR and fused sensor 

approach return a much more consistent timeseries, with no apparent sensitivity to the 

cloud cover percentage. 

Finally, in the case of Greenland, the temporal evaluation shows how limited light 

conditions in spring and fall (before everything freezes) hamper the optical data model. 

In essence, our evaluation shows the time window to collect optical imagery is short, but 

also that it can be extended by integration with SAR data. Using a fused data model in 

Greenland can also help to even out issues generated by a complex topography (e.g., cast 

shadows in optical imagery and foreshortening and layover effects in the SAR imagery), 

as indicated in Table S1. 

In Figure 6, a large part of the temporal variation is explained by the performance of 

the individual contributions both between and within the three different sensor models. 

The dual sensor model has the least variation and, hence, we argue that it is the more 

robust in dealing with confounding factors. Figure 7 shows the average monthly surface 

water area statistics for the top three-performing dual sensor models. Figure 7 illustrates 

quite well the ability of the dual sensor model to provide consistent timeseries information 

that captures the seasonality of surface water dynamics in each of the test sites. The strong-

est seasonality is observed in Colombia and Zambia, which are the two test sites with the 

largest rainfall gradient. In contrast, Mexico and Gabon have less seasonal variation due 

to very dry (Mexico) and consistently wet (Gabon) conditions. In Greenland, the season-

ality is first and foremost dictated by the temperature, i.e., thawing, and increased melt-

water starting around April/May and then frost and total freezing once we enter Novem-

ber. 

 

Figure 7. Interannual monthly mean surface water area dynamics and uncertainties (98% CI), as 

captured by the best-performing dual sensor models (i.e., models A, N, and O). 
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4. Discussion 

The round robin evaluation was conducted over a diverse set of test sites that repre-

sented landscapes influenced by several of the known challenges for satellite-based sur-

face water mapping, including topography, clouds, dense and inundated vegetation, fire 

scars, low-backscatter landcovers, low sun angles, as well as snow and ice. The intercom-

parison of the different round robin contributions across this diverse set of test sites sup-

ports the general hypothesis that fusing optical with SAR data produces a more robust 

mapping of surface water extent dynamics across bioclimatic gradients. Yet, the findings 

also show that, at individual locations, the single sensor approach can outperform the 

fused sensor approach. By example SAR data are the better option in heavily clouded 

regions (cf. Gabon) while optical data are better in dry regions and in capturing smaller 

waterbodies. As such the round robin provides key insight to the advantage of the 

strengths of optical and SAR data while also identifying how a fused sensor model can 

help address their individual shortfalls. Moreover, the evaluation demonstrates that both 

supervised and unsupervised learning can provide very good results, and while steps for 

preprocessing and postprocessing are highly relevant to the outcome, they include many 

variables that are harder to quantify in terms of their individual contributions to the sta-

tistical accuracy. Still, there are several crosscutting factors that impact optical and SAR 

data in various ways, and which underpin why the dual sensor approach, on an overall 

level, outperforms single sensor approaches. 

Both SAR and optical data can struggle in mountainous areas, as steep slopes can 

lead to shadow issues and image distortions. Orthorectification and radiometric terrain 

correction using a DEM are the main direct techniques to obtain the relevant geometric 

and/or signal correction. Yet, such correction can introduce errors, as globally available 

DEMs have known quality issues [49], although newer DEMs provide gradual improve-

ments [50]. In complex terrain, shadows cast by mountains and hills will appear very dark 

in optical imagery, which can cause a confusion between topographic shadows and water. 

This means extra steps should be taken when mapping water extents to make sure the 

effect of terrain shadow is minimized. While there are specific methods to deal with this 

in optical imagery [51], SAR imagery can also be used, e.g., to remove water classified in 

optical imagery if it is consistently mapped as land in SAR (cf. Model A). SAR imagery is 

not affected by natural sunlight shadows cast by topography. However, radar sensors are 

side-looking, meaning they view the Earth’s surface from the side of the satellite as it 

passes by (as opposed to looking directly from above). The side-looking nature of these 

radar sensors means that they can only see the side of mountains that face their sensors—

they cannot see the opposite side of mountains. This is known as radar topographic 

shadow. Fortunately, radar sensors, such as Sentinel-1, have both ascending and descend-

ing orbits, which can collect imagery from east- and west-looking angles. Using ascending 

and descending imagery together helps to increase the area that can be effectively moni-

tored using radar imagery; however, this does not solve all radar problems related to to-

pography. Areas in deeper canyons and fjords that have a north–south orientation will 

likely always be in the radar signal shadow, leading to some unavoidable data gaps, and 

in these cases, sometimes the optical data model can help. 

As both SAR and optical data can struggle in mountainous areas, using one sensor to 

help overcome the other is not always sufficient. Therefore, DEMs are often applied dur-

ing postprocessing to mask out regions where water formation is unlikely given the topo-

graphic conditions, e.g., due to slopes or based on hydrological terrain analysis, such as 

the Height Above Nearest Drainage (HAND). A range of DEMs have been used for post-

processing, including the Shuttle Radar Topography Mission (SRTM) DEM (e.g., Model 

B, M), ALOS World 3D-30 m (Model F, J), and Copernicus DEM (Model E, N, O). Although 

the impact on accuracy is not quantified directly, the use of Copernicus DEM is recom-

mended, not only because Copernicus DEM comes out favorably in statistical evaluations 

against other DEMs [50], but also because of the reference year (2010–2015), which is 

newer than SRTM (i.e., 2000) and AW3D30 (2006–2011). In essence, this means the 
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Copernicus DEM is more likely to capture and, hence, avoids masking out newly estab-

lished reservoirs, which have boomed dramatically in the past few decades [52]. 

Cloud cover is a major limiting factor affecting the usefulness of optical imagery. 

However, if clouds and their associated shadows can be effectively masked out from each 

image, the remaining cloud-free data in each image can be used for accurate water classi-

fication, yet the frequency of monitoring will depend on the persistency of the cloud cover. 

While several algorithms are available for automated cloud masking, (e.g., MAJA, Fmask, 

CFMask, Tmask, IdePix, Sen2Cor, s2cloudless) none are perfect in separating clear obser-

vations from those contaminated with clouds and cloud shadows. Too aggressive cloud 

masking, and many waterbodies may be missed, while failure to adequately mask cloud 

shadows will introduce many false positives. Often, making a cloud-free optical image 

will require some form of image compositing and mosaicking. There are several possible 

ways to do this, e.g., by using the best available pixel by cloudiness (Model O), or through 

per-pixel band statistics such as mean/median band reflectances (Model N). Model F ap-

plies an NDVI Maximum Value Composite (MVC) procedure, which is effective for 

providing spatially continuous cloud-free imagery [53]. The MVC has been particularly 

widely adopted in vegetation studies [54], but, since the MVC emphasizes the vegetation 

signal, it should be used with care for monitoring water dynamics, as seasonally flooded 

vegetation may risk being masked. Furthermore, and as illustrated by one contribution, a 

synthetic timeseries can also be constructed by interpolation and gap-filling using the his-

torical water frequency (cf. Model H). Finally, SAR data can also be used to fill in the 

“cloud” gaps in the optical imagery. However, even if SAR imagery is not affected by 

clouds, it is impacted by other issues, which can result in spurious water detection, in-

cluding speckle noise and permanent low-backscatter regions. The reduction of speckle 

noise is important to improve the usefulness of SAR imagery. The main purpose of the 

noise reduction technique is to remove speckle noise while still retaining the important 

features in the images. Widely adopted speckle filters, such as Lee Sigma or Refined Lee, 

have proved effective; however, depending on the window kernel size, they may compro-

mise the ability to map smaller water features. Therefore, attention has been drawn to 

other methods, such as the Gamma Map method (Model A, E) and the use of temporal 

filtering (e.g., mean, median, or minimum backscatter), as a means to better preserve spa-

tial resolution (cf. Model O, N). The further advantage of using temporal filtering is the 

ability to also suppress the influence of high winds, which can cause wind-roughened 

waters that, at specific times, can vanish the contrast between open water and dry surfaces 

and cause Bragg scattering. With SAR data, it can also be difficult to differentiate water 

from other surfaces with low backscatter, such as asphalt (parking lots, airports, roads), 

flat rock, and, in some dry regions, sand surfaces. Long timeseries of backscatter measure-

ments can be used to identify such areas but at the expense of computational efficiency, 

especially for large areas [55]. Another way is to integrate optical data to reduce potential 

commission errors caused by permanent low-backscatter areas (cf. Models A and O). 

As additional examples, the round robin intercomparisons have also shown how the 

complementary use of optical and SAR data can help suppress the influence of burn scars 

and, to an extent, the monitoring period in light-constrained, high-latitude regions. 

Aside from the challenges discussed above, there are variables and challenges which 

could not be fully evaluated. Unresolved issues still circulate around inundated vegeta-

tion and how to deal with the cryosphere. As the focus in this study was on open inland 

waters, neither of these issues was investigated. However, future improvements could be 

performed through the investigation of L-band SAR sensors, which penetrate vegetation 

better than C-band SAR data (Sentinel-1) and have potential for mapping flooded areas 

under vegetated canopies [56,57]. In large parts of the world, lake and river ice is an inte-

gral part of annual water dynamics, which is why we also recommend looking at scalable 

solutions for using optical and SAR data to monitor lake and river ice evolution [58,59] 

and as complementary information for open surface water dynamics. 
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Urban environments represent another challenge from the perspective of both optical 

and SAR data. For optical images, the main issue is building shadows, whereas SAR data 

may suffer from layover effects caused by tall buildings, as well as corner reflection (cf. 

double/triple bouncing). Like topography, the urban challenge is often addressed using 

postprocess masking, which is sensible, especially for large-area applications, as urban 

areas represent only a fraction of the overall landscape, and the waterbodies associated 

with the urban environment even less so. In addition, and as new high resolution and 

freely available urban footprint layers become available [60], urban masking will gradu-

ally improve and integrating them as masking layers can help simplify the water mapping 

solution. 

The results and above discussion point to some inherent limitations to mapping sur-

face water when relying solely on either optical or SAR-based instruments. These limita-

tions can be partly mitigated by using both sensors in a fused approach for surface water 

extent mapping. However, since the fused mapping approach will likely add to complex-

ity, computational effort, transferability, and automation level of the mapping approach, 

it is important to consider exact needs and objectives before the appropriation of a specific 

data model. 

However, if monitoring is to be conducted in a region with persistent cloud cover, or 

if the focus is to monitor during the wet–cloudy season, it may be worth considering if 

adding optical data will bring the necessary improvement to warrant the additional com-

plexity of an operational solution. In other regions, the status of small farm dams may be 

the most critical information gap in supporting timely information on potential water 

shortages. In drier regions or during dry spells, where clouds are not an issue, monitoring 

should rely on optical data only to maximize the spatial resolution. However, where 

clouds may be an issue, the integration of SAR data will be critical to reliably monitor the 

status of small farm reservoirs and dams [22,61]. This reiterates that the best practices for 

surface water monitoring are often reliant on the study domain. In other words, a case-

dependent choice of mapping approach will be needed based on certain criteria, such as 

ecosystem type, seasonality, climate regime, area size, and requirements for the degree of 

automation. Moreover, as EO technology becomes more widely adopted and mapping 

approaches evolve, it is further recommended that cross-comparison exercises, as pre-

sented in this paper, be repeated periodically to assess advances in surface water map-

ping. 

5. Conclusions 

The availability of satellite missions and constellations for environmental monitoring 

has continued to grow in the past decades, and combined with the advances in technical 

infrastructures for big data analysis, it is now within the realm of possibility for countries 

to implement satellite-based surface water monitoring systems. These systems will be vi-

tal to supporting more evidence-based planning and management of water resources and 

provide an ability to efficiently report and act in response to the global water agenda. By 

evaluating 14 different EO-based models for surface water detection, we show that single 

sensor approaches can produce accurate and consistent water maps under ideal condi-

tions, and yet, across a range of challenging environments, the synergistic usage of optical 

and SAR data delivers more accurate and consistent outputs. 

The findings in this paper therefore bear some important perspectives for formulat-

ing a new best practice where optical and SAR data are used synergistically to achieve the 

highest accuracy and most consistent results for monitoring surface water dynamics. 

While accuracy is a critical concern for selecting a surface water detection model, there are 

other important aspects, including computational efficiency, simplicity, and ease of im-

plementation, which all contribute to increase understanding, maintainability, and poten-

tial scalability. In the end, specific working routines, management objectives, and individ-

ual user preferences may all contribute to how users will choose to appropriate EO tech-

nology for surface water monitoring. At larger scales across diverse ecological gradients, 
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a synergistic approach should be preferred, but at a local scale, SAR data may be preferred 

for the effective and timely monitoring of water extent and potential emerging floods dur-

ing cloudy periods, and similar optical data may be preferred to monitor the status of 

reservoirs and small waterbodies during drought periods and when clouds are not an 

issue. 

Therefore, rather than advocating for a single “best” approach, we recommend flex-

ibility and options to build and/or adapt surface water detection methods that meet indi-

vidual user needs in terms of management goals, environmental settings, and scale of 

study, i.e., ensuring users have options for receiving data in multiple formats or from 

multiple sources, and with the tools necessary to process these data effectively. 

The round robin evaluation presented in this paper has shown that EO datasets, 

methods, and tools for monitoring surface water dynamics are available and successfully 

applied in various contexts around the globe. The upcoming challenge will be to make the 

community aware of these tools and, via practical guidance, illustrate how to get started 

using EO data and tools to support better water resource monitoring, reporting, and man-

agement. 
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