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Abstract: Drought is a major natural disaster that causes a reduction in rain-fed maize yield. Agricul-
tural drought risk assessment is conducive to improving regional disaster management ability, thereby
reducing food security risks and economic losses. Considering the complexity of risk assessment
research, an increasing number of researchers are focusing on the multiple-criteria decision-making
(MCDM) method. However, the applicability of the MCDM method to agro-meteorological disaster
risk assessments is not clear. Therefore, this study comprehensively evaluated hazard, exposure,
vulnerability, and emergency response and recovery capability using the TOPSIS and VIKOR models
to generate a maize drought risk map in mid-western Jilin Province and ranked the drought risk
of each county. The results showed that: (1) maize drought risk in the middle and west of Jilin
province showed an increasing trend. Spatially, the risk diminished from west to east. The drought
risks faced by Tongyu, Changchun, and Dehui were more severe; (2) the evaluation results of the
two models were verified using the yield reduction rate. The VIKOR model was found to be more
suitable for agrometeorological drought risk assessments; (3) according to the damage degree of
drought disaster to maize, the cluster analysis method was used to divide the study area into three
sub-regions: safe, moderate drought, and severe drought. Combined with the characteristics of
different regions, suggestions on disaster prevention and mitigation are proposed. The results of this
study can provide a basis for formulating strategies to alleviate drought, reduce losses, and ensure
the sustainable development of agriculture.

Keywords: TOPSIS; multiple-criteria decision-making (MCDM); drought risk assessment; maize; VIKOR

1. Introduction

The impact of global warming on the ecological environment cannot be ignored [1–3].
The increase in temperature leads to an increase in evaporation and an uneven distribution
of local precipitation, which further increases the uncertainty of regional drought [4–9].
Agriculture is highly susceptible to drought, which leads to crop reduction and threatens
food security and economic development [10,11]. Most areas in China belong to the Asian
monsoon climatic zone and witness a high frequency of drought due to the land-sea
distribution and topographic factors [12–15]. The occurrence of drought shows significant
regional differences, particularly in the north [16–18].

Midwestern Jilin Province is the main agricultural and animal husbandry production
area in the Jilin Province. It is also an eco-environment-vulnerable area in northern China.
According to published statistics, 90 droughts occurred in the Jilin Province from 1720 to
2000. Drought occurred more frequently in midwestern Jilin Province, and the area affected
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by drought was larger and more severe. From 1950 to 2000, the average multi-year drought-
afflicted areas were 5333 km2 in the Jilin Province and 4887 km2 in the midwestern Jilin
Province. For this major maize-producing area of China, drought has caused substantial
losses to the maize industry and economic life in midwestern Jilin Province. Therefore, it is
necessary to strengthen the monitoring and evaluation of droughts and provide scientific
and reasonable disaster prevention and mitigation decisions for the government.

Several indicators are used to quantify the intensity, frequency, and duration of
drought. The main categories are: (1) precipitation indicators: Palmer Drought Sever-
ity Index (PDSI) [19,20], Standardized Precipitation Index (SPI) [21–23]. (2) soil moisture
indicators: Soil Moisture Drought Index (SSMI) [24], Soil Moisture Anomaly Percentage In-
dex (SMAPI) [25], Soil Moisture Deficit Index (SMDI) [26], Soil Moisture Evapotranspiration
Index (SMEI) [27]. (3) crop physiological and ecological indicators: Crop Water Stress Index
(CWSI) [28,29], Crop Water Deficit Index (CWDI) [30,31]. (4) composite drought index:
Comprehensive Agricultural Drought Index (CADI) [32], Integrated Surface Drought Index
(ISDI) [33].

In recent years, with the deepening of our understanding of droughts, several re-
searchers have conducted extensive research on maize drought risk assessment. Zhang et al.
built a dynamic drought risk assessment model (DDRA) of maize in different growth stages
based on risk assessment theory and used the CERES-Maize model to build a vulnerability
curve [34]. Wang et al. used the APSIM crop model to evaluate drought risk during the
growing season of spring maize in Liaoning Province and predict yield [35]. Zhu et al. used
the AquaCrop model to simulate water stress and yield of maize under different irrigation
scenarios and determined four drought risk levels in the main maize-producing areas [36].
Owing to the complexity and comprehensiveness of agro-meteorological disasters, risk
assessment has been transformed into a multi-criteria decision analysis (MCDA) problem.
Currently, several MCDA methods exist. Such as AHP (Analytic Hierarchy Process), ANP
(Analytic Network Process), VIKOR (VIseKriterijumska Optimizacija Kompromisno Re-
senje), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), MOORA
(Multiobjective Optimization On the basis of Ratio Analysis), etc. [37–41].

Among them, TOPSIS and VIKOR are less complex, provide more accurate results,
and are widely used [42–46]. One of the differences between the two is in the aggregate
function. TOPSIS is a set of distances from ideal solutions. VIKOR proposed a scheme
with a dominant ratio based on TOPSIS. In TOPSIS, it is necessary to consider not only
the shortest distance to the positive ideal solution but also the longest distance to the
negative ideal solution to determine the optimal solution [47,48]. However, these distances
in TOPSIS are simply summed without considering their relative importance [49,50]. In
VIKOR, decision-makers determine their importance according to their own needs [51]. In
addition, compared with TOPSIS, VIKOR has an additional decision mechanism coefficient,
which enables decision-makers to make radical or conservative decisions [52,53]. The
TOPSIS process does not incorporate any subjective factors and is more suitable for a
decision-making environment that requires completely objective results [54]. Finally, there
are differences in the scheme order. The unique advantage of VIKOR is the availability of
trade-offs with options with more than one optimum solution. TOPSIS can only obtain a
single optimal solution as its process is objective.

TOPSIS and VIKOR have been used in drought risk assessment [55], flood disas-
ter assessment [56], debris flow loss degree, post-disaster reconstruction and restoration
assessment [57], fire susceptibility assessment [58], and water supply vulnerability as-
sessment [59]. However, there are relatively few studies on their application in agrom-
eteorological risk assessments. Thus, our aims were: (1) construct a maize drought risk
evaluation indicator system; (2) generate the spatial distribution map of maize drought
risk in mid-western Jilin Province through TOPSIS and VIKOR models; and (3) validate
the results of the assessment for reasonableness and drought risk zoning. The results of
this study were intended to provide guidance for drought management and contribute to
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drought mitigation. The assessment of maize drought risk in midwestern Jilin Province
can provide a methodology for application in other regions of China (and other countries).

2. Study Area and Data Sources

Jilin Province is located in the “Golden Corn Belt,” and has topped the national
list in terms of per capita grain holdings and grain commodity rates for many years.
Approximately 70% of farmers and more than 65% of cultivated land in the province grew
maize, which accounts for more than 70% of the province’s grain output. Midwestern Jilin
Province is located southwest of Songnen Plain, the western area of the Inner Mongolia
Autonomous Region, the northern part of Heilongjiang Province, and the eastern part of
Horqin grassland (43◦17′–46◦18′N, 121◦38′–127◦56′E) (Figure 1). The central part of Jilin
Province includes Changchun, Jilin, and Liaoyuan provinces. The western part included
the cities of Baicheng, Songyuan, and Siping.

Figure 1. Location of the study area.

The data used in this study are shown in Table 1.

Table 1. Data and indicators used in this study.

Data Type Data Sources (2004–2019) Variable

Daily
meteorological data

National Meteorological
Information Center

Maximum temperature, minimum
temperature, rainfall, relative

humidity, solar radiation,
wind speed

Drought
disaster data

Jilin Statistical Yearbook Area affected by drought, economic
losses caused by drought, areas

affected by drought
China Meteorological Disasters

Dictionary-Jilin Volume

Agricultural,
social and

economic data

Jilin Statistical Yearbook Total agricultural machinery power,
financial support for agriculture, per
capita net income of rural residents,

effective irrigated area,
total agricultural population, etc.

China Rural Statistical Yearbook

China Regional Economic
Statistical Yearbook

Maize
production data Local statistical offices Yield, sown area,

length of each growth period of maize
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3. Methodology

Figure 2 illustrates the methodological framework of this study.

Figure 2. The methodological framework of this study.

3.1. Establishing a Maize Drought Risk Assessment Index System
3.1.1. Normalization of Assessment Indicators and Calculation of Weights
Entropy Method

Entropy is a measure of the degree of disorder in a system and can be used to measure
the amount of valid information contained in known data and to determine weights [60–63].

Step 1: Normalization. Based on the data of n risk evaluation indicators in the y
evaluation series, a matrix can be constructed as X =

[
Xij
]

y×n.
Step 2: Normalize matrix X according to the following rules to obtain the normalized

matrix: B =
[
bij
]

y×n.

bij =
xij − xmin

xmax − xmin
(1)

where xmax and xmin are the most and least appropriate values for the same indicator for
different evaluation units, respectively.

Step 3: The entropy of the evaluation indicator can be determined as (i = 1, 2, · · · , y,
j = 1, 2, · · · , n).

Hj = −
1

lny

(
y

∑
i=1

fijlnfij

)
(2)

fij =
bij + 1

∑
y
i=1
(
bij + 1

) (3)
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Step 4: The weight value can be obtained (j = 1, 2, · · · , n):

ω2
j =

1−Hj

n−∑n
j=1 Hj

(4)

Standardized Treatment of the Evaluation Indices

To eliminate the negative impact of inconsistencies in the calculation of each indicator,
it is necessary to standardize each indicator before risk assessment [64].

R =
Xi −min(Xi)

max(Xi)−minj(Xi)
(5)

R =
max(Xi)− Xi

max(Xi)−min(Xi)
(6)

where R is the normalized index value, Xi is the assessment indicator, max(Xi) is the
maximum value in the sequence, and min(Xi) is the minimum value in the sequence.
Equation (5) is suitable for positive impact indicators; the higher the value of the indicator,
the greater the risk. Conversely, Equation (6) is appropriate for the inverse impact indicator.

3.1.2. Selection and Treatment of Assessment Indicators
Hazard Indicators

Drought is caused when the external water supply is unable to meet the crop’s de-
mand for water. The crop water deficit index (CWDI) has been recognized as an index to
characterize agricultural drought [31]:

DIi = CWDIi =

{
1− Pei/ETCi

0
ETCi ≥ Pei
ETCi < Pei

(7)

where, DIi is the stage i drought index, CWDIi is the stage i crop water deficit index, and
Pei is the effective precipitation, which can be calculated by the following formula:

Pei =
n

∑
j=1

(
αj × Pj

)
(8)

Pj is the total amount of precipitation (mm) for a given precipitation event and αj is the
effective use factor. Pj ≤ 5mm, αj = 0; 5mm

〈
Pj ≤ 50mm, αj = 0.9; Pj

〉
50mm, αj = 0.75.

ETc is the water requirement of maize (mm), and is obtained by multiplying the
reference evapotranspiration (ET0) by the crop coefficient (Kc):

ETCi = Kc × ET0 (9)

Kc: Sowing-Jointing = 0.378, Jointing-Tasseling = 0.689, Tasseling-Milk-Ripe = 1.185,
Milk-Ripe-Maturity = 0.759.

ET0 was calculated using the Penman-Monteith equation recommended by the Food
and Agriculture Organization of the United Nations (FAO) in 1998 as follows [65–67]:

ET0 =
0.408∆(Rn − G) + γ 900

Tmean+273
Ue(es − ea)

∆ + γ(1 + 0.34U2)
(10)

where Rn is the net radiation available at the crop surface (MJ/m2), ∆ is the slope of the
vapour pressure curve (kPa/◦C), T is the average temperature (◦C), (es − ea) is the vapour
pressure deficit (k Pa), γ is the psychometric constant (kPa/◦C), and U2 is the wind speed
at a height of 2 m (m/s).

According to the drought grade classification (Table 2), we calculated the annual
average CWDI of maize in each county year by year and determined the frequency of
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normal, mild, moderate, severe, and extreme drought during the entire growth period,
which was used as the hazard index.

Table 2. Grades of maize drought in different periods based on crop water deficit index (CWDI).

Grade
Water Deficit Index of Crops at Each Developmental Stage (CWDI, %)

Sowing-Jointing Jointing-Tasseling Tasseling-Milk-Ripe Milk-Ripe-Maturity

Normal CWDI ≤ 50 CWDI ≤ 35 CWDI ≤ 35 CWDI ≤ 50
Mild (XH1) 50 < CWDI ≤ 65 35 < CWDI ≤ 50 35 < CWDI ≤ 45 50 < CWDI ≤ 60

Moderate (XH2) 65 < CWDI ≤ 75 50 < CWDI ≤ 60 45 < CWDI ≤ 55 60 < CWDI ≤ 70
Severe (XH3) 75 < CWDI ≤ 85 60 < CWDI ≤ 70 55 < CWDI ≤ 65 70 < CWDI ≤ 80

Extreme (XH4) CWDI > 85 CWDI > 70 CWDI > 65 CWDI > 80

Exposure Indicators

T the larger the proportion of the agricultural population in the whole region (XE1),
the more widespread the impact of a drought and the more people who suffer losses. In
addition, the income level and economic value created by the agricultural population
are low, and less capital is available to invest after a disaster. Therefore, the greater the
proportion of the population living in agriculture, the higher the exposure and risk of
drought. At the same time, the ratio of the maize planted area to the local crop area (XE2)
can be used to characterize the degree of exposure of hazard-bearing bodies. The larger
the value, the more hazard-bearing bodies are exposed to drought risk and the greater the
potential losses that may be incurred.

Vulnerability Indicators

Vulnerability indicates the degree of loss of disaster-bearing bodies owing to potential
risks, and the vulnerability index of disaster-bearing bodies should indicate the degree of
loss and regional differences in crop yield affected by meteorological disasters [68,69].

1©Maize climate sensitivity index (XV1):

Km =
1− Y/Yw

1− ET/ETm
(11)

where, Km is the climate sensitivity index, ET is the actual evapotranspiration, ETm is
the maximum evapotranspiration, Y is the actual yield of the year (kg/hm2), and Yw
is the climate productivity (kg/hm2), which can be calculated using the step-by-step
“decay” method:

Yw = YQ × f(T)× f(W) (12)

where YQ is the photosynthetic production potential per unit area (kg/hm2) (Equation (13)).
f(T) is the temperature stress factor, which was corrected using the subsection temperature
correction function formula (Equation (14)). f(W) is the water stress factor, which indicates
the influence of water factors on potential crop production (Equation (15)).

YQ =
C× S× ε×ϕ× (1− α)(1− β)(1− ρ)

q× (1− η)(1− ξ) × (1− γ)(1−ω)f(L)× E×∑ Qi (13)

f(T) =


0.027 T − 0.162
0.086 T − 1.41

1.00
−0.083 T + 3.67

0

6 ≤ T < 21 °C
21 ≤ T < 28 °C
28 ≤ T < 32 °C
32 ≤ T < 44 °C

T < 6°C or T ≥ 44 °C

(14)

f(W) =
P

ETm
(15)
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where C is the unit conversion coefficient (10,000), Qi is the total radiation for each month
of the growing season (MJ/m2), T is the daily average temperature (◦C), P is the effective
precipitation (mm), and ETm is the maximum evapotranspiration. The meanings and
values of other parameters are listed in Table 3.

Table 3. Meaning and values of the parameters for calculating photosynthetic production potential.

Parameter Meaning Value (Maize)

S Proportion of crop photosynthetic capacity to fix CO2 1.00

ε Proportion of photosynthetic radiation to total radiation 0.49

ϕ Quantum efficiency of photosynthesis 0.22

α Plant population reflectance 0.08

β Transmittance of lush plant population 0.06

ρ Proportion of radiation intercepted by non-photosynthetic organs 0.10

γ Proportion of light above light saturation point 0.01

ω Proportion of respiration to photosynthetic products 0.30

f (L) Revised positive crop leaf area dynamics 0.58

E Crop economic coefficient 0.40

q Heat content per unit of dry matter (MJ/kg) 17.20

η Water content of mature grains 0.15

ξ Proportion of plant inorganic ash content 0.08

2© Environmental adaptability index (XV2):

Kr =
|T − T0|

T0
(16)

where Kr is the environmental adaptation index, T0 is the average growth period of maize in
a certain area, and T is the current year’s maize fertility length. By calculating fluctuations
in fertility length, it is possible to determine the degree of adaptation of the crop to the local
climatic environment. The greater the fluctuation, the less adaptable it is, and the better
the adaptability.

3© Ratio of the effective irrigated area to cultivated area (XV3): Effective irrigated area
refers to the area of cultivated land that can be irrigated normally during a normal year.
It is necessary to have a certain water source, relatively flat land, irrigation engineering,
and equipment. The higher the value, the lower the vulnerability to drought. This shows
that the smaller the area of rain-fed agriculture, the more drought could be alleviated
by irrigation.

Emergency Response and Recovery Capability Indicators

The ability of emergency response and recovery refers to the extent to which the
affected areas can recover from short-and long-term meteorological disasters, including
emergency management capabilities, disaster mitigation inputs, and resource prepared-
ness. The better the disaster prevention and mitigation capacity, the higher the level of
agricultural modernization, and the less adverse natural conditions that affect agricultural
production.

1© Total agricultural machinery power (XC1): This is the sum of the power from
the entire power machinery system, including all machinery used in agriculture, forestry,
animal husbandry, and fishery, combined with other agricultural machinery. With agri-
cultural mechanization production technology, the ineffective evaporation of soil water
can be reduced to the maximum extent, and rational utilization of water resources can be
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promoted. The use of mechanization can not only mitigate drought, but also help conserve
soil water and increase crop yield.

2© Financial support for agriculture (XC2): This refers to the funds arranged within
the budgets of governments at all levels to support various expenditures on agriculture
and rural production, agriculture, forestry, water, and other sectoral business development.

3© Per capita net income of rural residents (XC3): This is the total final consumption
expenditure and savings available to rural residents.

3.2. Calculation of the Drought Risk Index
3.2.1. TOPSIS

Hwang and Yoon proposed the TOPSIS model in 1981 [47,70]. The model calculates
the distance of multiple evaluation objects from positive and negative ideal solutions.
Then, according to the distance from the positive and negative ideal solutions, it obtains
the relative closeness of each scheme, compares the closeness, and determines the best
scheme [71–73]. The calculation steps are presented elsewhere [58]. Analytical diagrams of
the positive and negative ideal solutions of the TOPSIS model are presented in Figure 3.

Figure 3. The compromise solution of the TOPSIS method.

3.2.2. VIKOR

The VIKOR method is a multi-attribute decision-making method based on ideal point
solutions and was proposed by Opricovic in 1998 [51,52]. The basic principle of this method
is to first define positive and negative ideal solutions. Then, according to the distance
between each evaluation scheme, the positive ideal scheme, and the negative ideal scheme,
the VIKOR value is obtained by trade-off [74,75]. The compromise solution for the VIKOR
method is shown in Figure 4.

Figure 4. The compromise solution of the VIKOR method.
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In Figure 3, the compromise solutions f ∗1 and f ∗2 of VIKOR denote the ideal solutions of
the first term criterion and the second term quasigroup, respectively. The feasible solution
FC is the closest of all solutions to F∗, and it is the result of the mutual trade-off between
the two criteria, with the corresponding quantities ∆ f1 = f ∗1 − f C

1 and ∆ f2 = f ∗2 − f C
2

respectively.

3.3. Mann-Kendall Mutation Test

In this study, the M-K test was used to analyze the trend and mutation of the regional
drought risk index [76,77]. The M-K test is a non-parametric statistical test, which has been
recommended by the WMO for long-term meteorological trend analysis and mutation
change analysis [78,79].

With n sample sizes for time series x, order sequence Sk can be constructed as follows:

Sk = ∑k
i=1 rik = 1, 2, · · · , nri =

{
1, xi > xj
0, xi < xj

j = 1, 2, · · · , i; i = 1, 2, · · · , n

ESk =
k(k− 1)

4
, k = 1, 2, · · · , n (17)

var(Sk) = k(k− 1)(2k + 5)/72, 2 ≤ k ≤ n (18)

The statistics can be defined as:

UFk =
Sk − ESk√

var(Sk)
α (19)

where UFk denotes the standard normal distribution. The standard normal distribution
table was obtained using a significance level α. If |UFk| > UFα/2, the time sequence exhibits
a significant upward or downward trend.

The time sequence was sorted in reverse order and the above process was repeated
such that UBk = −UFk′ (k′ = n + 1− k; UB1 = 0). The UFk′ and UBk curves were plotted.
When the UFk′ curve exceeds the critical line of a confidence interval, it indicates that the
time sequence has a significant trend of change. When the two curves intersect and are
located between the critical lines, the corresponding moment of intersection is the start
time of the mutation.

3.4. Drought Risk Zoning of Maize—Cluster Analysis

In this study, systematic cluster analysis was used to divide drought risk. The Ward
systematic clustering method, also known as the sum of squares method, is currently a
more mature clustering method [80–82]. The method is based on the idea of ANOVA, using
Euclidean distance as a criterion [83].

Dividing the n regional samples into k classes: G1, G2, · · · , Gk, using X(t)
j to denote the

j-th sample, nt to denote the number of samples, and X(t) as the sample mean, the sample
sum of squares of deviations St is:

St =
nt

∑
j=1

(
X(t)

j − X(t)
)′(

X(t)
j − X(t)

)
(20)

Then the sum of squared deviations S is:

S =
k

∑
t=1

St =
k

∑
t=1

nt

∑
j=1

(
X(t)

j − X(t)
)′(

X(t)
j − X(t)

)
(21)
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3.5. Verification of Assessment Results—Yield Reduction Rate

Maize in midwestern Jilin Province is mainly cultivated by rain. The yield reduction
rate reflects the extent to which regional agriculture has been affected by meteorological
disasters. Therefore, the yield reduction rate was used to verify the rationality of the
TOPSIS and VIKOR model assessment results.

yP =
Y− y

Y
× 100% (22)

where yP is the yield reduction rate, Y is the potential yield (kg/hm2), the yield of a given
variety in a certain area without water and fertilizer restriction during the entire growth
period [84,85], and y is the yield under rain-fed conditions at full fertility (kg/hm2).

4. Result
4.1. Analysis of the Drought Risk Change

Figure 5 shows the trend and M-K test results of the drought risk index in midwestern
Jilin Province from 2004 to 2019. Overall, the drought risk showed an increasing trend
each year. For the TOPSIS model, the lowest risk value appeared in 2004, both in central
and western Jilin Province. The central region had the highest risk in 2016 (0.53), and the
western region had the highest risk in 2014 (0.56). The UF and UB curves crossed in 2008,
indicating a sudden change in the drought risk index in 2008. According to the TOPSIS
model, the average drought risk index of maize in central and western Jilin Province was
0.49 and 0.51, respectively. In contrast, the values obtained by the VIKOR model were
0.71 and 0.61, respectively, and the VIKOR result value is on the high side. For the central
region, the UF and UB curves intersected in 2004, 2016, and 2017. In the western region,
the intersection occurred in 2014. In this study, the years in which the drought risk index
changed significantly (2004, 2008, 2012, 2016, and 2019) were further evaluated to explore
the spatial distribution of drought risk in different years.

Figure 5. Change in drought risk index and M−K test for maize in midwestern Jilin Province.
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4.2. Spatial Distribution of Maize Drought Risk Based on Two Models

This study used inverse distance weight (IDW) interpolation in ArcGIS 10.2 to obtain
spatial distribution maps of maize drought risk.

Figure 6 shows the spatial distribution of maize drought risk obtained by the TOPSIS
model. Overall, the drought was more severe in the western and central parts of the
study area. The spatial distribution of the drought risk index was broadly similar over the
five-year period. High-value areas were located in Tongyu, Songyuan, Changchun, Dehui,
and Siping. Except for 2004 and 2012, the risk in Baicheng was high. The eastern part of
the study area is at lower risk, particularly in Jiaohe, Shulan, and Jilin. In 2016, the risk of
maize drought in the study area was more severe, with the affected area covering most of
Tongyu, Baicheng, and Taonan.

Figure 6. Spatial distribution of drought risk based on the TOPSIS model.

The spatial distribution of drought risk in the VIKOR model was more serious than
that in the TOPSIS model (Figure 7). Not only is the drought risk index value higher, but
the area affected by the disaster is also wider. In 2012, most of the study areas suffered
from severe drought, especially in Panshi and Dehui, with drought risk values of 0.85
and 0.89 respectively. In 2019, the drought risk was higher in the central and western
regions of the study area, with the drought risk value of Tongyu reaching 0.91, followed by
Baicheng (0.86) and Dehui (0.72). The risk of the drought was low in 2004, with most areas
being at low risk.

Figure 7. Spatial distribution of drought risk based on the VIKOR model.
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4.3. Comparative Analysis of Drought Risk Based on Two Models

Figure 8 shows the distribution of drought risk index density for 2004, 2008, 2012, 2016,
and 2019 for each county in the study area. The VIKOR model had a more concentrated
drought index distribution with a mean value of 0.67. The mean value of the TOPSIS
model was 0.59. The results of the two models were relatively similar, with the high-value
areas being in the order of Tongue, Changchun, and Dehui. The low-value areas were
Yushu, Shulan, and Yongji. The annual average drought risk indices of the two models
were substantially different between Panshi and Shuangliao.

Figure 8. Ridge plot of the drought risk index.

Figure 9 shows the top eight counties in the drought risk index. For the TOPSIS model,
Tongyu had the highest drought risk, except for 2012. Siping, Changchun, Dehui, and
Baicheng are also at high-risk levels. These areas have a large maize planting area, and
when adverse meteorological disasters occur, the threat and loss increase. For the VIKOR
model, the rankings for 2004 and 2008 were roughly the same as those for the TOPSIS
model. The rankings varied considerably in 2012, with the model showing that Panshi had
the highest risk of drought that year, with a risk index of 0.87. Similarly, in 2016, Panshi
continued to have the highest risk of drought, followed by Qian Gorlos and Changchun.
By comparing the two models, the calculation results of the two models are consistent from
the ranking point of view.

Figure 9. Ranking of drought risk index based on TOPSIS and VIKOR model.
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4.4. Validation of Risk Evaluation Results

Currently, TOPSIS and VIKOR models are rarely used in agricultural drought risk
assessments. Therefore, the applicability of the two models was verified. We used the
five-year maize yield reduction rate in the study area as the basis for verification. Drought
alone may not be a factor in reducing maize yield in the region. There may be other factors
such as poor land management practices, population changes, and changes in income
levels. Rainfall is the major contributor to maize yield. By comparing Figures 6, 7 and 10,
it was found that the spatial distribution of drought risk obtained by the VIKOR model
was closer to that of the yield reduction, particularly in 2019 and 2012. In 2012, there was a
wide range of maize yield reductions, with severe areas mainly in the western part of the
study area, particularly in Baicheng and Zhenlai. In 2019, a large area across the central
and eastern parts of the study area was in a zone of high yield reduction, particularly in
Tongyu, Da’an, Qian’an, Qian Gorlos, and Shuangyang. This is consistent with the spatial
distribution of drought risk obtained by the VIKOR model. Interestingly, in 2008, the maize
yield reduction rate was generally low. According to historical data, there was plenty
of rain and light during the growth period of maize, and the yield reached 2.1 × 107 t,
which was a bumper harvest of maize. However, the drought risk assessment results of
the two models in 2008 were similar, and there were no disasters in most areas. After a
comprehensive analysis, we believe that the VIKOR model has better applicability in maize
drought risk research in midwestern Jilin Province.

Figure 10. Spatial distribution of maize yield reduction rates.

We further verified the applicability of the TOPSIS and VIKOR models. According
to the data on maize yield reduction in midwestern Jilin Province, the drought risk index
was analyzed using regression analysis. The results show that there is a linear correlation
between the equations, and the results pass the F test of α = 0.05 (TOPSIS: r = 0.59, p < 0.05,
VIKOR: r = 0.72, p < 0.05). The assessment results of the two models reached a significant
level, which proved that the assessment of maize drought risk using the TOPSIS and VIKOR
models was reasonable. Meanwhile, VIKOR was found to be more robust than TOPSIS.

Correlation analysis of TOPSIS and VIKOR was performed using the drought risk
index to detect the actual interrelationships between the models. The results showed that
the TOPSIS and VIKOR models have a high negative correlation (r = −0.781). It reflects the
similarity of the normalization and aggregation processes between the two methods, and
also improves model reliability.

5. Discussion
5.1. Analysis of Influencing Factors of Maize Drought Risk

In the study of agricultural drought risk, there is a need to obtain the temporal and
spatial distribution of risk. Furthermore, it is necessary to determine the degree of influence
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of the different factors on drought risk. This has led to targeted recommendations for
disaster prevention and mitigation. This study uses 2019 as an example and plots the
chord diagram, as shown in Figure 11. The diagram is divided into upper and lower parts.
The upper part indicates the drought risk assessment index, and the lower part indicates
counties in the study area. Each strip points to two correlated variables, with thicker bars
indicating a stronger correlation between the two variables.

Figure 11. Chord diagram of the relationship between the counties and the evaluation indicators.

The frequency of mild drought events had a significant impact on each county. Com-
pared with other factors, exposure has a greater impact on drought risk, particularly on the
proportion of the maize-planted area. The larger the area under maize cultivation, the more
vulnerable it is to meteorological disasters. Therefore, drought monitoring and prevention
should be strengthened in areas with large planting areas (such as Shulan, Zhenlai, and
Yongji). Among the vulnerability indicators, the ratio of the effective irrigated area to the
cultivated area is the most important. In the western part of the study area, there is less
precipitation, and the ratio of effective irrigated area to cultivated area is low. Therefore, the
drought risk is higher. The per capita net income of rural residents has a greater impact on
disaster prevention and mitigation capacity, followed by financial support for agriculture
and total agricultural machinery power. However, the economic foundation of the west-
ern region with severe drought is poor, which undoubtedly aggravates the losses caused
by drought.

5.2. Recommendations for Drought Risk Management in Maize

To make recommendations on maize drought risk regulation in the study area, this
study took 2019 as an example and used cluster analysis to divide the study area into three
grades: maize drought risk safety, moderate drought, and severe drought. Although there
are some differences between the zoning results of the two models (Figure 12), we can
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still propose suggestions on drought risk regulation according to the characteristics of the
different zones.

Figure 12. Classification and zoning of maize drought risk in midwestern Jilin Province.

First, the maize drought risk safety area is mainly concentrated in the eastern part of
the study area. These areas of maize planting are small, and regional economic development
is better. These regions should make steady progress in reducing the risk of drought in
the future and continuously strengthen the production input in all aspects by maintaining
the current level. In order to maintain a balance in regional balanced, regional economic
development and food security need to be promoted.

Second, the maize arid moderate drought area was concentrated in the central and
western parts of the study area. These regions have large areas under maize cultivation and
a high degree of maize specialization. The spatio-temporal distribution of precipitation is
uneven, and droughts occur periodically. It is suggested that these areas should make full
use of natural precipitation, take measures to intercept rain during the precipitation period,
and increase investment in drought resistance and disaster reduction. Rational planning of
maize planting areas and strengthening investments in agricultural science and technology
would help achieve the same.

Most importantly, the severe maize drought area was concentrated mainly in the
western part of the study area. Rainfall in summer is relatively concentrated and influenced
by prevailing westerly winds and the Greater Khingan Mountains. The air sinks and warms,
and evaporation intensifies. Moreover, the soil texture in the western Songliao Plain is
mainly sandy loam and sandy soil, which are loose, sandy, and poor in water and fertilizer
conservation. For disaster prevention and mitigation, water-saving agriculture should be
strengthened, and water use efficiency should be improved. Increasing the application of
agricultural fertilizers improves the physical and chemical properties and structure of the
soil and increases the yield of agricultural products per unit area.
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6. Conclusions

In this study, we used TOPSIS and VIKOR to evaluate the drought risk of maize in
midwestern Jilin province. We employed the IPCC-based concept of risk, defining risk as a
function of hazard, exposure, vulnerability, and prevention and mitigation capabilities. We
selected 12 key indicators to describe the risk of drought in maize. The research results may
be helpful for decision-makers to take appropriate action on maize production. The drought
in the western part of the study area was severe and the foundation for disaster prevention
was poor. It is suggested to improve the agricultural ecological environment and increase
the water storage and irrigation capacity. Compared to the yield reduction rate, VIKOR
provides more realistic and reasonable results than the TOPSIS model. Furthermore, we
provide an idea for drought risk evaluation for maize that could potentially be applied
to other regions as well as other crops to create drought risk assessment maps. However,
when applying this approach to other regions, the selection of indicators and the evaluation
and validation of models need to be reconsidered in light of the actual situation.
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