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Abstract: Development and a growing population in Saudi Arabia have led to a substantial increase 

in the size of its urban areas. This sustained development has increased policymakers’ need for 

reliable data and analysis regarding the patterns and trends of urban expansion throughout the 

country. Although previous studies on urban growth in Saudi cities exist, there has been no 

comprehensive research that focused on all 13 regional capitals within the country. Our study 

addressed this gap by producing a new annual long-term dataset of 30 m spatial resolution that 

covered 35 years (1985–2019) and maintained a high overall accuracy of annual classifications across 

the study period, ranging between 93 and 98%. Utilizing the continuous change detection and 

classification (CCDC) algorithm and all available Landsat data, we classified Landsat pixels into 

urban and non-urban classes with an annual frequency and quantified urban land cover change 

over these 35 years. We implemented a stratified random sampling design to assess the accuracy of 

the annual classifications and the multi-temporal urban change. The results revealed that Saudi 

capitals experienced massive urban growth, from 1305.28 ± 348.71 km2 in 1985 to 2704.94 ± 554.04 

km2 in 2019 (± values represent the 95% confidence intervals). In addition to the high accuracy of 

the annual classifications, the overall accuracy of the multi-temporal urban change map was also 

high and reached 91%. The urban expansion patterns varied from city to city and from year to year. 

Most capital cities showed clear growth patterns of edge development, that is, a continuous 

expansion of built-up lands radiating from existing urban areas. This study provides distinct 

insights into the urban expansion characteristics of each city in Saudi Arabia and a synoptic view of 

the country as a whole over the past four decades. Our results provided a dataset that can be used 

as the foundation for future socioeconomic and environmental studies. 

Keywords: CCDC; urban growth; time series; Landsat; stratified sampling; land use and land cover 

change; Saudi Arabia 

 

1. Introduction 

The world’s population reached nearly 7.5 billion in 2017 and is projected to grow to 

10.2 billion by 2050 [1]. Though urban areas encompass only a small fraction of the Earth’s 

total land surface [2], most of the population growth in the predictable future will occur 

in urban areas [3,4]. According to the literature, future increases in urban expansion will 

mostly occur in small and medium-sized cities [5–7]. Even though urban areas are central 

to wealth and economic development, generating more than 70% of the world’s gross 

domestic product (GDP) [8], they are considered one of the most significant drivers of 

various aspects of global change, such as the loss of agriculture, deforestation, habitat 

degradation, and pollution [9–15]. Hence, having accurate information about urban 
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expansion and its spatial distribution is key for scientists and policymakers to understand 

the causes and consequences of urban expansion. 

Satellite remote sensing (RS) can provide synoptic and consistent measurements of 

the Earth’s surface, generating reliable urban land cover maps in different geographical 

locations. Numerous urban land cover studies have focused on mapping urban land cover 

at global scales using a coarse spatial resolution with a high temporal frequency, such as 

the Moderate Resolution Imaging Spectroradiometer (MODIS). A recent study by 

Buchhorn et al. (2021) [16] generated annual land use and land cover maps globally 

between 2015 and 2019 using the MODIS at 100 m. This research produced maps annually, 

each of which was distinctive and detailed 23-classification levels based on the Land 

Cover Classification System (LCCS). The overall accuracy of this study was 80.6% in 2015 

and 80.3% in 2019. Another study by Huang et al. (2021) [17] generated a 250 m MODIS 

global urban extent product (MGUP) from 2001 to 2018 using an automated mapping 

approach. The accuracy assessment of this research achieved better results, with an F-

score of 0.88, than other products, such as the MODIS Land Cover Type product 

(MCD12Q1.v5 and MCD12Q1.v6), which were 0.82 and 0.86, respectively [18,19]. This 

research found that urban expansion grew to 802,233 km2, which represented 0.54% of the 

Earth’s surface. The research also showed that urban areas expanded globally by 1.68 

times between 2001 and 2018.  

While some studies have focused on mapping the global extent of urban areas using 

MODIS, nighttime light studies have relied on light output to distinguish global urban 

extent. For instance, Zhou et al. (2015) [20] implemented a cluster-based method using the 

defense meteorological satellite program/operational linescan system nighttime stable-

light data (DMSP/OLS NTL). This study generated a new global map of the urban extent 

at a 1 km spatial resolution in 2000. According to this research, the overall accuracy was 

87%, producer accuracy was 96%, and user accuracy was 88%. Zhou et al. (2015) indicated 

that the results of mapping urban areas had shown a high degree of achievement 

compared with other products, such as MODIS 500 m, GlobCover, GLC2000, Global Land 

Cover 2000 (GLC2000), Global Rural-Urban Mapping Project (GRUMP), and NOAA’s 

impervious surface area map (IMPSA) [21–25]. 

Global urban studies that use satellites with coarser spatial resolutions have a limited 

capability for capturing small and detailed urban land cover changes. However, this is not 

the only reason for researchers to switch to satellites with finer spatial resolutions, as the 

availability of data is another important benefit of satellites with these capabilities. 

Accordingly, many recent urban studies have shifted to satellites with a resolution of 5–

100 m/pixel, such as Landsat and the Sentinel. For example, the Global Human Settlement 

Layer (GHSL) is a global urban product comprised of three levels of mapping: built-up, 

population density, and settlement. These levels were produced in four specified 

epochs—1975, 1990, 2000, and 2014. Varied input data have been used to produce a GHSL, 

including satellite imagery, demographic data, and volunteer geographic information 

systems. The finer spatial resolution of Landsat and Sentinel satellite imagery was used 

for mapping the built-up areas [26]. Seminal contributions to this shift were been made by 

Small (2005) [27], who employed a spectral mixture analysis (SMA) approach using the 

Landsat-7 Enhanced Thematic Mapper Plus (ETM+) between 1999 and 2003 for a set of 28 

urban areas globally. This study exhibited a spectral description of urban reflectance 

properties that showed the reflectance of the urban areas could be precisely explained as 

a linear combination of three spectral endmembers: high-albedo, dark albedo, and 

vegetation. The urban areas can be distinguished near the dark side of the mixing line 

between high and dark albedo endmembers. 

A study conducted by Gong et al. (2020) [28] produced a Global Artificial Impervious 

Areas (GAIA) covering more than 30 years using 30-m spatial resolution Landsat images 

through the Google Earth Engine platform. This study included nighttime light data and 

the Sentinel-1 Synthetic Aperture Radar (SAR) data as ancillary datasets to improve the 

performance of their formerly developed algorithm in arid areas [29]. The overall accuracy 
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of GAIA products for 1985, 1990, 1995, 2000, 2005, 2010, and 2015 was higher than 90%. 

The resultant of GAIA products has increased to about 797,076 km2 in 2018, which is 1.5 

times greater than it was in 1990. The GAIA study focused on the ten countries with the 

greatest percentage of artificial impervious area, indicating that China and the United 

States (US) were the top two, respectively. Hence, the finer spatial resolution datasets have 

made it possible to collect detailed information about urban growth in different 

geographical locations. Despite the availability of some higher spatial resolution satellite 

imagery that can monitor particular Earth surfaces at specific times, the only imagery with 

a long temporal record is that of Landsat. This data is of particular use to researchers, as 

it has captured changes on the Earth’s surfaces since 1972. 

This shift towards measuring urban growth using Landsat can be of particular use in 

monitoring countries that have experienced rapid economic growth and increases in 

population, such as Saudi Arabia. Between 1974 and 2019, Saudi Arabia’s population 

jumped from just over 7 million to almost 35 million, an increase of nearly 500% [30]. In 

addition, Saudi Arabia is the largest petroleum producer in the world, accounting for 19% 

of global reserves, 12% of global production, and more than 20% of petroleum sales in the 

global market [31]. As such, the petroleum industry has heavily influenced the growth of 

the country’s economy [32], which has, in turn, stimulated rapid urban growth in 

populated regions. Despite these increases, studies dedicated to analyzing urban growth 

in Saudi cities are relatively few, though there have been notable exceptions that have 

employed various approaches and focused on either individual cities or small groups of 

cities. Abdelatti et al. (2017) [33] examined urban growth in the Alahsa province in Saudi 

Arabia and relied on reports, statistical data, and periodicals from vetted sources as well 

as reports produced by the General Authority for Statistics in Saudi Arabia. The results 

showed an increase in urban areas in the province, which climbed from 76.49 km2 in 1992 

to 91.62 km2 in 2011. Alhowaish (2015) [34] studied the urban growth of the metropolitan 

area in Dammam over eight decades based on socioeconomic reports and statistical data 

from different agencies in Saudi Arabia. Al-Shihri (2016) [35] examined the influence of 

large-scale residential development projects on urban sustainability in the Dammam 

metropolitan area (DMA) and recommended that the boundaries of the DMA’s shorelines 

be accurately delineated and that a strict prohibition of further development is enforced 

in these areas in order to minimize the impact of unsustainable growth. Aljoufie (2013) 

[36] developed eight indices related to urban growth and transportation changes and then 

used RS and a geographic information system (GIS) to analyze urban growth in Jeddah, 

Saudi Arabia, a city that witnessed rapid growth between 1964 and 2007. Jamali and 

Rahman (2016) [37] examined urban growth in Riyadh, Saudi Arabia, using RS and a GIS 

on Landsat images in 1990, 2000, and 2014 and were able to provide recommendations for 

sustainable growth in the city. Aljaddani (2015) [38] was able to detect land cover and land 

use changes in the city of Jeddah utilizing RS and GIS. Landsat images in 1984, 2000, and 

2013 were analyzed and the study showed that Jeddah had witnessed rapid growth over 

the study period and was expected to increase over the coming years. 

Much of the research conducted regarding urban growth has overlooked Saudi 

Arabia. Global studies have, of course, included distinctive information on the country’s 

cities; however, as these studies are globally focused, they utilize a coarse spatial 

resolution or a fine spatial resolution with specified epochs [16,17,20,26]. Studies 

conducted locally have provided valuable information about urban growth using a 

variety of approaches and data; however, they were limited in that they addressed only 

one city, province, or metropolitan area and relied on statistical data, periodicals from 

vetted sources, or a few satellite images from different dates [33–38]. This lack of attention 

to urban growth in Saudi Arabia’s cities at a detailed level over a sustained period of time 

represents a gap in current literature and a hindrance to local politicians and policymakers 

who lack the most detailed information on urban growth in the country. The purpose of 

this study is to address this need by producing a new long-term dataset at a spatial 

resolution of 30 m that details the distributions, heterogeneities, and dynamics of the rapid 
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growth that has occurred in the country’s 13 capital cities. We conducted a time series 

analysis using the continuous change detection and classification (CCDC) algorithm for 

each city utilizing all available Landsat images over the past 35 years and aimed to answer 

the following question: What were these cities’ urban growth patterns and trends between 

1985 and 2019? 

2. Study Area and Methods 

2.1. Study Area 

Saudi Arabia is located in Southwest Asia and occupies about four-fifths of the 

Arabian Peninsula. The total landmass of the kingdom is about 2,149,690 km2, and the 

country’s total population as of 2020 was 35,013,414 [39,40]. This number represents about 

65.1% of the total population in the Gulf Cooperation Council (GCC) [41]. 

Saudi Arabia is composed of 13 administrative regions, and each region has a capital 

city. This research was focused on these 13 capitals: Riyadh (which also serves as the 

country’s capital), Buridah, Ha’il, Dammam, Makkah, Madinah, Arar, Skakah, Tabuk, 

Albaha, Abha, Jazan, and Najran (Figure 1). Each city was assigned boundaries based on 

the 2019 Saudi Geological Survey (SGS) [42]. Riyadh and Buridah are located in the center 

of Saudi Arabia, and Ha’il is located to the northwest of Buridah city. These three cities 

are surrounded by the Al-Dahnā desert to the east, as well as dried valleys that exist 

throughout the central regions. In addition, there are several oases that are relatively close 

to Buridah. The city of Dammam is located in the eastern region of the country, 

overlooking the Arabia (Persian) Gulf. The eastern region is dominated by the Rub’ al 

Khali desert, also known as the Empty Quarter, which covers 650,000 km2 [43]. There are 

also several oases/cities that exist in the region [44]. Cities that are located in the western 

portions of Saudi Arabia, such as Madinah, Makkah, and Albaha, are located in the Sarwat 

Mountain series, and most of these cities also overlook the Red Sea to their west. The north 

and northwest regions in Saudi Arabia are known for fertile pasture and agriculture areas, 

and they are where Arar, Skakah, and Tabuk are located. Abha, Jazan, and Najran are 

located in the country’s southwestern region near the Red Sea, a region that is home to 

the second-highest peak in the country, namely, the Sawda mountains (3000 m) [45]. These 

three cities are characterized by fertile agricultural areas and distinct topographic features. 

Overall, due to arid lands, the climate is generally dry, hot in the summer, and mild-to-

cold in the winter with little rainfall [46]. 
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Figure 1. The 13 regions in Saudi Arabia and the geographic location of each region’s capital. The 

red squares/rectangles represent the subsets of Landsat boundaries that were employed in this 

research. The asymmetric black represents the boundary of each city. 

2.2. Landsat Data 

The CCDC algorithm relies on geometric registration and atmospheric correction, 

which facilitates the comparison of images over time. For this study, we downloaded all 

Landsat level 1 surface reflectance data from the U.S. Geological Survey website [47], as 

the data are registered accurately. The data includes Landsat data from the Thematic 

Mapper 4-5 (TM), Enhanced Thematic Mapper Plus 7 (ETM+), and Operational Land 

Imager 8 (OLI) from 1985 to 2019. These data on the website are preprocessed using the 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), which conducts 

atmospheric corrections [48,49]. To achieve these corrections, LEDAPS produces the 

surface reflectance products from the Landsat Thematic Mapper (TM 4-5) and Enhanced 

Thematic Mapper (ETM+ 7). The Landsat 8 Surface Reflectance system (L8SR) produces 

the surface reflectance products from the Landsat Operational Land Imager [50,51]. These 

datasets use a Worldwide Reference System (WRS-2) with a clear observation for more 

than 20% of Landsat images. The “clear” observations are defined as observations that are 

not obscured by cloud or cloud shadow or have snow detected based on the QA band 

derived from the Fmask algorithm [52,53]. In total, 15,922 preprocessed Landsat images 

were downloaded (Figure 2). 



Remote Sens. 2022, 14, 2382 6 of 26 
 

 

 

Figure 2. The total number of Landsat images per path and row for each capital (1985–2019). 

3. Data Processing 

We used the CCDC method to analyze the urban growth of the Saudi capitals. This 

approach included the following components: training data, a CCDC algorithm for 

continuous urban classification, estimating the accuracy and unbiased area, and 

estimating urban expansion rate and intensity (1985–2019). 

3.1. Training Data 

The land use and land cover training dataset was restricted to the period that is 

covered by the Landsat imagery to train the CCDC algorithm [54,55]. The training samples 

were collected between 2002 and 2015. Due to the limited pixels of some land use and land 

cover classes, ensuring that there were sufficient training samples per class became the 

primary goal during the Landsat satellite imagery selection process. We collected the 

training samples using Landsat satellite imagery and compared them with historically 

higher spatial resolution aerial imagery from Google Earth, and when there was obscurity, 

we assigned them to Landsat imagery (Figure 3). Two classes of land use and land cover 

were used to collect the samples of training data based on the USGS scheme of Anderson’s 

land classification [56]. The first of the two classes was urban areas (developed class), 

which consist of a high percentage of constructed materials (30% or greater). These 

samples included residential, commercial, and industrial areas, as well as transportation 

networks, communication sites, and utilities. The second class was non-urban area (other), 

referring to all land cover classes combined, including agricultural land, rangeland, 

shrublands, water, and barren land. Table 1 shows detailed information about the urban 

and non-urban pixels, city size, the collection dates, and the paths and rows included. 
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Figure 3. (A) Overview of Riyadh, Saudi Arabia. (B–E) Urban and non-urban training data at four 

different sites in Riyadh. 

Table 1. Collected training data from the 13 capitals. 

City Name Urban Pixels 
Non-Urban 

Pixels 

City Size  

(km  × km) 
Date Path/Row 

Riyadh 232,609 534,025 83.49 × 97.74 2013 165/043 

Buridah 76,259 1,327,780 47.34 × 50.37 2014 168/042 

Ha’il 42,245 1,293,491 49.74 × 64.14 2005 169/041 

Dammam 231,310 71,966 40.59 × 40.47 2014 163/042 

Makkah 39,121 518,555 61.11 × 54.21 2013 169/045 

Madinah 51,394 374,444 38.43 × 40.68 2005 170/043 

Arar 11,461 352,432 37.05 × 25.5 2004 170/039 

Skakah 15,566 730,318 43.08 × 42.84 2003 171/039 

Tabuk 29,155 511,715 28.2  ×  31.5 2005 173/040 

Albaha 3054 91,936 25.32 × 23.52 2002 168/046 

Abha 11,464 318,887 77.43 × 68.91 2013 167/047 

Jazan 13,093 160,557 32.52 × 39.69 2010 167/048 

Najran 45,726 953,402 86.25 × 45.33 2015 166/048 

Total pixels 802,457 7,239,508    

3.2. CCDC Algorithm for Continuous Urban Classification 

The CCDC algorithm was selected because it has the capability to continuously detect 

the land use and land cover changes and produce change detection and classification 

maps at any given time. The algorithm used all available Landsat satellite images to 
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estimate the time series model and used this model to predict future observations [54,55]. 

The time series model of the CCDC algorithm consists of three main components—

seasonality, trend, and break—that can capture different types of changes to the Earth’s 

surface, such as vegetation phenology, gradual change, and abrupt change (e.g., 

urbanization and deforestation). These three main components were used as coefficients 

in the time series model that analyzed the clear-sky observations. In this time series model, 

changes can be detected if the differences between the new observations are not within 

the prediction range for three consecutive observations. When this occurs, a break in the 

time series model is flagged. Once there is a break, the number of observations is 

increased, and a new time series model is estimated. If no change is found, a new clear-

sky observation is added to the time series model, and it is estimated again. The break that 

is found in the time series provides change information. The coefficients of seasonality 

and trend and the root-mean-square error (RMSE) with the training samples are used as 

an input for the classification process that uses the random forest classifier (RFC) because 

it produces highly accurate predictions and efficiently computes large databases [57]. In 

this research, we fed the CCDC with the training data to produce the classification maps 

for the 13 capital cities in the first month of July across all of the years that were included 

in this study. We then accumulated the annual classification maps, which consisted of 

binary classes (urban and non-urban), to track and monitor changes in urban growth from 

1985 to 2019. 

3.3. Estimating the Accuracy and Unbiased Area 

We implemented a stratified random sampling design, which allowed us to assess 

the accuracy of the annual classification maps and multi-temporal urban change map, as 

well as provide area estimations and uncertainties. The strata were defined based on the 

natural states of the classification map, which were divided into three main categories: 

“likely change,” “stable urban,” and “stable non-urban.” We identified each stratum by 

employing a frequency map that was based on an overlay of all classification maps for 

each city from 1985 to 2019 (Figure 4). If a pixel on all 35 maps was classified as urban, it 

was included in the “stable urban” stratum. If a pixel on all 35 maps was classified as non-

urban, it was included in the “stable non-urban” stratum. If a pixel on any of the 35 maps 

had changed from urban to non-urban or vice versa, it was included as “likely change.” 

A frequency map was employed for each city, and these 13 frequency maps were gathered 

into one map that was composed of the three strata. We selected 50 random pixels from 

the stable urban stratum, 50 random pixels from the stable non-urban stratum, and 100 

sample pixels from the likely change stratum, resulting in a total of 200 pixel locations and 

7000 pixel-year pairs for interpretation over the 35 years (1985–2019) (Figure 5). This 

procedure allowed us to follow the “good practice” guidance using a probability sampling 

design for estimating the area of land change [58]. The built-in Sampling Design Tool in 

ArcGIS was used to stratify the random samples [59]. Reference information was derived 

through examining and interpreting historical aerial images in Google Earth and Landsat 

imagery. We used Landsat false-color composites of SWIR-1, NIR, and RED, as well as 

various band combinations, which helped to increase the spectral separation and enhance 

the visual interpretation to differentiate the urban class from other land cover classes. 

Sample pixels were projected onto high-spatial-resolution Google Earth images to 

facilitate the interpretation of each site. When assessing the annual classifications, we 

labeled the reference sample pixels as either an urban or non-urban class in each year. To 

validate the change map, the reference sample pixels were labeled as one of three classes 

based on the status of each pixel over the 35 years: stable urban, stable non-urban, and 

urban change (which referred to a pixel that experienced urban expansion or urban 

shrinkage from 1985 to 2019). 

Employing the methods that were reported by Olofsson et al. [60], we estimated the 

areas and uncertainties using the stratified sample. We also computed the overall, user’s, 

and producer’s accuracies, as well as the commission and omission errors. The variance 
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of the overall, user’s, and producer’s accuracies, as well as the confidence interval (95%) 

for each, were computed based on stratified random sampling using the method 

explained by Jenness and Wynne [61]. All of these computations were based on the 

estimated proportion of the error matrix and were conducted 35 times for each year 

between 1985 and 2019 when assessing the annual classification maps. We also conducted 

these computations when assessing the multi-temporal urban change map over the study 

period. 

 

Figure 4. The process of accuracy assessment of the annual classification maps. Note: the green dots 

represent the random sampled pixels, and the black and white backdrop images represent the 

Landsat satellite images. 
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Figure 5. A map of Saudi Arabia (A) and the stratified random sampling design maps of four 

different capitals (B–E). 

3.4. Estimating Urban Expansion Rate and Intensity (1985–2019) 

To analyze the spatial and temporal characteristics of urban growth in the 13 Saudi 

cities between 1985 and 2019, we computed the urban expansion (km2) with two distinct 

indicators: urban expansion rate and expansion intensity. The urban expansion and 

intensity rate illustrate the dynamics within an urban area and quantify the expansion 

taking place. Hence, these two indicators contribute to the analysis of spatial changes in 

urban growth. The urban expansion is calculated by finding the difference in urban areas 

between two years. Once this is achieved, the rate of urban expansion 𝑈𝑒 and urban 

expansion intensity 𝑈𝑖 can be computed as follows [62]: 

𝑈𝑒 =
𝑈𝐴𝑛+𝑖 − 𝑈𝐴𝑖

𝑈𝐴𝑖
×

1

𝑛
× 100 (1) 

𝑈𝑖 =
Δ𝑈𝐴𝑖

𝑇𝐶𝐴𝑖
×

1

𝑛
× 100, (2) 

where 𝑈𝐴 is the urban area (km2), 𝑛 is the interval of the calculation period (in years), 𝑖 is 

the time, and 𝑇𝐶𝐴 is the total city area (km2). Thus, in Equation (1), 𝑈𝐴𝑛+𝑖 and 𝑈𝐴𝑖 are the 

urban areas in the target unit at times 𝑛 + 𝑖 and 𝑖, respectively. In Equation (2), Δ𝑈𝐴𝑖 is the 

difference between the urban areas at times 𝑛 + 𝑖 and 𝑖. The rate of urban expansion is 

expressed as a percentage that was calculated by dividing the change of urban areas by 

the total urban areas throughout the specified study period, while the expansion intensity 
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is expressed as a percentage that was calculated by dividing the change of the urban area 

by the total city area unit. Although these indicators can be used to compare the quantities 

of the spatial characteristics of urban expansion over the study period, in this research, we 

computed these indicators for every five years for each city. 

4. Results 

4.1. Accuracy Assessments and Unbiased Area Estimations 

We separated and quantified the errors by evaluating the accuracy of the annual 

classification maps for the urban and non-urban classes. Due to the similarity of the 

spectral responses between urban and barren lands and the complexity of mapping semi-

arid and arid environments, the commission and omission errors were found to vary 

between the two classes. The commission errors for the urban class ranged between 2.29 

and 18.75%, while the omission errors were between 4.42 and 19.63%. For the non-urban 

class, the errors of commission experienced a decline, with a range between 0.69 and 

6.10%, while the omission errors were between 0.74 and 2.81%. In addition, the user’s 

accuracies for the non-urban class increased over the period and were between 93.90 and 

99.26%, while the user’s accuracies for the urban class were between 81.25 and 99.26%. 

The producer’s accuracies of the non-urban class were between 97.17 and 99.26%, while 

the accuracies for the urban class were between 80.37 and 95.52%. The overall accuracy 

was higher between 1985 and 2019, ranging between 93.21 and 98.09% (Figure 6). 

Based on the stratified random sample, urban and non-urban areas were estimated 

once per year over the period 1985–2019 for a total of 35 times. The urban area rapidly 

increased over this period. In 1985, the urban area covered a total of 1305.28 ± 348.71 km2 

(the ± value represents the 95% confidence interval). In 2000, the urban area had continued 

to grow to around 1475.42 ± 336.75 km2, and by 2019, the urban area had drastically 

increased to 2704.94 ± 554.04 km2. The urban area represented 13.23, 14.96, and 27.43% of 

the total areas in 1985, 2000, and 2019, respectively. The non-urban area decreased over 

the same period (1985–2019) (Figure 7). For example, in 1985, the non-urban class covered 

a total of 8568.29 ± 543.96 km2. In 2000, it covered 8399.36 ± 608.37 km2, and by 2019, it 

totaled 7347.37 ± 1013.44 km2. The non-urban area covered 86.89, 85.18, and 74.51% of the 

total areas in 1985, 2000, and 2019, respectively. These urban and non-urban areas have 

witnessed drastic changes, especially between 2000 and 2019. In urban areas, the general 

trend was a substantial increase, and there was a decrease in non-urban areas. 
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Figure 6. The user’s, producer’s, and overall accuracies from 1985 to 2019 (95% confidence intervals 

are represented by the error bars for overall accuracy). 

 

Figure 7. Unbiased urban and non-urban area estimates from 1985 to 2019 (95% confidence intervals 

are represented by the error bars). 

We also quantified and evaluated the errors of the multi-temporal urban change map 

based on the sample. The user’s and producer’s accuracies varied between the three 

classes, ranging from 68 to 97% (Table 2). The producer’s accuracy of the change class 

showed the lowest accuracy among the classes at 68%. The urban class showed the lowest 

user’s accuracy at 76%. This lower accuracy was the result of the inter-annual variability. 

Even with the lower accuracy in some classes, the overall accuracy of the change map was 

high, reaching 91%. The change class area was large, approximately 2064.075 ± 571.663 

km2 (the ± value represents the 95% confidence interval). Overall, this assessment 
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illustrated the variation between the urban and non-urban pixels in arid and semi-arid 

environments. 

Table 2. Confusion matrix of the multi-temporal urban change map (1985–2019). 

  Reference Data  

  Stable Non-Urban Stable Urban Change Total 

Classified map 

Stable non-urban 0.685 0.000 0.044 0.728 

Stable urban 0.002 0.083 0.024 0.109 

Change 0.018 0.003 0.141 0.162 

 Total 0.705 0.086 0.209 1.000 

 Area (km2)   2064.075  

 ± 95% CI (km2)   571.663  

 User’s accuracy 0.94 0.76 0.87  

 
Producer’s 

accuracy 
0.97 0.96 0.68  

 Overall accuracy 0.91    

4.2. Characteristics of Urban Growth in Saudi Capital Cities (1985–2019) 

4.2.1. Urban Expansion Rate and Intensity 

We calculated the urban expansion, rate of urban expansion (𝑈𝑒), and expansion 

intensity (𝑈𝑖) to identify the urban growth trends in the capital cities over the 35 years. 

The expansion intensity was classified into six classes: high-speed expansion (𝑈𝑖  >  1.92), 

fast-speed expansion (1.05 ≤ 𝑈𝑖 ≤ 1.92), medium-speed expansion (0.59 ≤ 𝑈𝑖 ≤ 1.05), slow-

speed expansion (0.28 ≤ 𝑈𝑖≤ 0.59), slow expansion (0 ≤ 𝑈𝑖 ≤ 0.28), and no expansion [63]. 

The variables of each indicator were extracted from the statistics that were derived from 

the outcome of the CCDC classification maps. The urban expansion (km2), urban 

expansion rate (%), and expansion intensity (%) were then identified and quantified for 

the 13 capital cities in Saudi Arabia (Figure 8). 

The calculations of all three indicators revealed trends in the spatial and temporal 

heterogeneity of each city between 1985 and 2019, which was then divided into five-year 

intervals. In Riyadh, Dammam, Tabuk, Jazan, and Abha, the urban expansion and 

intensity reached 98.5 km2 (0.79%), 42.43 km2 (1.51%), 9.12 km2 (0.49%), 8.83 km2 (0.62%), 

and 4.81 km2 (0.1%), respectively, and the urban expansion, urban expansion rate, and 

expansion intensity were significantly higher in the first interval (1985–1989). In addition 

to this increase, Riyadh, Buridah, Ha’il, Makkah, Arar, and Abha also showed substantial 

expansions and intensities in the last two intervals (2010–2014 and 2015–2019). For 

example, in the last interval (2015–2019), Riyadh, Dammam, Makkah, Buridah, and Ha’il 

had the highest urban expansions and expansion intensities at about 65.52 km2 (0.52%), 

25.29 km2 (0.9%), 21.42 km2 (0.38%), 19.21 km2 (0.45%), and 16.99 km2 (0.33%), respectively. 

The urban expansion rates in Ha’il, Jazan, Dammam, and Tabuk (10.49, 10.63, 7.84, 

and 9.95%, respectively) denoted substantial increases in the first interval (1985–1989). 

Additionally, in the last interval (2015–2019), Arar, Abha, and Ha’il witnessed increases 

with rates above 3.1%. Though some of the capitals witnessed a major increase over the 

first and last intervals, the three indicators also showed a decrease in certain cities during 

the first and middle intervals, especially between 1985 and 2009. For instance, Madinah, 

Arar, Skakah, Buridah, and Najran each saw a decrease in growth with urban expansion 

at less than 3 km2 and an urban expansion rate and intensity below 1%. There was a 

noticeable increase in urban expansion, urban expansion rate, and urban intensity in all 

13 capitals during the sixth interval (2010–2014), which did not occur during any of the 

other intervals that were included in the study. This distinct growth was the result of an 

economic boom that occurred in Saudi Arabia during this period. 
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Figure 8. Three urban indices of the 13 capital cities (1985–2019): (a) urban expansion (km2), (b) 

urban expansion rate (%), and (c) expansion intensity (%). 

4.2.2. Spatial and Temporal Analysis for the 13 Capital Cities 

The change maps provide a visual representation of the land use and land cover 

changes that occurred in each of the capitals from 1985 to 2019 (Figure 9). Within the 

change maps, urban growth was tracked using a color scale that ranged from black for 

1985 to dark red for 2019. The grey color represents the non-urban class. The urban 

expansion that is represented in each of the maps reveals distinct urban growth patterns 
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that are unique to each of the capitals and have varied over time. Tracking these data over 

the 35 years provided detailed spatial and temporal information about each city and 

represents a synoptic view of the urban growth in each regional capital. 

The direction of urban growth was disparate for each city and depended on different 

factors, such as the topography, transportation networks, proximity to coastal areas, and 

city boundaries. Overall, Ha’il, Madinah, Makkah, Albaha, Abha, and Najran were found 

to have urban expansion patterns that were unique due to the influence of each city’s 

topography. In contrast, Arar and Riyadh had uniform patterns that expanded in all four 

directions due to the ease of the surrounding terrain and the abundance of transportation 

networks. Urban growth in Tabuk was found to expand in specified directions due to the 

city’s boundary, while Jazan and Dammam expanded to the east and west, respectively, 

because of their proximity to the Red Sea and Arabian Gulf, respectively. 

Each city had a unique pattern of urban growth (Figure 9). For example, Tabuk, 

Skakah, and Arar are located in the northern region. The change map of Tabuk clearly 

illustrates the outward expansion of urban areas from the core of the city toward the north, 

east, and west along the transportation network, while the urban growth in the south was 

limited due to the city’s boundary. Skakah was found to have experienced a slower rate 

of growth than Tabuk, with the majority of development occurring along the 

transportation network. Arar witnessed dramatic growth in all directions since there were 

no barriers to expansion. 

The three capitals in the central region of Saudi Arabia are Ha’il, Buridah, and 

Riyadh. Ha’il was found to grow to the north, south, and east. Buridah, which is primarily 

agricultural, only experienced development in the north and southeast areas of the city. 

Riyadh experienced development in the north, south, and west of the city. This growth 

occurred most often near transportation networks and in areas where services were 

available to city inhabitants. In the eastern region, Dammam witnessed significant growth 

to the west and southwest of the city and limited growth in the east due to the barrier 

formed by the Arabian Gulf. In the western region of Saudi Arabia, Madinah extended 

mostly to the south and east rather than the north and west. Growth in Makkah mostly 

occurred to the south and east, while growth to the north and west was restricted by the 

city’s topography. 

Albaha, Abha, Najran, and Jazan are all located in the southern region of the country. 

Albaha, Abha, and Najran are also hindered by the surrounding topography, further 

demonstrating the role that topography plays in shaping the growth of urban areas. 

Growth in Albaha took the form of curves that extended to the north, east, and west. 

Najran was shown to have a unique urban pattern that longitudinally extended to the 

south and east along easy terrain, while the north and west are constrained by 

mountainous topography. As with the other capitals, the majority of this urban expansion 

was found to be near transportation and available services. Jazan, a coastal city, showed 

a small amount of growth to the east and along the coastal areas to the north and south. 

The temporal patterns of urban growth varied from city to city depending on 

different socioeconomic, political, and cultural factors. Overall, the majority of growth 

occurred in recent years rather than in the earlier years of the study. For example, because 

Riyadh is the capital of both the Riyadh region and the country, it saw the largest amount 

of growth of all 13 capitals. This urban expansion increase began in 1997 and accelerated 

even further between 2009 and 2019. The bulk of Dammam’s urban growth occurred 

between 1997 and 2019. The majority of growth in Abha, Najran, and Jazan took place 

between 2000 and 2019. 
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Figure 9. A map of Saudi Arabia (A) and multi-temporal urban change maps for all 13 capitals (B–

N). 

Three urban growth types were visually identified at the city level for each of the 13 

capital cities: infilling, edge development, and leapfrogging (also known as outlying). The 
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infilling urban growth type occurs on vacant or undeveloped land within an existing 

community. In contrast, edge development occurs when the development of vacant or 

undeveloped land occurs along the periphery of developed areas. Leapfrogging occurs in 

sites that are near developed areas but not adjacent [64]. The most dominant urban growth 

type in most capital cities was found to be edge development, with infilling and 

leapfrogging present but limited. In Tabuk, Skakah, Arar, Ha’il, Riyadh, Dammam, 

Makkah, Madinah, and Najran, edge development was revealed to be the most common 

type of urban expansion, while leapfrogging and infilling were revealed to be the least 

common. Leapfrogging was the most dominant in Buridah, Albaha, Abha, and Jazan. 

4.2.3. Examples of Riyadh, Dammam, and Arar 

Based on the classification maps, we selected Riyadh, Dammam, and Arar to use as 

examples based on their total area to provide a representation of urban growth in a variety 

of city sizes. As Riyadh is the capital of Saudi Arabia and the Riyadh region, the city 

witnessed rapid growth along the entirety of its borders (Figure 10). Based on the 

classification maps, the urban areas covered about 540.63 km2 (21.85%) in 1985 and 1067.05 

km2 (43.12%) in 2019. Urban areas had increased to almost double what they were in 1985. 

Most of this general urban growth was found to be clustered around transportation 

networks and services. In contrast, the non-urban areas dramatically decreased, falling 

from 1933.98 km2 (78.15%) in 1985 to 1407.46 km2 (56.88%) in 2019. Location B was a clear 

example of this infilling urban growth type. Between 2007 and 2019, edge expansion 

became the most common urban growth type, and it was distributed in the northern, 

western, and southern areas of the city along established transportation networks. 

Locations A, C, and D were examples of this edge expansion urban growth type. The 

leapfrogging urban growth type was never dominant and was limited to small areas that 

were located in the north, east, and south. 

Dammam is located in one of the richest regions of Saudi Arabia due to massive 

petroleum resources (Figure 11). As such, the city experienced rapid growth between 1985 

(108.22 km2—19.27% of the total area) and 2019 (282.73 km2—50.35% of the total area), 

indicating that Dammam witnessed an acceleration in urban growth. At the same time, 

non-urban areas experienced a dramatic decrease, going from 453.48 km2 (80.76%) in 1985 

to 277.58 km2 (49.45%) in 2019. However, unlike Riyadh’s growth, the expansion of urban 

areas in Dammam was mostly restricted to the west. This was because Dammam sits on 

the coast of the Arabian Gulf in the east and is bordered by Saihat in the north and 

Alkhobar and Dhahran in the south. These geographic constraints were made clear by the 

multi-temporal urban change that mostly extended to the west and was illustrated by the 

expanse of orange and red color in that area of the map compared with isolated pockets 

of yellow and red in the east. The infilling urban growth type was common within the city 

between 1994 and 2006, especially near the city’s core. However, the edge expansion 

urban growth type was dominant between 1995 and 2019, especially on the western side 

of the city. The leapfrogging urban growth type was found to be limited to small areas 

throughout the different periods. Location A was an example of the infilling growth type, 

and locations B, C, and D were examples of the edge expansion growth type. The general 

urban growth pattern was revealed to be a combination of (mostly) clusters and (partially) 

dispersed growth. 



Remote Sens. 2022, 14, 2382 18 of 26 
 

 

 

Figure 10. Multi-temporal urban change map (1985–2019) and urban and non-urban classifications 

in 2019 in Riyadh. Both include surface reflectance (SR) and classification map (CM) samples. 

 

Figure 11. Multi-temporal urban change map (1985–2019) and urban and non-urban classifications 

in 2019 in Dammam. Both include surface reflectance (SR) and classification map (CM) samples. 
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Arar is the capital of the Aljawf and witnessed sluggish growth between 1985 and 

2019 (Figure 12). Urban growth in Arar covered 13.94 km2 (4.70%) in 1985 and increased 

threefold to approximately 55.16 km2 (18.61%) in 2019. This growth rate was due to many 

factors, such as the city’s population, the total area of the city, and human activities. 

However, the urban areas continuously grew near transportation networks and existing 

services. The detection maps revealed that the general pattern of urban growth in Arar 

was clustered. In 1985, Arar’s non-urban area covered about 282.73 km2 (95.37%) and 

decreased to about 141.20 km2 (81.37%) in 2019. The infilling growth type between 1991 

and 1995 was concentrated in the center of the city, whereas the edge expansion urban 

growth type grew gradually to the north, south, east, and west sides of the city, as 

indicated by the color change. The leapfrogging urban growth type was almost non-

existent in the city. Locations A, B, C, and D exemplified the edge expansion type in Arar 

city. 

 

Figure 12. Multi-temporal urban change map (1985–2019) and urban and non-urban classifications 

in 2019 in Arar. Both include surface reflectance (SR) and classification map (CM) samples. 

5. Discussion 

This research provided the first quantitative examination of urban growth in Saudi 

Arabia’s 13 capital cities. Growth in the capitals was tracked over 35 years (1985–2019), 

which generated a synoptic view of urban growth and provided specific data on the 

patterns, trends, and rates of urban expansion in each capital. This study showed that the 

Saudi capitals encountered massive urban growth between 1985 and 2019 and, according 

to all indicators, will continue to expand in the coming years. These results support 

arguments made by Alqurashi et al. [65], which claimed that cities in Saudi Arabia had 

experienced significant urban growth over the last four decades. 

The combination of remotely sensed data and socioeconomic variables enables us to 

understand the interaction of the time series between urban growth and socioeconomic 

variables. The population size and the gross domestic product (GDP) are considered the 

main drivers of this growth. As the total population of Saudi Arabia has experienced an 

immense increase of 500% between 1974 and 2019 [30], and the urban area of Saudi 

capitals in 2019 (2704.94 ± 554.04 km2) was double that of 1985 (1305.28 ± 348.71 km2) 

(±values represent the 95% confidence intervals), it is essential to investigate the dynamic 

of population and urban growth in these cities in Saudi Arabia. We have examined the 

association between urban growth and population during the years: 1992, 2004, 2010, and 
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2017. Figure 13 highlights a positive correlation between urban growth and population 

size during the years listed (1992, 2004, 2010, 2017) in each Saudi capital, which was above 

74%. The expansion in the capitals varied between fast and slow expansion over time. For 

example, Riyadh, Dammam, Buridah, and Ha’il have witnessed a solid increase, while 

Abha and Jazan have shown a sluggish increase during the four years. This increase 

indicates that the growing population plays a significant role in expanding the urban area 

in those capitals [40,66]. 

In addition, we have investigated the association between GDP and urban growth 

from 1985 to 2019. Figure 14 plots the urban area (km2) of all 13 capitals alongside the GDP 

of Saudi Arabia (in billions, USD) between 1985 and 2019 [67]. Even though there are some 

variations from year to year, the overall trend is that urban growth and GDP generally 

increased simultaneously. In detail, the prosperity or recession of the GDP influenced 

urban growth over time. For example, the stability of the GDP between 1991 and 1994 

influenced the fluctuation of urban growth, as it only increased in a few capitals such as 

Tabuk, Dammam, and Riyadh, as shown in Figure 8. In contrast, the booming GDP had 

activated the increase in urban growth, as shown in Figures 8 and 13. The influence of 

population size and economic activities on urban growth, specifically increased demand 

for housing and providing subsidized mortgage loans for that housing, played a 

significant role in urban expansion in Saudi Arabia. The housing sector has undergone a 

tremendous change in recent years as the government has increased the subsidies to keep 

up with demand. According to the ministry of housing, in 2020, the housing sector 

experienced rapid growth and contributed more than 115 billion riyals to the GDP of the 

country (equivalent to 30.666 billion USD) [68]. Other factors influenced by a growing 

population include increases in urban areas, boosts in industrial production, and a higher 

total demand for energy. For example, Figure 15 plots the urban area (km2) of all 13 capital 

cities alongside the energy use of Saudi Arabia (kilogram of oil equivalent of energy) per 

USD 1000 in GDP (constant 2017 PPP) [69]. Even though there are some variations over 

time, including dramatic increases in energy consumption in 2002, 2010, and 2012, these 

two trends generally follow the same trajectory. Specifically, the correlation squared 

between urban areas and energy use showed a positive relationship (0.88), indicating that 

the energy use variable variation is attributed to the urban area variable. 

 

Figure 13. The trendline of urban growth and the population size. 
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Figure 14. The urban area of the capitals and the GDP of the country. 

 

Figure 15. The urban area of the capitals and the energy use of the country. 

Although this research provided information about the dynamics of urban growth in 

Saudi capital cities over the four decades, we encountered three major challenges: the 

complexity of mapping urban growth, the Scan Line Corrector (SLC) problem, and 

partially missing data in the classification maps. Mapping urban growth is challenging in 

semi-arid and arid environments due to the similarity of spectral signatures between 

urban and barren lands. Through our classification processes, agricultural lands 

presented as urban areas due to intra-annual changes that were caused by the vegetation 
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phenology that was propelled by environmental factors, such as climate variations. As 

result, we collected all possible training data that captured all relevant spectral 

heterogeneity between the classes to minimize this issue. 

Numerous studies confronted the complexity of mapping arid and semi-arid 

environments and overcame these challenges using various specified image approaches. 

These approaches mitigated the misclassified errors and better discerned between urban 

and barren lands. For example, Aljaddani (2015) [38] classified and detected the urban 

growth in Jeddah city, Saudi Arabia, over three different years—1984, 2000, and 2013—

using Landsat satellite images. The classified maps categorized the city into four classes: 

built-up area, barren land, vegetation, and water. Due to the difficulty of classifying the 

urban areas using spectral information alone, the texture was produced using the red 

band. Then, the red band texture was stacked into the visible, infrared, and near-infrared 

bands to classify the image. Our study illustrated the advantage of using this approach, 

as it produced higher overall accuracies for classification maps at between 96 and 97% in 

1984, 2000, and 2013 compared with the conventional approach which produced an 

overall accuracy of between 88 and 91% for the same three years. 

Another common issue that is found when mapping arid and semi-arid urban land 

cover is the mixed pixel and spectral confusion between impervious surfaces and bare 

soils. Zhang et al. (2015) [70] used a hybrid approach that comprised a linear spectral 

mixture analysis (LSMA), decision tree, and cluster analysis. This approach was 

implemented in arid and semi-arid cities—Urumqi, China, and Phoenix, USA—using the 

Landsat Thematic Mapper (TM). The LSMA approach unmixed the Landsat TM data into 

four endmember fraction images: high-albedo object, low-albedo object, vegetation, and 

bare soil. Then, new variables were extracted using these four endmember fraction images 

and added to the Landsat imagery to classify seven land use and land cover classes: forest, 

shrub, grass, crop, bare soil, impervious surfaces, and water. The authors illustrated that 

the approach showed the effectiveness of classifying and distinguishing urban land cover 

classes in arid and semi-arid environments. This approach was able to provide higher 

overall accuracy, with 86.0% for Urumqi and 88.7% for Phoenix compared with traditional 

maximum likelihood classification values of 65.3 and 72.3%, respectively. 

Finally, using remote sensing indices to distinguish between urban areas and bare 

lands may perform better in humid regions than in dry regions [71]. For instance, Rasul 

et al. (2018) [71] developed two distinctive indices: dry built-up index (DBI) and dry bare-

soil index (DBSI). The authors applied the DBI and DBSI using the Landsat Operational 

Land Imager (OLI-8) for 2013 in the city of Erbil, Iraq. The results illustrated that the 

indices provided higher overall accuracies of 93 and 92% for the DBI and DBSI, 

respectively, as well as illustrating the capability of the DBI and DBSI to distinguish 

between built-up areas and bare soils in dry regions. In agreement with the previously 

mentioned studies that focused on specified years, the development of a robust approach 

that uses time series is an important future investigation topic. 

The second challenge was tied directly to the Scan Line Corrector (SLC). Despite the 

SLC producing data gaps in the form of lines in the Landsat ETM+ 7 images, the SLC-off 

mode still acquired about 78% of the data for any scene [72], which contributed 

significantly contributed to the CCDC algorithm and provided spatial and temporal 

information for the specified location. However, some Landsat ETM+ 7 images influenced 

the results of both the change detection and classification, which appeared in the form of 

thin, oblique lines that zigzagged along a horizontal plane in different locations. These 

lines were ultimately misclassified as an urban class in the classification maps. An in-

depth investigation into the cause of this issue was a crucial part of this research that 

eventually allowed us to understand the source of misclassification and detect the images 

that triggered the anomaly. Several passes were required to remove all of these images. 

Once they were eliminated, we were able to reprocess the CCDC algorithm and produce 

change detection and classification maps that were free of distortion. 
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The third challenge involved data missing from the classification maps. The 

systematic, geometric, radiometric, and terrain elements of the Landsat data have to be 

corrected to deliver high-quality remotely sensed data to scientific users. Occasionally, 

Landsat data are influenced by anomalies and artifacts, such as data loss, impulse noise, 

banding, coherent noise, and internal calibrators [73]. Missing data in the time series of 

the satellite images affect the classification performance. In this research, after processing 

the CCDC algorithm, we found that some classification maps had missing pixels due to 

these anomalies and the artifacts that occurred due to the satellite sensors and atmospheric 

conditions. Some of the missing data had a unique shape, such as a building or agriculture 

circle, and some of them were randomly distributed between urban and agriculture, and 

mostly in barren lands. Due to the missing pixels only comprising a small percentage of 

the total area, near-date composite classification images were often a suitable solution to 

fill in the missing pixels. Different cities had different years of missing data in the 

classification maps. Some cities had larger amounts of missing data for a given year than 

others. The missing data within the boundaries of all 13 capitals were less than 5% and 

did not comprise a significant total in any of the maps generated for this study. 

6. Conclusions 

In this research, we presented methods and results regarding the long-term patterns 

and trends of urban growth in the 13 capital cities in Saudi Arabia. The research was 

accomplished by incorporating freely available Landsat images, the CCDC algorithm, and 

distinct expansion indices that assisted in providing a synoptic view of urban growth in 

the capitals as a whole and a detailed view of each city over 35 years. Assessing the 

accuracy of the annual classification maps and the multi-temporal urban change map and 

estimating the unbiased area helped to provide more reliable information about each 

city’s overall growth. The results revealed that the urban area of Saudi capitals in 2019 

(2704.94 ± 554.04 km2) was double that of 1985 (1305.28 ± 348.71 km2) (±values represent 

the 95% confidence intervals). We expect the urban expansion to continue in the near 

future, especially with the accelerated pace and diversity of current economic growth 

(especially in non-petroleum sectors), the increasing population, and the government’s 

commitment to addressing the demand for residential, commercial, and industrial lands. 

In addition, policies in Saudi Arabia have changed to preserve the country’s environment 

and ecosystem, which has led to Saudi cities becoming more sustainable. Thus, the 

availability of rich spatial and temporal information about historical urban growth can 

attribute to a better understanding of the dynamics of growth. Furthermore, delivering 

reliable annual long-term urban land cover maps over 35 years supports investigations 

into the current causes and consequences of these capitals’ growth as well as helps predict 

the future of these capitals in certain socioeconomic and environmental scenarios. 

Examining these associations benefits the scientists, government institutions, private 

sectors, landowners, and policymakers as they address the outcomes of the enormous 

growth and establish policies to meet the sustainability of the capitals. Even though the 

authors of this research used the best possible method of collecting training data for each 

urban and non-urban area class, detecting and classifying urban growth were two of the 

main limitations of this study. New methods are needed to better understand and 

accurately map arid and semi-arid environments. 
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