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Abstract: Spatiotemporal scale is a basic component of geographical problems because the size
of spatiotemporal units may have a significant impact on the aggregation of spatial data and the
corresponding analysis results. However, there is no clear standard for measuring the representa-
tiveness of conclusions when geographical data with different temporal and spatial units are used
in geographical calculations. Therefore, a spatiotemporal analysis unit optimization framework
is proposed to evaluate candidate analysis units using the distribution patterns of spatiotemporal
data. The framework relies on Pareto optimality to select the spatiotemporal analysis unit, thereby
overcoming the subjectivity and randomness of traditional unit setting methods and mitigating
the influence of the modifiable areal unit problem (MAUP) to a certain extent. The framework is
used to analyze floating car trajectory data, and the spatiotemporal analysis unit is optimized by
using a combination of global spatial autocorrelation coefficients and the coefficients of variation of
local spatial autocorrelation. Moreover, based on urban hotspot calculations, the effectiveness of the
framework is further verified. The proposed optimization framework for spatiotemporal analysis
units based on multiple criteria can provide suitable spatiotemporal analysis scales for studies of
geographical phenomena.

Keywords: spatiotemporal data; spatial and temporal scale; global and local spatial correlation;
urban hotspot; overall kappa coefficient

1. Introduction

Geographical spatiotemporal big data enable us to explore urban science and obtain
new insights [1]. By using the spatiotemporal big data collected with a variety of methods
(e.g., global positioning systems (GPSs), global systems for mobile communication (GSMs),
smart cards (SCs), and social media (SM)), researchers can observe and analyze urban
problems at multiple spatiotemporal scales; such problems include traffic congestion
monitoring and urban structure planning [2–4]. The results can provide new information
for describing and understanding urban space.

Although spatiotemporal big data provide many unique advantages and opportunities
for urban problem analysis, such data are also associated with notable challenges. Spatial
combination is an essential analysis step when assessing the geospatial environment from
personal-level geographic big data. It is usually necessary to aggregate spatiotemporal
data into a spatial area according to a certain temporal unit. Areas are commonly divided
into analysis units of different sizes, and the areas and shapes of these units also vary. This
spatial approach for data aggregation is very sensitive to the scale and zoning effects of the
modifiable areal unit problem (MAUP). Scale effects describe changes in statistical results
when analyzed using data aggregated at different unit granularities. The zoning effect
refers to the variability of results caused by different zoning schemes when the number
of units is constant. Due to the uncertainty regarding the number (scale effect) and shape
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(zoning effect) of spatial units, the MAUP can lead to very different spatial patterns and
statistical results [5,6].

In urban computing, when using geographical big data to reflect real-world spatiotem-
poral phenomena, the MAUP is usually ignored, and scale and zoning effects are rarely
mentioned. However, many scholars have recently studied how to alleviate the MAUP.
Jiang and Miao focused on the hierarchical agglomeration and heterogeneity of social
media data to determine the corresponding urban structure, thus mitigating the statistical
bias of the MAUP [7]. However, they did not evaluate the effect of the MAUP or provide a
strategy for optimizing the selection of spatial analysis units. Lee et al. assessed the effect
of the MAUP through the rate of change of the global spatial correlation coefficient using
a regular grid of units with different areas [8]. Meng et al. proposed selecting regional
analysis units based on attribute distributions to produce high global Moran’s I values in
an approach similar to that used for the segmentation of high-resolution remote sensing
imagery [9]. Moreover, Jelinski and Wu noted that the analysis results obtained at one
scale provide incomplete information about the spatial pattern, and for any spatial analysis
case, it is necessary to associate the analysis with a given spatial scale [10]. Fothering-
ham et al. suggested that the sensitivity of parameter estimates needs to be assessed at
different spatial scales before the analysis results are provided to decision makers [11].
Based on sensitivity analysis, the influence of specific parameters on the results of statistical
analysis can be quantitatively studied. Although research on the MAUP and analyses of
geographical big data have proliferated, a standard solution to the MAUP has not been
obtained because different geographical phenomena are generally associated with different
spatiotemporal distributions.

When analyzing high-resolution geospatial-temporal datasets, the aggregation of data
can be customized at various geographical levels (e.g., traffic analysis zones, grids, or street
networks), thus alleviating the MAUP to some extent. However, previous studies have
shown that the distributions of geographical spatiotemporal data are scale sensitive, and the
interrelationships among attributes vary at different scales [12,13]. Specifically, when using
area data for spatial analysis, the calculated results may be unstable or uncertain based
on the selection of different analysis units, and a unified conclusion cannot be obtained.
Therefore, determining the best research units for spatiotemporal data to enhance urban
design and management has become an important topic.

Spatial autocorrelation (SA) is the main factor that leads to the MAUP. Many scholars
have assessed the relationships between different analysis units and SA, especially how the
overall structure of SA changes with different spatial units. These studies provided some
solutions for dealing with the MAUP [14–16]. Openshaw and Fotheringham explored the
relationship between SA and the MAUP and found that when spatial aggregation occurred,
the data were smoothed, resulting in reductions in variance and correlation values [17,18];
that is, if adjacent spatial units are aggregated to form a larger unit and their covariance
is assumed to be relatively stable, the corresponding heterogeneity decreases, resulting
in reductions in the variance and correlation coefficient. In addition, since MAUP effects
are associated with different levels of SA, the sensitivity to MAUP effects may also vary
based on the variables considered, making it difficult to analyze MAUP effects in cases
with multiple variables.

In addition, indicators used to measure SA, such as Moran’s I, are also affected by
MAUP effects. Cliff and Ord found a negative correlation between spatial aggregation
and SA, indicating that the larger the size of an area unit is, the smaller Moran’s I [19].
Similarly, Chou discussed the possible relationship between map resolution and Moran’s I
(log-linear relationship) [14], and Qi and Wu obtained similar results from their analysis
of landscape pattern data [15]. Griffith et al. showed that the SA calculated based on
Moran’s I decreases with increasing spatial resolution of the analysis units [16]. In the
above research, the relationships between different analysis units and SA were explored. A
decrease in the variance reduces the denominator of Moran’s I, resulting in an increase in
Moran’s I. Additionally, a decrease in the variance reduces the spatial covariance difference
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in the numerator of Moran’s I and thus reduces Moran’s I. Therefore, when the reduction
in the numerator is greater than that in the denominator, Moran’s I tends to zero. In other
words, different spatial analysis units lead to local SA heterogeneity, resulting in variations
in Moran’s I. Consequently, the use of different spatial units generally leads to different
statistical results [20]. Determining the spatial unit most suitable for spatially assessing
geographical phenomena, that is, the dependence or sensitivity of geographical processes
in different spatial units, is important for studies of geographical phenomena.

When using spatiotemporal travel data to assess urban problems, the selection of the
most appropriate spatiotemporal analysis unit is complex. Because people’s movements
in urban spaces are influenced by their daily activities at different times and are unevenly
distributed, it is necessary to explore the relationships between the spatiotemporal processes
that influence people’s activities and the spatiotemporal phenomena of interest [21,22]. For
a certain spatial unit, the data distribution patterns vary in different time intervals; that is,
the global and local spatial correlations of the data differ. Therefore, different temporal units
produce different spatial distribution patterns, resulting in different spatiotemporal data
analysis results [23,24]. That is, the temporal unit considered influences the spatial analysis
results. Therefore, the determination of the best temporal unit should be considered in
conjunction with that of the optimal spatial unit.

When analyzing urban geographical phenomena based on spatiotemporal data, dif-
ferent spatiotemporal analysis units are associated with different levels of uncertainty;
notably, it is often unclear how to match the analysis unit to the scale of a geographical
phenomenon. However, sensitivity analysis using spatially correlated global indicators
is an effective method for mitigating the MAUP. This method considers only the overall
aggregated pattern of spatiotemporal data, whereas the spatial differences and instabilities
of local patterns are ignored. Therefore, applying the global Moran’s I alone is not sufficient
for assessing the spatiotemporal heterogeneity of data, especially in study areas that are
divided into many analysis units. Most global spatial correlation metrics assume that the
corresponding data are characterized by spatial and temporal homogeneity, but geographic
big data often have spatially and temporally discrete distributions. In addition, local spatial
patterns are particularly important in urban analysis since the heterogeneity of the internal
structure of a city affects data generation. Comprehensive analyses have shown that geo-
graphical big data are generally associated with a low/moderate level of spatiotemporal
dependence (i.e., spatial correlation) and high spatiotemporal heterogeneity. Thus, the
best spatiotemporal analysis units for geographical big data should be comprehensively
considered based on different indicators.

In this paper, a data-driven approach is adopted to determine the most suitable spa-
tiotemporal analysis unit for assessing floating vehicle trajectory data, and a multicriteria-
based optimization framework for spatiotemporal analysis units is proposed to explore
spatial data distribution patterns at different scales. With the Wuhan taxi trajectory dataset
as an example, the data distribution patterns at multiple grid scales are aggregated, and
MAUP effects are described based on global and local indicators of spatial correlation.
Then, the optimal analysis unit is determined using Pareto optimality. Additionally, a
sensitivity analysis of the proposed framework is performed. Finally, with the calculation
of urban hotspots as an example, the validity and rationality of the optimization frame-
work for spatiotemporal data analysis units integrating temporal and spatial scales are
further verified.

2. Materials and Methods
2.1. Methodological Flow

To select the appropriate spatiotemporal analysis unit when using spatiotemporal data
to analyze geographic phenomena, an optimization framework for spatiotemporal analysis
units is proposed based on multiple criteria (as shown in Figure 1). The optimization
framework for spatiotemporal analysis units based on multiple criteria is proposed with
reference to multicriteria decision analysis (MCDA) [25]. MCDA can provide a systematic
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and general problem-solving method for decision makers to select suitable solutions from
a limited set of candidates [26,27]. The spatiotemporal data analysis unit optimization
framework can select the optimal spatiotemporal analysis unit based on multiple criteria,
thus providing a spatiotemporal analysis scale for studies of geographical phenomena. The
technical workflow of this paper is shown in Figure 1.
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Figure 1. Overall workflow.

According to Figure 1, the research content of this paper is divided into the following
four parts.

(1) Data organization and spatiotemporal unit division
In this study, the spatiotemporal data in the study area are preprocessed to extract all

available data in the corresponding spatiotemporal units. Then, based on trajectory data
for floating cars, analysis units with different spatial and temporal scales are determined.
Finally, the distribution of the trajectory data is obtained considering the corresponding
spatiotemporal analysis units.

(2) Global and local correlation calculations
The distribution characteristics of data at different spatial and temporal scales are

explored. At the same time, the data distributions are assessed using different statistical
criteria. In this paper, the global Moran’s I and the coefficient of variation of local Moran’s I
are combined to analyze the distributions of datasets at different spatiotemporal scales.

(3) Optimal spatiotemporal unit determination
The Pareto-optimal algorithm is used to divide the boundaries of different spatiotem-

poral analysis units and determine the optimal spatiotemporal analysis scale for the study
area. Moreover, a location-based resampling method is applied to verify the sensitivity of
the optimal spatiotemporal analysis unit.

(4) Empirical study
In this paper, scenarios involving actual geographical phenomena are used to verify the

optimal spatiotemporal analysis unit. First, the locations of urban hotspots are confirmed
based on the optimal spatiotemporal analysis unit, and the effectiveness of the optimization
framework based on multiple criteria is verified based on the hotspot distribution and
corresponding functional areas. Moreover, the effects of different spatial and temporal
units on the data analysis results are assessed by using a consistency coefficient (i.e., overall
kappa coefficient) for urban hotspots in different spatiotemporal units.

2.2. Study Area and Data

Beijing, the capital of China, is located at 39◦26′N–41◦03′N and 115◦25′E–117◦30′E.
The total area is 16,410 square kilometers, the resident population is 21.89 million, and the
GDP ranks first in the country. The Fifth Ring Road of Beijing is the dividing line between
the urban area and the suburbs, and the urban area includes six major districts (Chaoyang
District, Haidian District, Dongcheng District, Xicheng District, Shijingshan District, and
Fengtai District). A map of the Second Ring Road to the Fifth Ring Road areas is shown in
Figure 2. Beijing has a very convenient transportation system that includes buses, subways,
and taxis. Among them, taxis transport an average of 1.9 million passengers per day,
accounting for 6.6% of the total travel volume and providing comprehensive travel services
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for urban residents [28]. Although the area of the Fifth Ring Road in Beijing accounts for
only 4% of the total area of the city, the population in this zone accounts for more than 50%
of the total Beijing population, indicating that residents’ activities are mainly concentrated
within the Fifth Ring Road [29]. Therefore, floating car data, which reflect the characteristics
of residents’ movement behaviors, collected within Beijing’s Fifth Ring Road are used to
determine the most suitable spatiotemporal analysis unit.
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Taxi GPS data collected on two working days (14 and 15 November 2012) are used
to explore the optimal spatiotemporal analysis unit [30]. The interval of data collection
was approximately 1 min, and the entire dataset contains more than 30 million records.
The experimental data were provided by the Beijing Taxi Operation Company and stored
in a .txt file. The GPS point data include the taxi ID, recording time, longitude, latitude,
vehicle speed, driving direction, and status (0 for empty and 1 for passenger) information,
as shown in Table 1. Abnormal data in the study area were removed, and data for records
with passengers were extracted.

Table 1. GPS data information.

ID Time Latitude Longitude Speed (km/h) Direction No-Load
Identification

174853 20121101001447 116.4548645 39.9519463 51 328 1
453468 20121102155618 116.2787857 39.9250107 25 180 0

2.3. Methods
2.3.1. Division of Spatiotemporal Units

The MCDA problem can be modelled with a two-dimensional decision matrix, where
each element (a spatiotemporal analysis unit) represents a calculation result for a different
criterion (column) and corresponds to a specific decision, also known as a candidate solu-
tion. The numbers of criteria and candidate solutions are unlimited; however, the number of
candidates can be reduced if the elements and criteria are constrained for a certain problem.
The optimization framework proposed in this paper is for spatiotemporal geographical
phenomena. Therefore, selecting a series of geographically significant spatiotemporal
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analysis units for data analysis can narrow the range of candidate spatiotemporal analysis
units for researchers.

To alleviate MAUP effects and try to eliminate the influence of different types of
spatial units, a grid is adopted, and spatial analysis units of different scales are selected
to study the influence of spatial scale on the data distribution. In addition, to determine
the best temporal unit, the influence of temporal scale on the data distribution is analyzed
by selecting temporal analysis units of different scales. The distribution of spatiotemporal
data is determined at each different spatiotemporal scale, and the corresponding spatial
correlations are calculated to determine the optimal spatiotemporal analysis unit according
to multiple criteria.

2.3.2. Global and Local Moran’s I

According to the research content of this paper, global and local correlations are taken
as the criterion of MCDA. That is, the optimal spatiotemporal analysis unit for floating car
data is evaluated in terms of global spatial autocorrelation and the coefficient of variation
of local correlation. The former is related to the overall spatial distribution of trajectory
data, and the latter measures data instability through local inequality. The coefficient of
variation is used to summarize the local spatial distribution pattern. When comparing the
degree of data variation, the coefficient of variation cannot only eliminate the influence of
the mean difference on the dispersion calculation, but also avoid the influence of the data
of different measurement dimensions on the result evaluation.

Global and local spatial correlations are measured with the global Moran’s I and local
Moran’s I. The global Moran’s I represents the overall correlation between an object and
all surrounding objects, that is, the overall spatial aggregation effect of the data. The local
Moran’s I expresses the correlation between an object and every surrounding object, and
reflects the difference with surrounding objects. The coefficient of variation of local Moran’s
I can reflect the stability of the local spatial distribution of the data.

The global spatial autocorrelation can be expressed as Equation (1).

I =

[
n

n

∑
i=1

n

∑
j=1

wi,jzizj

]
/

[
S0

n

∑
i=1

z2
i

]
(1)

where zi is the deviation in the attribute of feature i from its mean (deviation in the GPS
number in spatial unit i from its mean), wi,j is the spatial weight between features i and
j (weight between two spatial analysis units), n is the total number of features (the total
number of spatial analysis units), and S0 is the sum of all spatial weights. In this paper,
the first-order Rook adjacency method (used to determine whether two elements have a
spatially adjacent relationship) is applied to calculate the spatial weight matrix. If two
spatial units are adjacent, their weight is 1; otherwise, their weight is 0. The results
calculated by adjacency spatial weight method are more stable than those calculated by
other methods such as the distance weight matrix. The value of the global Moran’s I is
distributed in [−1, 1]. When it is greater than 0, it means that the data have a positive
spatial correlation, and the larger the value, the stronger the aggregation effect; when it is
less than 0, it means that the data have a negative spatial correlation, and the larger the
value, the worse the aggregation effect; and when the value is equal to 0, it means that the
data are randomly distributed, with no spatial correlation.

The local Moran’s I can be expressed as Equation (2).

Ii =

[
zi

n

∑
j 6=i

wi,jzj

]
/

[
1
n

n

∑
i=1

z2
i

]
(2)

where the meanings of zi, wi,j, and n are the same as those in Equation (1).



Remote Sens. 2022, 14, 2376 7 of 22

The coefficient of variation is the normalized degree of dispersion of the probability
distribution, which is defined as the ratio of the standard deviation to the mean [31], as
shown in Equation (3).

cv =
σ

µ
(3)

where σ is the standard deviation (the standard deviation of Ii) and µ is the mean (the
mean of Ii). The coefficient of variation is meaningful only when the mean is not zero, and
it is generally applicable in cases in which the mean is greater than zero. The coefficient
of variation is also known as the standard deviation rate or unit risk. Since the coefficient
of variation has no dimension, objective comparisons of the data can be made. In fact,
the coefficient of variation can be considered an absolute value that reflects the degree
of dispersion of the data, similar to the range, standard deviation, and variance. The
magnitude of the coefficient of variation is affected not only by the degree of dispersion of
values but also by the mean value of the variable. For the coefficient of variation of local
Moran’s I in this paper, the larger the value is, the more unstable the local distribution of
data is; on the contrary, the smaller the difference in the local distribution of data is, the
more stable the overall distribution of data is.

2.3.3. Pareto-Optimal Algorithm

In this paper, according to MCDA research, the Pareto-optimal algorithm is selected
to evaluate the spatiotemporal analysis units. The algorithm considers the advantages
and disadvantages of all reference standards and then classifies the candidate solutions
based on different Pareto boundaries so that decision makers can determine the preferred
solution [32,33]. A Pareto boundary is used to divide candidate solutions into categories;
from best (the first boundary) to worst (the last boundary), and all candidate solutions
associated with the same boundary are considered interchangeable. A Pareto-optimal
solution is a solution that falls within the first boundary. The Pareto-optimal algorithm has
been widely used to evaluate solutions involving multiple criteria.

Let X be a set of user-defined spatiotemporal analysis units with different scales. Each
spatiotemporal analysis unit x ∈ X is characterized by different criteria, which are to be
optimized by objective functions, as shown in Equation (4).

φ(x) = [ϕ1(x), ϕ2(x), . . . , ϕm(x)] (4)

φ is a vector containing m objective functions ϕm. The Pareto-optimal solution is
a spatiotemporal unit that is not affected by any other factors; that is, when the two
spatiotemporal analysis units xi and xj (xi ∈ X, xj ∈ X) satisfy the following two constraints
at the same time, there is a Pareto-optimal solution.

(i) ∀ϕ ∈ φ : ϕ(xi) < ϕ
(
xj
)

(ii) ∃ϕ ∈ φ : ϕ(xi) � ϕ
(

xj
)

The relationship between � and < depends on whether the objective function refers
to maximization or minimization. All optimal spatiotemporal analysis units are associated
with the first Pareto boundary. If two or more analysis units fall within this boundary,
the appropriate scheme needs to be selected according to the established criteria. After
the first Pareto boundary is determined, the corresponding spatiotemporal analysis unit
should be removed to calculate the second Pareto boundary until all data are assigned to
Pareto boundaries.

2.3.4. Sensitivity Analysis

Sensitivity analysis is a common method for evaluating the robustness of Pareto
optimality, and this approach can be used to calculate the stability of results from Pareto
optimal solutions over multiple calculations [34]. In this paper, a position-based resampling
method is used to obtain a relatively stable Pareto-optimal solution in multiple runs.
That is, the grid position in the study area was moved while keeping the spatial and
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temporal resolutions unchanged to resample the trajectory data. A robustness analysis of
the obtained optimal spatiotemporal analysis unit can be performed to verify the mitigation
of MAUP effects.

Figure 3 shows the resampling strategy for the statistical spatial data distribution; that
is, for a certain spatial analysis unit scale, the data distribution in different spatial unit
regions is counted, and the corresponding optimal analysis unit is calculated. The spatial
data here are similar to floating car track points. After multiple iterations of resampling the
spatial data distribution, the overall optimal spatial analysis unit distribution probability is
obtained to analyze the sensitivity of the results of the optimal spatial analysis unit.
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3. Experiment and Results

The effectiveness of the multicriteria-based spatiotemporal unit optimization frame-
work is explored using floating car data from the Fifth Ring Road in Beijing. First, the
different spatial and temporal units are divided. Second, the distribution pattern of the data
is determined based on global and local correlations. Then, the Pareto-optimal algorithm is
applied to determine the best spatiotemporal analysis unit. Finally, a sensitivity analysis of
the optimal spatiotemporal analysis unit is performed.

3.1. GPS Data Distributions with Different Spatiotemporal Units

Based on the characteristics of the collected data and practical application cases, the
temporal scale of the experiment in this paper is divided into one minute (8:00–8:01), one
hour (8:00–9:00), one day (14 November 2012), and two days (14 and 15 November 2012),
and the spatial resolution is divided into 100 m, 500 m, 1000 m and 2000 m classes. The
distribution of the collected GPS data is determined at four temporal scales and four spatial
scales (as shown in Figure 4) for comparison.



Remote Sens. 2022, 14, 2376 9 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Cont.



Remote Sens. 2022, 14, 2376 10 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 23 
 

 

  
(g) (h) 

 
(i) (j) 

  
(k) (l) 

 
 
 

 Figure 4. Cont.



Remote Sens. 2022, 14, 2376 11 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

  
(m) (n) 

 
  

(o) (p) 

Figure 4. GPS data distributions based on different spatial and temporal units: (a) minute/100 m; (b) 
minute/500 m; (c) minute/1000 m; (d) minute/2000 m; (e) hour/100 m; (f) hour/500 m; (g) hour/1000 
m; (h) hour/2000 m; (i) day/100 m; (j) day/500 m; (k) day/1000 m; (l) day/2000 m; (m) two days/100 
m; (n) two days/500 m; (o) two days/1000 m; and (p) two days/2000 m. 

The amount of floating car data extracted at the four temporal scales is approximately 
15 thousand, 96 thousand, 19 million, and 32 million records. The discrete tracking data 
are processed at different spatial scales and displayed in grids. At the four spatial scales, 
the study area is divided into 113,772, 4669, 1209, and 319 grid units. The gridded trajec-
tory frequency not only simplifies the display of discrete point data but also maintains the 
spatiotemporal and attribute characteristics of the trajectory data. Figure 4 shows the data 
using the optimal natural breaks method to maximize the differences among the various 
categories of data. With this method, clustering can be achieved very well, so that the 
differences between categories are obvious, while the differences within the categories are 
small, and there is an obvious break between each category. The darker the color in the 
figure is, the greater the trajectory frequency, and vice versa. 

3.2. Global Spatial Correlation and Local Spatial Stability 
Based on the GPS data at 16 different spatiotemporal scales, the spatiotemporal pat-

terns of the data are calculated using global and local correlations. The 16 spatiotemporal 
analysis units are compared based on the global Moran’s I and the coefficient of variation 
of local Moran’s I values. Calculating various indicators based on data with different spa-
tiotemporal units enables us to measure the suitability of units in different applications. 

A multicriteria-based spatiotemporal analysis unit optimization framework is ap-
plied to Wuhan floating car data to determine the most suitable spatiotemporal analysis 
unit for urban travel pattern mining. The global Moran’s I and the coefficient of variation 

Figure 4. GPS data distributions based on different spatial and temporal units: (a) minute/100 m;
(b) minute/500 m; (c) minute/1000 m; (d) minute/2000 m; (e) hour/100 m; (f) hour/500 m;
(g) hour/1000 m; (h) hour/2000 m; (i) day/100 m; (j) day/500 m; (k) day/1000 m; (l) day/2000 m;
(m) two days/100 m; (n) two days/500 m; (o) two days/1000 m; and (p) two days/2000 m.

The amount of floating car data extracted at the four temporal scales is approximately
15 thousand, 96 thousand, 19 million, and 32 million records. The discrete tracking data are
processed at different spatial scales and displayed in grids. At the four spatial scales, the
study area is divided into 113,772, 4669, 1209, and 319 grid units. The gridded trajectory
frequency not only simplifies the display of discrete point data but also maintains the
spatiotemporal and attribute characteristics of the trajectory data. Figure 4 shows the data
using the optimal natural breaks method to maximize the differences among the various
categories of data. With this method, clustering can be achieved very well, so that the
differences between categories are obvious, while the differences within the categories are
small, and there is an obvious break between each category. The darker the color in the
figure is, the greater the trajectory frequency, and vice versa.

3.2. Global Spatial Correlation and Local Spatial Stability

Based on the GPS data at 16 different spatiotemporal scales, the spatiotemporal pat-
terns of the data are calculated using global and local correlations. The 16 spatiotemporal
analysis units are compared based on the global Moran’s I and the coefficient of variation
of local Moran’s I values. Calculating various indicators based on data with different
spatiotemporal units enables us to measure the suitability of units in different applications.

A multicriteria-based spatiotemporal analysis unit optimization framework is applied
to Wuhan floating car data to determine the most suitable spatiotemporal analysis unit
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for urban travel pattern mining. The global Moran’s I and the coefficient of variation of
local Moran’s I values for different spatiotemporal analysis units are obtained (Table 2).
The results can be conveniently compared and displayed by min-max normalization, as
shown in Figure 5.

Table 2. Global spatial correlation and local spatial stability.

Spatiotemporal Unit (m) Global Moran’s I Coefficient of Variation of
Local Moran’s I

Minute/100 0.14 69.13
Hour/100 0.17 82.60
Day/100 0.22 34.10

Two days/100 0.33 17.37
Minute/500 0.39 4.27
Hour/500 0.40 4.47
Day/500 0.27 3.13

Two days/500 0.32 2.97
Minute/1000 0.29 2.45
Hour/1000 0.34 2.28
Day/1000 0.66 1.65

Two days/1000 0.52 1.67
Minute/2000 0.48 1.75
Hour/2000 0.49 1.67
Day/2000 0.61 1.26

Two days/2000 0.48 1.29
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The comparison of spatiotemporal analysis units in Table 2 and Figure 5 indicates
that some analysis units exhibit better spatial correlation characteristics, namely, higher
global Moran’s I values and lower coefficients of variation of local Moran’s I values. The
global and local correlations show increasing and decreasing trends, respectively, among
adjacent spatiotemporal units, such as from hour/100 m to minute/500 m. That is, the
global Moran’s I increases, and the coefficient of variation of local Moran’s I decreases.
According to their definition, both have been promoted in this spatiotemporal unit interval.
Thus, the minute/500 m analysis unit has a higher spatial global correlation and lower
spatial heterogeneity than the hour/100 m analysis unit. Therefore, the spatial correlation
characteristics of the minute/500 m analysis unit are more consistent, which may lead to
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more reliable analysis results. The analysis unit shifts from hour/500 m to day/1000 m and
from minute/2000 m to day/2000 m, displaying similar phenomena.

Moreover, Table 2 and Figure 5 illustrate that when the spatiotemporal analysis unit
is day/1000 m and day/2000 m, the global and local indicators reach the optimal values,
respectively. Although the global Moran’s I is highest at day/1000 m, the coefficient of
variation of local Moran’s I values is lowest at day/2000 m. Therefore, if the evaluation
criteria for the spatiotemporal analysis unit are analyzed separately, different optimal
spatiotemporal analysis units should be selected. In terms of the overall spatial correla-
tion of the data, the spatiotemporal unit of day/1000 m is optimal, but in terms of the
stability of the local spatial distribution, the spatiotemporal unit of day/2000 m is best. A
similar conflict occurs between the spatiotemporal analysis units for minute/500 m and
hour/500 m. Therefore, when determining the optimal spatiotemporal analysis unit, there
may be conflicts among various schemes with different scales.

3.3. Optimal Spatiotemporal Analysis Unit

The Pareto-optimal solution is obtained by using the multicriteria optimization frame-
work for spatiotemporal analysis units. According to the global and local spatial corre-
lations, the Pareto boundaries are visualized, and the indicators of the corresponding
boundaries (#1–#9) are described (Figure 6 and Table 3). #1 is the first Pareto boundary,
which corresponds to the best spatiotemporal analysis unit. From the results, it can be
concluded that the optimal spatiotemporal analysis units are day/1000 m and day/2000 m.
Day/1000 m has the largest global spatial correlation, while day/2000 m has the least
local spatial heterogeneity. Both analysis units are plotted within the first Pareto boundary,
and the two solutions can be considered equally good. However, they are dominated by
different criteria, with day/1000 m being better than day/2000 m for global Moran’s I and
the opposite relation for the coefficient of variation of local Moran’s I. The analysis units
within different Pareto boundaries are represented by lines.
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Table 3. Global and local spatial correlations and corresponding Pareto boundaries for each spa-
tiotemporal analysis unit.

Pareto
Boundary Temporal Unit Spatial Unit (m) Global Moran’s I

Coefficient of
Variation of

Local Moran’s I

#1 Day 1000 0.66 1.65
#1 Day 2000 0.61 1.26
#2 Two days 1000 0.52 1.67
#3 Hour 2000 0.49 1.67
#3 Two days 2000 0.48 1.29
#4 Minute 2000 0.48 1.75
#5 Hour 500 0.40 4.47
#5 Minute 500 0.39 4.27
#5 Hour 1000 0.34 2.28
#6 Two days 100 0.33 17.37
#6 Two days 500 0.32 2.97
#6 Minute 1000 0.29 2.45
#7 Day 500 0.27 3.13
#8 Day 100 0.22 34.10
#9 Hour 100 0.17 82.60
#9 Minute 100 0.14 69.13

In this paper, a position-based resampling method is used to obtain a relatively stable
Pareto-optimal solution in multiple runs. Thus, resampling was performed 100 times at each
spatiotemporal scale, and the multicriteria optimization framework was run 1600 times to
obtain Pareto-optimal analysis units (i.e., the spatiotemporal analysis units within the first
Pareto boundary).

As shown in Table 4, the frequencies of day/1000 m and day/2000 m, as optimal
spatiotemporal analysis units, are 37.36% and 28.06%, respectively, and they account
for 65.42% of the results. Therefore, according to the data used and the study area, the
spatiotemporal analysis units of day/1000 m and day/2000 m can be regarded as Pareto-
optimal solutions with high robustness. Additionally, the accuracy of the optimization
framework for spatiotemporal analysis units based on global and local spatial correlations
is verified.

Table 4. Distribution of optimal spatiotemporal analysis units based on resampling1600 times.

Temporal Unit Spatial Unit (m) Frequency Frequency
Percentage (%)

Day 1000 687 37.36
Day 2000 516 28.06

Two days 1000 193 10.49
Hour 2000 94 5.11

Two days 2000 87 4.73
Minute 2000 66 3.59
Hour 500 51 2.77

Minute 500 49 2.66
Hour 1000 42 2.28

Two days 100 25 1.36
Two days 500 18 0.98

Minute 1000 11 0.60
Note: The sum of frequencies is greater than 1600 because the Pareto-optimal boundary may contain one or more
spatiotemporal analysis units.
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4. Empirical Study

An example involving urban hotspot extraction is used to determine whether the
optimal spatiotemporal unit is the optimal scale for geographical phenomenon analysis
and to verify the effectiveness of the proposed optimization framework.

4.1. Extraction of Urban Hotspots

The spatial distribution of urban hotspots represents the degree of urbanization [35].
By extracting urban hotspots, we can understand the spatial distribution of a city and the
corresponding public issues, and services can be provided to improve daily travel and
urban planning. Urban hotspots are usually areas with developed commerce, large flows
of people, and established facilities, resulting in dense flows of urban residents [36–38]. In
a certain area, urban hotspots often have similar function types and distribution scales. The
spatial distribution of hotspots is affected by market, transportation, and administrative
factors [39]. Therefore, based on residents’ travel data, we can mine urban hot-spots and
then perform regional analysis.

Getis and Ord proposed Gi* statistics to measure whether there is local spatial cor-
relation between an observation and its surrounding neighbors [40,41]. Within a given
distance range, the attribute sum of an element and its adjacent elements is compared with
the attribute sum of all elements, and then, the aggregation degree of attribute values in
the local space is described, as shown in Equation (5).

G∗i =
∑n

j=1 wijxj

∑n
j=1 xj

(5)

In this equation, n represents the total number of grid units, xj represents the trajectory
frequency in the jth grid, and wij is the spatial weight of grids i and j. Here, if the distance
between the ith and jth grid units is within the given critical distance, they are considered
neighbors, and the spatial weight is 1; otherwise, the weight is 0. In this paper, weights are
set by determining whether two grids are adjacent. If the two grids are adjacent, the weight
is set to 1; otherwise, it is 0. The Getis–Ord Gi* metric can be expressed in normalized form,
as shown in Equation (6).

G∗i =
∑n

j=1 wijxj − X ∑n
j=1 wi,j√

∑n
j=1 x2

j
n −

(
X
)2

√
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2

n−1

(6)

If G∗i is positive and the value is large, the frequency of trajectories around grid unit i
is relatively large (higher than the average value), and a high-value spatial cluster (hotspot)
is present. When the value is negative and small, a low-value spatial cluster (cold spot) is
present in grid unit i.

Based on the Getis–Ord Gi* method, the presence of statistically significant high and
low values in the trajectory data within the Fifth Ring Road in Beijing is evaluated, and
a visual method is used to display the clustered areas. The hotspot distribution based
on floating car data in different spatiotemporal units is obtained with the Getis–Ord Gi*
method. Representative results are shown in Figure 7.

According to the temporal and spatial distributions of urban hotspots, the proportion
of grids with hotspots in the study area can be counted, as shown in Table 5 (90% con-
fidence). Overall, at the same temporal scale, as the spatial analysis scale increases, the
proportion of hotspots decreases, and at the same spatial scale, the proportion of hotspots
increases as the temporal scale increases. However, within the same spatial unit (1000 m
and 2000 m), the proportion of hotspots with day as the temporal unit is slightly higher
than that for other temporal units; under the same temporal unit (day), the proportion of
hotspots with 1000 m and 2000 m as the spatial units is slightly higher than that for other
spatial units. This finding suggests that the highest amount of hotspot distributions is
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obtained for day/1000 m and day/2000 m. It is optimal to analyze the functional categories
of hotspots at these two spatiotemporal units.
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Table 5. Proportion of hotspots for different spatiotemporal units.

Temporal Unit Spatial Unit (m) Number of Grids
with Hotspots

Proportion of Grids
with Hotspots

Minute 100 34,328 0.30
Minute 500 1023 0.22
Minute 1000 222 0.18
Minute 2000 64 0.20
Hour 100 36,886 0.32
Hour 500 1166 0.25
Hour 1000 258 0.21
Hour 2000 69 0.22
Day 100 42,816 0.38
Day 500 1401 0.30
Day 1000 310 0.26
Day 2000 76 0.24

Two days 100 42,870 0.38
Two days 500 1451 0.31
Two days 1000 297 0.25
Two days 2000 73 0.23

4.2. Comparison of the Functions of Urban Hotspots in Different Spatiotemporal Units

Urban hotspots usually have developed commerce, well-established service facilities,
and accessible transportation and are areas of concentrated public activities, such as shop-
ping malls, leisure and entertainment facilities, schools, and catering facilities. Therefore,
the differences in the distribution of hotspots at different spatiotemporal scales are analyzed
from the perspective of the distribution of types of urban spatial functions.

Point of interest (POI) data are closely related to people’s lives and can be used to define
the different functional structures of cities. Therefore, POI data can reflect the functional
distribution of an urban space. In this paper, POI data are used to calculate the land use
types in the study area and then identify the functional distribution of urban hotspot areas.
A total of 345,177 POIs with geographic entity location and attribute information were
obtained in the study area and divided into 7 functional categories (residence, medical and
health, financial, culture and education, office, catering and shopping, and entertainment).
The details are shown in Table 6.
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Table 6. POI categories.

ID Category Name Quantity

1 Residence (real estate communities, guesthouses, and hotels) 17,962
2 Medical and health (medical institutions and social security institutions)) 11,280
3 Financial (finance and insurance facilities) 15,532
4 Culture and education (colleges and cultural media) 30,901
5 Office (government agencies and companies) 30,346
6 Catering (restaurants and casual dining) and shopping (shopping malls) 225,414
7 Entertainment (leisure and sports (sports venues and scenic spots)) 13,742

According to the distribution of POIs at different scales, FD/CP indicators are used
to determine the urban function types for different analysis units [42]; this approach
can eliminate the influence of the frequency of different types of POIs on the function
identification results. The corresponding equations are shown in (7) and (8).

FDc,i =
nc,i

Ni
, i = 1, 2, . . . , m (7)

CPc,i =
FDc,i

∑m
i=1 FDc,i

, i = 1, 2, . . . , m (8)

where i is a POI category, m is the total number of POI categories, nc,i is the number of
POIs in category i in cluster c, Ni is the total number of POIs in category i, FDc,i represents
the frequency density of the ith category of the POI in cluster c, and CPc,i represents
the proportion of the frequency density of the ith category of the POI in cluster c to the
frequency density of all categories of POIs in the cluster.

In this paper, the POI category with the largest CP is used as the functional type for
the region, and the distribution of the final identified functional types is shown in Figure 8.
With this method, the function types can be determined for different hotspot areas with
different spatiotemporal units, and the corresponding distribution proportions can be
obtained, as shown in Table 7.
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Table 7. Proportions of functional types in hotspot areas with different spatiotemporal units.

Spatiotemporal
Unit (m)/Function Residence Medical and

Health Financial Culture and
Education Office Catering and

Shopping Entertainment

Minute/100 0.12 0.20 0.19 0.15 0.14 0.06 0.14
Minute/500 0.13 0.18 0.13 0.14 0.15 0.13 0.14

Minute/1000 0.14 0.19 0.15 0.17 0.18 0.06 0.11
Minute/2000 0.12 0.06 0.14 0.18 0.20 0.17 0.13

Hour/100 0.13 0.19 0.17 0.16 0.17 0.05 0.13
Hour/500 0.13 0.15 0.16 0.14 0.14 0.15 0.13
Hour/1000 0.12 0.18 0.16 0.17 0.13 0.11 0.13
Hour/2000 0.12 0.10 0.10 0.17 0.18 0.17 0.16

Day/100 0.13 0.20 0.18 0.15 0.15 0.07 0.12
Day/500 0.13 0.20 0.17 0.15 0.17 0.07 0.11

Day/1000 0.12 0.06 0.10 0.16 0.18 0.19 0.19
Day/2000 0.11 0.08 0.09 0.17 0.18 0.18 0.19

Two days/100 0.13 0.17 0.16 0.15 0.14 0.12 0.13
Two days/500 0.13 0.19 0.17 0.16 0.17 0.06 0.12

Two days/1000 0.10 0.07 0.13 0.16 0.19 0.20 0.15
Two days/2000 0.10 0.12 0.11 0.16 0.18 0.15 0.18

The functional category calculated by the POI data corresponds to the hotspot distribu-
tion area, and the functional category of the hotspot is obtained. According to the definition
of hotspots, the areas that meet the functional characteristics of hotspots can be known.
Table 7 shows that the types of hotspot functions at the temporal scale of day and the spatial
scales of 1000 m and 2000 m best reflect the actual functions of urban hotspots. At these
spatial and temporal scales, catering and entertainment hotspots account for nearly 40%
of all hotspots; if office and cultural function types are added, this total increases to more
than 70%. Hotspots are usually distributed in densely populated areas. According to the
analysis of national demographic data, from the perspective of population distribution, the
calculated hotspot areas are consistent with the population distribution pattern of Beijing
(the northern part of Beijing’s Fifth Ring Road zone is more populated than the southern
part). According to the calculation of the distribution of urban hotspots, it is shown that
the spatiotemporal units of day/1000 m and day/2000 m are the optimal spatiotemporal
scales, which are consistent with the results calculated by the spatiotemporal analysis
unit optimization framework. Therefore, from the distribution of functional types and
population distribution in relation to urban hotspots, the accuracy of the optimization
framework for spatiotemporal data analysis units is further verified.

4.3. Consistency of Urban Hotspots in Different Spatiotemporal Units

The kappa coefficient is an indicator of the consistency of tests and can be used to
measure the effect of classification [43,44]. In classification problems, consistency is used
to determine whether the results of a model are consistent with the actual values. That is,
the kappa value can measure the degree of consistency between two observed objects. The
kappa coefficient is calculated with Equation (9).

k =
po − pe

1− pe
(9)

where po is the sum of the number of correctly classified samples for each class divided
by the total number of samples, which is the overall classification accuracy. Assum-
ing that the number of real samples of each class is a1, a2, . . . , ac, the number of pre-
dicted samples of each class is b1, b2, . . . , bc, and the total number of samples is n, then
pe =

a1×b1+a2×b2+...+ac×bc
n×n . Therefore, the kappa coefficient is calculated based on the con-

fusion matrix of the actual class and the predicted class, and its value falls within the range
of [−1, 1]. Usually, the kappa coefficient varies from 0~1, and values in this range can
be divided into five groups to indicate different levels of consistency (0.0~0.20 for slight
consistency, 0.21~0.40 for fair consistency, 0.41~0.60 for moderate consistency, 0.61~0.80 for
substantial consistency, and 0.81~1 for very high consistency).
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The kappa coefficient can be used to verify the consistency of hotspots identified at
different spatial and temporal scales to illustrate the effects of considering various scales on
the data analysis results. Assuming that the distributions of hotspots at scales A and B are
compared (here, A and B correspond to certain spatiotemporal scales, respectively, and A
and B are different) and that the hotspots obtained at scale B are correct, then po represents
the sum of the correctly identified hotspot grids in A divided by the total number of grids,
and pe represents the product of the number of correctly identified hotspot grids in A and
the total number of hotspot grids divided by the square of the total number of grids.

To analyze the consistency of the hotspot distribution more precisely, this paper
uses the overall kappa coefficient proposed by Hagen to compare hotspots at different
spatiotemporal scales [45]. The overall kappa coefficient is calculated by the product of the
independent indicators Khisto and Klocation. Klocation is an indicator that measures the
similarity of two categories based on spatial location. Khisto is a measure of the similarity of
two categories based on statistics. Therefore, the overall kappa coefficient can be expressed
as a combination of quantitative and positional similarity.

By using the calculation method proposed by Hagen, the overall kappa coefficients at
different temporal scales and the same spatial scale (Table 8) and at different spatial scales
and the same temporal scale (Table 9) can be obtained. Furthermore, the effects of spatial
and temporal scales on the distribution of urban hotspots are studied.

Table 8. Overall Kappa coefficients for results based on the same spatial scale and different
temporal scales.

(m) Minute/Hour Minute/Day Minute/Two
Days Hour/Day Hour/Two

Days
Day/Two

Days Mean

100 0.675 0.233 0.268 0.325 0.304 0.819 0.437
500 0.603 0.267 0.244 0.334 0.304 0.783 0.422
1000 0.646 0.580 0.562 0.673 0.656 0.861 0.663
2000 0.660 0.429 0.397 0.410 0.413 0.852 0.527

Table 9. Overall Kappa coefficients for results based on the same temporal scale and different
spatial scales.

(m) 100/500 100/1000 100/2000 500/1000 500/2000 1000/2000 Mean

Minute 0.249 0.190 0.144 0.388 0.318 0.480 0.295
Hour 0.259 0.163 0.122 0.361 0.241 0.442 0.265
Day 0.529 0.229 0.176 0.348 0.245 0.417 0.324

Two days 0.488 0.196 0.150 0.334 0.237 0.434 0.306

The mean values in Table 8 show that when the spatial scales are the same, the distribu-
tion of hotspots at different temporal scales is highly consistent. Thus, in a certain study area,
the temporal scale of data analysis has little effect on the study of geographical phenomena.

The mean values in Table 9 indicate that when the temporal scales are the same, the
distribution of hotspots at different spatial scales displays low consistency. Notably, in
a certain study area, the spatial scale of data analysis, that is, the unit size, has a large
impact on the study of geographical phenomena. This result verifies the importance of
MAUP effects.

In summary, compared with the temporal scale, the spatial scale has a greater impact
on the analysis of geographical phenomena. The larger the temporal unit selected for data
analysis, the more data are included, whereas the smaller the temporal unit is, the less data
are included. Even if the data volume increases, the data distribution in the study area
does not considerably change; that is, the selection of the temporal scale has little effect
on the data analysis. However, different spatial scales have a greater impact on the data
distribution and influence the calculation results for geographical phenomena. Therefore,
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when analyzing geographical phenomena, optimization of the spatial analysis unit should
be prioritized.

5. Discussion

The traditional spatiotemporal analysis unit is subjectively established according to
the analyst’s point of view and application field [46–48]. There are often no criteria or
reasons to ensure the representativeness of the analytical units, which may give rise to
MAUP effects [7,8]. This paper argues that a multicriteria-based data-driven approach can
be used to provide analysis units that fit the real world.

Geographical phenomenon analysis is generally affected by both temporal and spatial
scales and involves analyzing as many temporal and spatial scales as possible to determine
optimal units, and using multiple criteria to automatically evaluate the analysis results.
The previous determination methods of analytical units based on a single criterion such as
global correlation have uncertainties [49]. Different standards affect the selection of units
from different angles and lead to differences in the analysis results. Therefore, we propose
a framework based on Pareto optimality methods, which can flexibly select suitable units
based on multiple criteria to satisfy arbitrary optimization criteria for different datasets
and analysis regions. Furthermore, this paper considers not only the spatial scale but also
the temporal scale. Time segmentation and aggregation are means of analyzing real-world
spatiotemporal processes, and data aggregation at different temporal scales imposes an
impact on the results [50].

In this paper, there may be conflicts when applying a data-driven approach based
on multiple criteria, such as global correlation versus local correlation. The optimal spa-
tiotemporal unit that fits one criterion may not conform to the other; so, it is necessary to
define the size of the unit and the criteria for judgement according to the research topic
and knowledge reserve. In addition, the use of regular grids in this paper to divide the
space unit has limitations. Geographic phenomena are irregularly distributed. Different
types of area units may be studied in the future. At the same time, the uncertainty of
the optimal unit increases with the increase in the number of criteria, and more expertise
is required to determine the optimal spatiotemporal unit. The optimal spatiotemporal
analysis unit may change due to different research data, times, and cases. In the future,
other cases and criteria can be used to evaluate the framework proposed in this paper to
obtain broader results.

6. Conclusions

The determination of the spatiotemporal scale is the basis for analyses of geographical
phenomena using spatiotemporal data. In this paper, a multicriteria-based spatiotemporal
analysis unit optimization framework is proposed to assist in determining the optimal
spatiotemporal analysis units in spatiotemporal data analyses. Based on Pareto optimality,
the framework can be used to evaluate candidate spatiotemporal analysis units based on
any number of criteria, thus overcoming the subjectivity and randomness of traditional
methods of establishing analysis units and mitigating MAUP effects to a certain extent.

Floating car data are applied to the multicriteria-based spatiotemporal analysis unit
optimization framework, and the optimal spatiotemporal analysis unit is determined by
combining the global spatial autocorrelation index and the coefficient of variation of local
spatial autocorrelation. The results show that the optimal spatiotemporal analysis units
(day/1000 m and day/2000 m) provide a more consistent spatial pattern than other analysis
units and may provide more reliable analysis results. The optimal spatiotemporal analysis
unit based on multiple criteria also provides a reference analysis scale for studies of urban
problems. Moreover, urban hotspot extraction was performed to further illustrate the
reliability of the method proposed in this paper. By introducing the proposed method for
determining a suitable analysis scale according to the spatial and temporal characteristics
of spatiotemporal data, the accuracy of the calculation results for geographical phenomena
is improved.
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However, due to MAUP effects, the use of different indicators, and differences in
application fields, the uncertainty of spatiotemporal analysis units is often an issue. There-
fore, when determining the best spatiotemporal analysis unit in studies of geographical
phenomena, as many factors as possible, such as other spatial unit shapes and sizes and
new evaluation criteria, should be considered.
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