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Abstract: With an increasing demand for accurate and reliable estimates of sea surface heights (SSH)
from coastal and marine applications, approaches based on GNSS positioning have become favored,
to bridge the gap between tide gauge (TG) and altimetry measurements in the coastal zone, and
to complement offshore altimetry data. This study developed a complete methodology for jointly
deriving and validating shipborne GNSS-determined SSH, using a geoid model and realistic dynamic
topography estimates. An approach that combines the properties of hydrodynamic models and TG
data was developed to obtain the latter. Tide gauge data allow estimating the spatiotemporal bias of
a hydrodynamic model and, thus, linking it to the used vertical datums (e.g., a novel geoid-based
Baltic Sea Chart Datum 2000). However, TG data may be erroneous and represent different conditions
than offshore locations. The qualities of spatiotemporal bias are, hence, used to constrain TG data
errors. Furthermore, a rigid system of four GNSS antennas was used to ensure SSH accuracy. Besides
eliminating the vessel’s attitude effect on measurement data, the rigid system also provides a means
for internal validation, suggesting a 4.1 cm height determination accuracy in terms of standard
deviation. The methodology also involves eliminating the effect of sea state conditions via a low-pass
filter and empirical estimation of vessel sailing-related corrections, such as the squat effect. The
different data validation (e.g., examination of residual values and intersection analyses) results,
ranging from 1.8 cm to 5.5 cm in terms of standard deviation, indicate an SSH determination accuracy
of around 5 cm.

Keywords: Baltic Sea; BSCD2000; dynamic topography; geoid; GNSS; hydrodynamic model;
hydrogeodesy; sea surface height

1. Introduction

Sea surface height (SSH), an imperative parameter for understanding the marine envi-
ronment, sees an increasing demand for accurate and reliable estimates from coastal and
marine applications (e.g., engineering, navigation, research). Historically, tide gauge (TG)
stations, some as old as a few centuries, have provided continuous sea level information,
which is now essential, for instance, to climate studies [1–3]. Although modern TGs also
allow a high accuracy (centimeter-level) and sampling rate (up to seconds), the distribution
of TG stations is generally sparse and restricted to land-bound coastal locations. Since the
TG-determined sea level information represents only a limited spatial domain, complemen-
tary data from space geodetic techniques are invaluable. Satellite altimetry (SA) records
now span over three decades, densely covering most of the Earth’s marine areas with a
reasonable quantification of SSH [4–6]. However, the SA method is often limited by its
spatial and temporal resolution characteristics and reliability, which tend to diminish in the
coastal zone due to approximations in atmospheric, sea state, and geophysical corrections
and waveform distortions caused by coastal inhomogeneities [7–9].
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Approaches based on GNSS (global navigation satellite system) positioning have, thus,
become favored for bridging the gap between TG and SA measurements in the coastal zone
and complementing SA data offshore. These methods are also appropriate for the validation
and calibration of SA-based SSH, in addition to commonly used TG-based methods. It
has been demonstrated that relatively accurate SSH can be acquired by shipborne GNSS
measurements [10–12], airborne laser scanning surveys [13–15], and other alternatives,
such as GNSS-equipped buoys [16,17] and uncrewed sea vessels [18,19]. While airborne
laser scanning surveys currently require expensive equipment and a survey aircraft, and
buoys or uncrewed vessels may first demand watercraft development, the shipborne GNSS
approach appears most convenient. Some studies have used transit vessels (e.g., ferries)
and their routes for research purposes [20–22], demonstrating that dedicated survey vessels
and routes are not necessarily required either.

In the spring and summer of 2021, six marine survey campaigns were conducted with
the primary focus on marine condition monitoring of the Baltic Sea. Concurrently, four
GNSS devices installed on the research vessel collected SSH data autonomously. In [23]
are provided a comprehensive review of the six marine survey campaigns, discussions
concerning the problems occurring during autonomous data collection, and a description of
the GNSS data post-processing. Following lessons learned in our previous studies [11,24],
this paper presents improved data processing approaches and a complete exploration of the
methodology for deriving accurate SSH from initial post-processed GNSS measurements
(i.e., instantaneous SSH), which, unless further treated, are impractical for use in data
applications. Accurate derivation of shipborne GNSS-based SSH requires consideration
of a vessel’s high-frequency attitude changes (e.g., pitch and roll motions) [11] and sea
state conditions (i.e., waves) [24], which contaminate the instantaneous SSH, but also need
vessel sailing-related corrections [11]. These corrections account for the squat effect, which
causes a moving vessel to sail deeper than its nominal draft, and gradual changes in the
static draft (e.g., continuous fuel consumption causes a vessel to float higher).

Aside from deriving SSH, the developed methodology involves a joint validation of the
results, demanding comparable data from an independent source. It will be demonstrated
that such a joint approach can enhance data accuracy by processing residual values instead
of the instantaneous SSH. Thus, the emphasis of the study is also on the structuring of
validation datasets. Since SSH is the sum of geoidal height and dynamic topography (DT),
a suitable geoid model and DT estimates are required. In the current study, an essential
component of the latter is the recently initiated implementation of the Baltic Sea Chart
Datum 2000 (BSCD2000), a common height reference for the Baltic Sea region [25,26].
The BSCD2000 will be realized through GNSS and geoid modeling (i.e., BSCD2000 is
an equipotential surface) and is compatible with the EVRS (European Vertical Reference
System) associated national height system realizations of the Baltic Sea countries. As the
Baltic Sea TGs are rigorously connected to the national height systems [27,28], the TG
readings refer to the BSCD2000 at the reference epoch, implying that the contemporary TG
readings can be expressed directly as DT (cf. Figure 1).

However, because TG stations are generally distributed in sparse land-bound coastal
locations, hydrodynamic models (HDMs) providing high spatial and temporal (hourly)
resolution DT may appear an appealing offshore data source. Caution should be exer-
cised using these models, since they usually contain a long-wavelength nature [29,30]
spatiotemporal dynamic bias (DB) relative to the used height reference [15,30,31] (also
refer to Figure 1). Hence, it would be advantageous to employ the method developed
by [15,30]: the DB estimated at TG stations is gridded and then removed from an HDM;
therefore, linking the model with height references. In these studies, exact interpolators
were employed for gridding. Such an approach assumes that a DB estimate at a TG station
is errorless and represents all nearby offshore locations, which may not be necessarily true.
Utilizing the qualities of DB, an approach was developed for estimating DB uncertainties
used during offshore DB prediction by least-squares collocation (i.e., an inexact interpola-
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tor); thus, constraining TG data errors. By combining the properties of TG data and HDMs,
realistic DT can be derived for shipborne GNSS-determined SSH validation.
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Figure 1. Interrelations between the used datasets. The solid lines denote geometry at a reference
epoch, whereby the dashed lines show the vertical land motion (VLM) affected geometry at a GNSS
observation epoch. Global sea level rise and geoid change trends are neglected for simplification
(i.e., the sea’s surface is assumed to be unchanged). Notice that the depicted dynamic bias (DB) is
negative, cf. Equation (3).

This contributions’ outline is as follows. Section 2 reviews the core theoretical prin-
ciples for deriving and validating shipborne GNSS-determined sea surface heights (note
that subsequent sections reveal additional details with data examples, since these reinforce
the developed principles). Section 3 provides an overview of the shipborne GNSS sur-
veys and used information. The derivation of offshore DT is examined next in Section 4;
whereas, Section 5 is dedicated to shipborne GNSS data processing and validation. The
paper continues with a discussion in Section 6 and concludes with a summary in Section 7.

2. Theoretical Principles

With the knowledge of the vertical range (R) between a reference point on a vessel
(e.g., GNSS antenna’s reference point) and the sea surface (e.g., determined by a total station
survey), instantaneous SSH can be calculated relative to a geodetic reference ellipsoid (e.g.,
GRS80), using GNSS measured ellipsoidal heights h:

iSSH(ϕ, λ, t) = h(ϕ, λ, t)− R, (1)

where ϕ and λ are the measurement points’ geodetic latitude and longitude at a GNSS
observation epoch t, respectively. Instantaneous SSH is only an approximation of the actual
SSH, as it contains the vessel’s high-frequency attitude changes (e.g., pitch and roll motions)
and the impact of sea state (i.e., waves). In addition, vessel sailing-related squat and static
draft corrections must be applied, since these cause the vessel to sail with an offset relative
to the reference level at which R is usually determined. Accurate derivation of shipborne
GNSS-based SSH requires consideration of all these factors.

During GNSS data sampling, an inertial measurement unit can be deployed for speci-
fying the vessel’s attitude [12,32]. However, utilizing an inertial measurement unit may
be costly and require dedicated software for data processing. As an alternative, the ves-
sel’s high-frequency attitude changes can be estimated and eliminated from GNSS mea-
surements by using data from at least three GNSS antennas [11,33]. The elimination of
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the vessel’s high-frequency attitude changes, by computing a joint height solution from
multiple antennas to the vessel’s mass center, is further discussed in Section 5.1, with a
complementing data example.

Note that such a joint height solution from multiple antennas retains the impact of
waves, which manifests itself as heave motion (i.e., vertical movements of the vessel).
The required SSH data can be separated from these height estimates by applying a low-
pass filter [11,32]. The filtering window (spatial) length can be several kilometers long,
depending on the GNSS data sampling rate, implying that the filter may propagate errors
to the resulting SSH data; for instance, in steep geoid gradient areas. Therefore, the heights
should be reduced to residual values prior to low-pass filtering:

rUF(ϕ, λ, t) = iSSH(ϕ, λ, t)− D̂T(ϕ, λ, t)− N(ϕ, λ), (2)

where rUF denotes unfiltered residual values. The term D̂T denotes the ever-changing DT
during a shipborne GNSS survey and N geoidal heights. The latter can be obtained from a
suitable geoid model, whereas DT must be estimated.

As already discussed in the Introduction, the combination of TG and HDM datasets
allows DT estimation [15,30]. First, the DB values of an HDM are determined at the
locations of TG stations:

DB
(

ϕTG, λTG, t
)
= DTHDM

(
ϕTG, λTG, t

)
− DTTG

(
ϕTG, λTG, t

)
, (3)

where DTHDM and DTTG are HDM- and TG-based DT, respectively (see also Figure 1).
With a suitable spatial interpolation method, the DB estimates are then gridded with HDM
resolution. These predicted offshore DB (D̂B) provide correction to the initial HDM:

D̂T
(

ϕHDM, λHDM, t
)
= DTHDM

(
ϕHDM, λHDM, t

)
− D̂B

(
ϕHDM, λHDM, t

)
, (4)

where D̂T denotes the corrected HDM-based DT. Dynamic topography at the GNSS mea-
surement locations can finally be estimated via bilinear interpolation. Derivation of offshore
DT is further discussed in Section 4, with accompanying data processing examples. Simi-
larly, Section 5.2 further examines the low-pass filtering of the residual values.

The above computations result in filtered residual values rF, which should be corrected
for vessel sailing-related effects, such as squat and static draft:

rF+C(ϕ, λ, t) = rF(ϕ, λ, t)− C(t), (5)

where the term C denotes the vessel sailing-related corrections collectively. Section 5.3
presents an example of their empirical derivation. Ideally, the resulting filtered and cor-
rected residuals rF+C should be near-zero, but such results cannot be expected, due to
measurement errors and deficiencies in the used models. Thus, the residual values pro-
vide means for validation. Assuming that the estimated DT, geoid model, and vessel
sailing-related corrections are accurate, the residuals primarily represent errors of the
GNSS-determined SSH. Finally, the corrected SSH can be restored from the filtered and
corrected residuals:

SSHF+C(ϕ, λ, t) = rF+C(ϕ, λ, t) + D̂T(ϕ, λ, t) + N(ϕ, λ), (6)

whereby these results are now suitable for further SSH data applications.
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3. Shipborne GNSS Surveys, Data, and Other Used Information

Six marine survey campaigns were conducted in the Eastern Baltic Sea in the spring
and summer of 2021 (Table 1 and Figure 2). Each campaign had a primary objective related
to different Tallinn University of Technology marine condition monitoring projects. For
instance, some tasks involved collecting water samples (e.g., chlorophyll, turbidity, nutri-
ents, phytoplankton), measuring the vertical profiles of water properties (e.g., temperature,
salinity, oxygen, light attenuation), or servicing marine monitoring stations. Concurrently,
ellipsoidal heights were measured autonomously by four vessel-installed GNSS devices
(the used instrumentation is described in [23]). The multi-frequency GNSS receivers were
turned on before the vessel left the harbor, and the stored data were downloaded upon
returning. During the campaigns, no dedicated GNSS operator was on-board. The GNSS
sampling rates were 15 s for the first C1 campaign and 30 s for subsequent campaigns.

Table 1. General information about the conducted marine survey campaigns.

Campaign
Identifier

Month
(GPS Week)

Duration of a
Campaign (h)

Route Length
of a Campaign

(km)

Number of
HDM

Grids/DT
Computation
Duration (h)

Number of
Computed
SSH Data

Points

Temporal
Resolution of

SSH (s)

C1 April (2152) 52 544 120 11,908 15
C2 July (2168) 106 1439 168 12,253 30
C3 August (2169) 146 1874 192 16,222 30
C4 August (2172) 40 515 96 4390 30
C5 September (2174) 9 98 96 832 30
C6 September (2175) 40 454 120 4449 30
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Figure 2. Study area (see the red rectangle) and routes of marine survey campaigns. Numbered
circles denote the used TG stations, and red triangles continuously operating reference stations that
were employed for GNSS post-processing. Colored background and grey isolines (contour interval is
one meter) depict the NKG2015 quasigeoid model.
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The collected shipborne GNSS data were post-processed relative to the Estonian [34]
and Latvian [35] national GNSS continuously operating reference stations (CORS) with the
commercial Trimble Business Centre software (version 5.52; Trimble Inc., Sunnyvale, CA,
USA). Precise GNSS ephemerides (final orbits) from the International GNSS Service were
incorporated into post-processing. Since Trimble Business Centre allows only one base
station at a time for kinematic data post-processing, the closest GNSS-CORS (cf. Figure 2)
was always employed for a GNSS data point computation (similarly to [11,24]). The GNSS-
CORS coordinates were fixed to the reference epochs of the national reference frames
(i.e., the standard data processing scheme was used). However, the Baltic Sea region’s
geodetic networks are deforming, primarily due to glacial isostatic adjustment induced
vertical land motion (VLM). The VLM generates discrepancies between the reference
and observation epoch positions of a GNSS-CORS, consequently introducing an offset to
the marine GNSS measurements (cf. Figure 1), since sea level trends do not follow the
VLM directly (but do contain the glacial isostatic adjustment induced geoid change). The
neglected VLM correction may, thus, yield lower than actual SSH in the land uplift regions.
By employing the principles outlined in [26], the GNSS measurements were corrected
retrospectively for VLM occurring at the GNSS-CORS:

h(ϕ, λ, t, t0) = h0

(
ϕRS, λRS, t0

)
+ dh(t) +

[
VLMgeocentric

(
ϕRS, λRS

)
− GC(ϕ, λ)

]
·(t− t0), (7)

where h0 is the ellipsoidal height of a reference station at a reference epoch t0, and dh
represents the estimated height difference between a reference station and remote GNSS
measurement at an observation epoch t. The term VLMgeocentric denotes the geocentric VLM
rate at a GNSS reference station, and GC is the geoid change rate at a GNSS measurement
location. The VLM and geoid change rates were obtained from the NKG2016LU VLM
model [36].

It became evident during GNSS post-processing that some of the vessel’s routes
were too distant from the GNSS-CORS (westernmost routes in the Baltic Proper shown
in Figure 2), resulting in reduced post-processed data quality. Previous
studies [24,37,38] have shown that the Canadian CSRS-PPP online global precise point
positioning service [39] can provide reliable post-processing for remote shipborne GNSS
measurements. In particular [37], demonstrated that CSRS-PPP is a viable option for post-
processing GNSS data, even in a transoceanic scenario for determining SSH. The results
in [23] indicate that CSRS-PPP-based data are consistent, regardless of the distance from
the coast and, thus, suitable for complementing poor-performing Trimble Business Centre
post-processed route sections. Therefore, the poor-performing sections were replaced by
CSRS-PPP solutions.

The results of a total station survey and tape measurements (in the harbor) allowed
reducing the post-processed and VLM corrected GNSS ellipsoidal heights to the sea surface.
The four GNSS antennas’ reference points and three benchmarks on the vessel’s railing were
assigned coordinates in an arbitrary local system, whereby tape measurements (conducted
separately for each campaign) determined the vertical distances between benchmarks and
the sea surface. The ellipsoidal heights h obtained using Equation (7) were transformed
into instantaneous SSH as (Equation (1) modification):

iSSH(ϕ, λ, t, t0) = h(ϕ, λ, t, t0)− HARP
TS + HBM

TS − HBM
tape, (8)

where HARP
TS and HBM

TS denote the total station determined heights of an antenna’s reference
point and a benchmark on the railing, respectively, and HBM

tape is a distance measured by
tape. Additional details about the total station survey and instantaneous SSH calculations
can be found in [23].

This contribution now aims to further process the instantaneous SSH data, so that these
are suitable for subsequent applications (e.g., validation of SA results, marine geoid models,
HDMs’ performance). However, Section 4 first examines the derivation of offshore DT,
since SSH computations were performed jointly with data validation, which also requires
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geoidal heights. The latter were obtained from the high-resolution (0.01 × 0.02 arc-deg,
i.e., approximately 0.6 nautical miles) NKG2015 quasigeoid (over marine areas, the geoid
coincides with the quasigeoid; henceforth, the shorter term will be used) model [40] (cf.
Figure 2). Note that NKG2015 represents a geoid model using the zero-tide permanent
tide concept, to which a correction from zero-tide to the tide-free concept has been applied
(see [41,42] for details about permanent tide concepts). The correction provides consistency
with GNSS measurements (using the tide-free concept). In other words, by subtracting
NKG2015 heights from the GNSS determined ellipsoidal heights, normal heights using the
zero-tide concept are obtained.

Hydrodynamic Model and Tide Gauge Data

Previous works [11,15,30,43] have evaluated the ability of the various HDMs available
for the Baltic Sea in deriving sea surface dynamics. Based on these assessments, all the
models contain a DB relative to the used height reference (i.e., BSCD2000), whereby the bias
varies between models. It also appears that, generally, the most accurate representation of
sea surface dynamics in the region can be obtained from the high-resolution (hourly data,
with a spatial resolution of approximately 1.0 nautical miles) NEMO-Nordic model [44,45],
which was, thus, also chosen for DT determination in this study. If TGs are connected
(e.g., by geodetic leveling) to the used height system(s), the DB in the NEMO-Nordic-based
DT can be estimated using TG readings. This study employed hourly data from 41 TG
stations: 15 Estonian, 7 Latvian [46], 11 Swedish [47], 7 Finnish [48], and one Russian [49]
(cf. Figure 2). Note that the NEMO-Nordic model and Russian TG data should be first
converted from mean-tide to the zero-tide permanent tide concept for compatibility with
the Estonian, Latvian, Swedish, and Finnish TG data [26] (and the normal heights discussed
at the end of the previous section). Moreover, the Latvian [50] and Finnish [26,51] TG
readings are initially given relative to alternative height reference levels. Hence, before
utilization, these data must be converted relative to the used height reference (i.e., national
height systems compatible with the BSCD2000).

Even though the Estonian, Latvian, Swedish, and Finnish height systems are all
EVRS-based and heights refer to the Normaal Amsterdams Peil (NAP), some minor dis-
crepancies exist (an additional discussion can be found in [26]). Thus, the pan-continental
EVRF2019 [52] solution-based height system discrepancies can improve TG data compat-
ibility further. Since GNSS post-processing was conducted relative to the Estonian and
Latvian GNSS-CORS, the respective height systems were considered the zero level. The
EVRF2019 solution yielded a −1 cm correction to the Swedish and Finnish TG readings.
On the other hand, the Russian TG data are given relative to the Baltic Height System of
1977 (BHS77), and a +21 cm offset had to be added.

Similarly to the geodetic networks, the Baltic Sea TG networks are also deforming due
to VLM. Even though the zeros of TGs approximately coincide with the reference level at
the (common) reference epoch of the national height systems, in the land uplift regions, the
zero separates from the reference, yielding lower than actual sea level readings (i.e., DT
relative to the nearby solid Earth; cf. Figure 1). The principles outlined in [26] were, hence,
employed to obtain absolute DT (i.e., relative to the height reference):

DTTG

(
ϕTG, λTG, tH

)
= DTRSL

(
ϕTG, λTG, tH , t0

)
+ VLMleveled

(
ϕTG, λTG

)
·
(

tH − t0

)
, (9)

where DTTG and DTRSL are the TG-based absolute and relative DT at an observation epoch
tH (hourly temporal resolution), respectively, and VLMleveled denotes leveled VLM rate at a
TG station (obtained from the NKG2016LU VLM model). The term t0 denotes the reference
epoch of a height system to which the derived DTTG refers. These TG data, corrected for
datum offsets and VLM, were then used for linking the NEMO-Nordic HDM to the used
height references for offshore DT derivation.
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4. Derivation of Offshore Dynamic Topography

Dynamic topography, defined as the SSH and marine geoid separation, represents one
of the most valuable parameters, in terms of marine dynamics. Accurate knowledge of DT
can guarantee safe navigation at sea, help understand oceanographic processes, and be
combined with a suitable geoid model to validate various SSH measurements. With the
method developed by [15,30], TG data and an HDM can be combined using Equation (3) to
estimate the HDM-contained DB values at the locations of TG stations (at hourly temporal
resolution tH). Both studies used exact interpolators for DB gridding, which inherently
assumes errorless TG data and TGs connections to the height system(s), as well as that the
estimated DB at a TG station is an expected value for all nearby offshore locations; although,
neither is necessarily true. Errors may always exist, due to instrument malfunctions, natural
disasters, human errors, or poor maintenance and documentation [53,54]. Such errors
propagate to the derived offshore DT when the gridded DB is used to correct the initial
HDM. Thus, a new approach utilizing DB qualities was developed for constraining TG
data errors in offshore DB prediction.

4.1. Estimation of Dynamic Bias Uncertainties at the Tide Gauge Locations

Although DB changes temporally, over short timeframes (e.g., daily), the DB should
remain relatively stable, as erratic behavior (such as sudden jumps, both spatially and
temporally) would suggest a lack of consistency in the HDM-based DT. However, such a
hypothesis first assumes a well-performing HDM (i.e., the HDM phases should match TG
data). Figure 3 shows correlation coefficients between the NEMO-Nordic HDM and TG
readings at the TG locations. It can be noticed that the (uncorrected) HDM-based DT is
well correlated with the TG data, with coefficients being generally above 0.95. The only
slight exception is TG31 (refer to Figure 2), with a correlation coefficient of 0.87, likely due
to its location in relatively confined waters. The NEMO-Nordic HDM phases, thus, appear
to adequately match TG readings (also see [30]).
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Figure 3. Correlation coefficients between TG and HDM data at the TG locations (based on all 792 h
of used data, cf. Table 1). For better readability, only the top of the vertical scale is shown.

High DB standard deviation of NEMO-Nordic HDM may, hence, reveal poorly-
performing TGs. For instance, notice in Figure 4b the high DB variability at TG9 and
TG41 (yellow dots; also refer to Figure 2) during the C1 campaign, whereas during the C2
(Figure 4d) and C6 (Figure 4f) campaigns, the DB remained relatively stable. Such behavior
may be associated with stormy conditions during the second half of the C1 campaign,
since the harbor of TG9 is relatively vulnerable to extreme weather, and TG41 is affected by
westerly winds that rapidly accumulate water during storms. Described variations in a
confined harbor may not represent the offshore conditions. Therefore, the first uncertainty
component (σ1) for DB was estimated as a moving standard deviation (centered at an
observation epoch tH) in the DB temporal domain:
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σ1

(
tH
)
=

√√√√√ 1
T − 1

tH+ T−1
2

∑
m=tH− T−1

2

DB(ϕTG, λTG, m)− 1
T

tH+ T−1
2

∑
m=tH− T−1

2

DB(ϕTG, λTG, m)

2

, (10)

where T denotes the time extent considered at a certain time. A 25-h period was determined
suitable, whereby a minimum of 12 h of data was included in all DB (and DT) computations,
before and after the campaigns. This was done to avoid shorter than 25 h window sizes
during the campaigns, which would have introduced inconsistency to the temporal domain
uncertainty estimation.

Since DB has a long-wavelength nature, the mean DB estimates at neighboring TG
stations should ideally be similar in value. Therefore, discrepancies between mean DB
estimates may reveal, for example, errors in TGs connections to height system(s) or near-
shore processes. In the Gulf of Riga (cf. Figure 2), the mean DB estimates differ over
relatively short spatial scales (Figure 4a,c,e); whereby, the discrepancies appear similar
during all the campaigns. For instance, the mean DB at TG17 always appears higher than at
TG16 and TG18 (refer to Figure 2). A higher mean DB estimate can similarly be observed at
TG40. Such reoccurring discrepancies could indicate errors in the levelings that connect
TGs to height system(s).

Alternatively, the mean DB at TG14 (refer to Figure 2) was significantly higher (more
than usual) than at the neighboring TG stations during the C2 campaign (Figure 4c).
According to the nearby weather station, during the second half of the C2 campaign,
relatively strong winds (occasionally over 10 m/s) blew in the general direction of the exit
of the harbor in which TG14 resides. The receding water level in the harbor may, thus, have
been a cause for a high mean DB estimate. Such behavior, however, does not represent
offshore marine processes. Additionally [23], compared TG4 readings to DT determined at
the vessel’s harbor, roughly 5 km away. It was demonstrated that the DT could differ by up
to 8–9 cm between two nearby sheltered locations. According to the [15] and [30] approach,
TG4 data would represent the DT at the harbor.

In predicting offshore DB, the described potential offsets should be considered. Hence,
the second uncertainty component (σ2) was estimated by first comparing mean DB values
at neighboring TG stations. These comparisons yielded N discrepancy estimates dDB for
each mean DB value (i.e., mean discrepancies). The second uncertainty component was
then estimated in the DB spatial domain as:

σ2 =

√√√√ 1
N − 1

N

∑
m=1

[
dDBm(ϕTG, λTG)− 1

N

N

∑
m=1

dDBm(ϕTG, λTG)

]2

, (11)

It was determined that comparisons with mean DB estimates at the nearest three TG
stations (by also considering the distribution of TG stations) provided satisfactory results
(i.e., N = 3). Note that the second uncertainty component was calculated separately for
each campaign (e.g., for campaign C1, precisely the values shown in Figure 4a were used),
whereby the mean DB values were estimated over an extended period. For example, the 9-h
length of campaign C5 may not have been sufficient for calculations, which were therefore
performed over a 96-h period instead (cf. Table 1). In studies investigating extensive
periods, the second uncertainty component should also be estimated as a moving window
(as is done for the first component), because offsets caused by marine processes are not
likely to reoccur often (for instance, the TG14 example). Here, this is emulated by a separate
estimation for each campaign.
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campaigns C1 (a,b), C2 (c,d), and C6 (e,f). The colored circles show, correspondingly, the mean DB
values and standard deviation estimates of the DB values determined at the locations of TG stations.

It is assumed that the first (temporal domain) and second (spatial domain) uncertainty
components are (generally) independent variables. The final uncertainty estimates for DB
were, thus, calculated as:

σDB

(
tH
)
=

√
[σ1(tH)]

2
+ [σ2]

2, (12)

where tH denotes hourly temporal resolution. The resulting DB uncertainties for campaign
C1 are shown in Figure 5a. Notice how the estimates at TG9 increase significantly during
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the second half of the campaign, which coincides with the period of strongest storm winds
(as discussed earlier). The uncertainty estimates are summarized for all campaigns in
Figure 5b by averaging. These (hourly resolution) results were next employed in predicting
offshore DB.
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4.2. Correction of Hydrodynamic Model Based Dynamic Topography

With the inclusion of determined uncertainties, the DB estimates were predicted
offshore (with the NEMO-Nordic spatial resolution) by employing least-squares colloca-
tion [55] with the second-order Markov model covariance function [56]. In Figure 4, the
mean predicted DB and standard deviation estimates of predicted DB for campaigns C1,
C2, and C6 are presented. The estimated surfaces smoothly follow the long-wavelength
DB trends determined at TG locations, but do not include the erratic behavior and offsets
described in Section 4.1. It appears that the primary variations of DB occur in the Gulf of
Finland and Gulf of Riga, while DB is more stable in the Baltic Proper (Figure 4b,d,f; refer
to Figure 2 for basin locations). Additionally, notice how the mean DB surfaces differ for
campaigns C1, C2, and C6 (Figure 4a,c,e). These results demonstrate the spatiotemporal
changes of the NEMO-Nordic contained DB well.

The predicted offshore DB was used to correct the initial HDM (at hourly temporal
resolution tH) by employing Equation (4). Notice that the comparisons between the cor-
rected NEMO-Nordic HDM and TG readings now yield improved correlation coefficients,
except for TG6, which shows a slightly reduced correlation (Figure 3). Since this study
aimed to derive and validate shipborne GNSS-based SSH, the DT estimates were finally
determined at the GNSS measurement locations via bilinear interpolation at observation
epochs t (interpolated linearly from the hourly resolution data). These values are shown
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in Figure 6b and denoted as D̂T(ϕ, λ, t). See also the predicted DB during marine survey
campaigns in Figure 6a.
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5. Derivation and Validation of Shipborne GNSS-Based Sea Surface Heights
5.1. Reducing the Effects of Vessel’s High-Frequency Attitude Changes

Determination of accurate SSH requires considering the vessel’s pitch and roll motions
(Figure 7), where the yaw motion can be neglected, as the focus is on heights. In this
study, the approach developed by [11] was improved using an additional GNSS antenna.
By computing instantaneous SSH from multiple antennas jointly to the vessel’s stable
mass center, the method eliminates (or, at the very least, significantly reduces) the vessel’s
high-frequency attitude changes from the joint SSH solution. The distances between GNSS
antennas relative to the vessel’s mass center (Figure 7) were derived from total station
measurements (see also [23]).

The GNSS determined instantaneous SSH (cf. Equation (8)) from three antennas were
first interpolated linearly to the location of the vessel’s center of mass in two steps:

iSSHXα(ϕ, λ, t, t0) = iSSHAγ(ϕ, λ, t, t0) + c1

[
iSSHA(γ+1)(ϕ, λ, t, t0)− iSSHAγ(ϕ, λ, t, t0)

]
(13)

iSSHξ
CoM(ϕ, λ, t, t0) = iSSHXα(ϕ, λ, t, t0) + c2

[
iSSHA({1,2,3,4}−{γ,γ+1,ξ})(ϕ, λ, t, t0)− iSSHXα(ϕ, λ, t, t0)

]
, (14)

where the index α denotes the number of an imaginary intersection point, the index γ
number of an antenna and ξ solution numbered according to an excluded fourth antenna
(also refer to Figure 7 and Table 2). Coefficients c1 and c2 are determined from total
station measurement derived distances. The geodetic coordinates (ϕ, λ) represent the
general location of the vessel (e.g., chosen according to the best performing antenna; in
this study, coordinates of the antenna A4 were consistently used), and t is an observation
epoch of a GNSS measurement. These calculations resulted in four iSSHξ

CoM solutions
(i.e., instantaneous SSH at the vessel’s mass center). Unfortunately, such calculations were
not possible for the C4 campaign, due to the malfunctioning of two instruments [23]. For the
C4 campaign, the instantaneous SSH of antennas A1 and A2 were averaged at observation
epochs t.
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Figure 7. Pitch, roll, and yaw motions of a moving vessel and relative locations of the used GNSS
antennas (colored blue). The red lines are the principal axes of the vessel, whereas the black lines
denote total station measurement derived distances between antennas and imaginary (magenta
colored) intersection points. All points are shown in horizontal projection (i.e., as reduced to the
sea surface).

Table 2. The solutions’ (ξ ) associated indexes (α, β, and γ ) and coefficient values (c1, c2, c3, and c4;
also see Figure 7).

Index/Coefficient Solution
ξ=1

Solution
ξ=2

Solution
ξ=3

Solution
ξ=4

α 3 4 1 2
β 4 3 2 1
γ 3 3 1 1
c1

2.05 + 1.48
2.05 + 1.48 + 1.68

2.05
2.05 + 1.48 + 1.68

4.59 + 4.32
4.59

8.05
−4.59

c2
4.45

4.45 + 13.63
4.08

4.08 + 13.70
14.92

14.92 + 5.37
17.11

17.11 + 4.41
c3

2.05
2.05 + 1.48 + 1.68

2.05 + 1.48
2.05 + 1.48 + 1.68

8.05
−4.59

4.59 + 4.32
4.59

c4
4.08 + 13.70

4.08
4.45 + 13.63

4.45
17.11 + 4.41

17.11
14.92 + 5.37

14.92

Since the four antennas form a rigid system, the instantaneous SSH at the vessel’s
mass center can be further used for validation purposes. Hence, the instantaneous SSH
estimates at the previously excluded fourth antenna location were interpolated similarly:
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iSSHXβ(ϕ, λ, t, t0) = iSSHAγ(ϕ, λ, t, t0) + c3

[
iSSHA(γ+1)(ϕ, λ, t, t0)− iSSHAγ(ϕ, λ, t, t0)

]
(15)

i ˆSSHAξ(ϕ, λ, t, t0) = iSSHXβ(ϕ, λ, t, t0) + c4

[
iSSHξ

CoM(ϕ, λ, t, t0)− iSSHXβ(ϕ, λ, t, t0)
]
, (16)

where the index β denotes the number of an imaginary intersection point, and coefficients
c3 and c4 are determined from total station measurement derived distances (Figure 7 and
Table 2). The conducted calculations were validated by comparing the estimated (i ˆSSHAξ)
and measured (iSSHAξ) heights:

dAξ(ϕ, λ, t) = i ˆSSHAξ(ϕ, λ, t, t0)− iSSHAξ(ϕ, λ, t, t0), (17)

where dAξ denotes discrepancies at the location of the initially excluded fourth antenna.
Statistics of discrepancies are summarized in Figure 8, indicating the expected GNSS height
determination accuracy. It can be noticed that, generally, the discrepancy mean values are
sub-centimeter, suggesting the successful reduction of ellipsoidal heights to the sea surface
using Equation (8) (i.e., all four antennas are approximately on the same plane). Note
that the weighted mean (according to campaign distances presented in Table 1) standard
deviation estimate (by averaging the values shown in Figure 8) of 4.1 cm showed a good
performance for height determination.

Ideally, all four iSSHξ
CoM solutions should be free of vessel high-frequency attitude

changes and have matching results considering the successful reduction of ellipsoidal
heights. The performance of iSSHξ

CoM was evaluated as:

σCoM =
1
I

I

∑
i=1


√√√√1

3

4

∑
ξ=1

[
iSSHξ

CoM(ϕ, λ, i, t0)−
1
4

4

∑
ξ=1

iSSHξ
CoM(ϕ, λ, i, t0)

]2
, (18)

where i = 1, 2, . . . , I is the number of a GNSS observation. These evaluation results vary
between 0.4 cm (C5 campaign) and 1.1 cm (C1 campaign), indicating excellent agreement
between the four solutions for all campaigns. Even though the C2 campaign validation
suggests more significant (than usual) discrepancies at the antenna locations (Figure 8), the
solutions agree well at the vessel’s mass center (σCoM is 0.8 cm). In practical applications
use of three GNSS antennas, thus, appears sufficient, and any of the four iSSHξ

CoM solutions
would be equally suitable for further use. Due to data availability, the final instantaneous
SSH solution was calculated as:

iSSHFinal
CoM (ϕ, λ, t, t0) =

1
4

4

∑
ξ=1

iSSHξ
CoM(ϕ, λ, t, t0) (19)

and used in subsequent data filtering. The temporal resolutions of iSSHFinal
CoM were 15 s

for the first C1 campaign and 30 s for subsequent campaigns. Recall that the iSSHFinal
CoM of

campaign C4 is a simple average of the A1 and A2 antenna heights.
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where 𝑖 = 1, 2, … , 𝐼 is the number of a GNSS observation. These evaluation results vary 
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5.2. Reducing the Effects of Sea State Conditions

The computed instantaneous SSH, now with a substantially reduced impact from the
vessel’s high-frequency attitude changes (i.e., pitch and roll motions), still contains some
influence from sea state conditions (i.e., waves), which primarily manifest as the vessel’s
up–down direction heave motion. As a result, instantaneous SSH contains high-frequency
variations that should be eliminated from the expected SSH; for instance, by applying a
low-pass filter. This study used the approach developed by [24] and successfully employed
by [11]:

OUT(i) =
1
F

m1+
F−1

2

∑
m2=m1− F−1

2

Medianm2

{
INm1(i)

∣∣∣∣i− F− 1
2
≤ m1 ≤ i +

F− 1
2

}
, (20)

where IN and OUT denote input and output data, respectively, and F is the filtering
window size (i.e., a certain number of measurements). As in Equation (18), i represents a
GNSS observation number.

Refs. [11,24] used the low-pass filter directly on SSH data. Recall the temporal data
resolution of 15 or 30 s, which at a vessel velocity of around 9 knots results in a filtering
window (spatial) length of several kilometers. With such lengthy window sizes, low-
pass filtering may contaminate results, due to the gradients of DT and geoid. Thus,
(unfiltered) residual estimates were first calculated from iSSHFinal

CoM using Equation (2)
(note that the residuals are not dependent on the reference epoch t0, since this dependency
disappears using a compatible geoid model NKG2015). A sum of absolute differences
(between unfiltered and filtered signals) function was then compiled for each marine survey
campaign, by applying the Equation (20) low-pass filter on unfiltered residuals. Only odd
filtering window sizes were considered, and the optimal windows were estimated as sizes
where the functions became roughly linear. The results are summarized in Figure 9. For
comparability, the functions are normalized according to the maximum values.
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Figure 9. Sum of absolute difference (SoAD) functions for the marine survey campaigns. Optimal
filtering window sizes are shown with dashed vertical lines.

Notice that the functions are similar in shape, except for the C5 campaign, which is
much shorter than the others (i.e., containing fewer measurements; cf. Table 1). However,
the optimal filtering window sizes vary, likely due to approximations assumed during the
size determination. For consistency, the final filtering window size (used for all data filter-
ing) was estimated as a weighted mean (according to the campaign distances presented in
Table 1) of an individual campaigns’ optimal window sizes. The resulting 53 measurements
are almost the same as the window size (51 measurements, at which the filtered data had a
similar signal frequency to the geoid) suggested by [11].

Notably, such a filtering approach is independent of temporal data resolution (unless
the GNSS sampling rate is very high, i.e., sub-second), since sea state conditions cause
random data noise; hence, allowing investigation of the filtering window (spatial) length
dependency on the GNSS sampling rate and vessel velocity (Figure 10). Ideally, the filtering
window length should approximately match the spatial resolution of the employed model
datasets (i.e., geoid model and HDM), to decrease error propagation. At a vessel velocity
of 9 knots, this implies a GNSS sampling rate of around 5 s. In this study, the sampling
rates were 15 or 30 s, and the filtering window lengths were, correspondingly, roughly
4 and 8 km. Future studies and marine survey campaigns should consider the results in
Figure 10.
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Figure 10. Filtering window length dependency on GNSS sampling rate and vessel velocity, by
assuming an optimal filtering window size of 53 measurements.

Low-Pass Filtering Results

The Equation (20) low-pass filter, with the filtering window size of 53 measurements,
was applied on the unfiltered residuals, resulting in the filtered residuals denoted as
rF

CoM(ϕ, λ, t) in the following. For comparison, the low-pass filter was also used on residuals
(also estimated using Equation (2)) determined directly from the instantaneous SSH of



Remote Sens. 2022, 14, 2368 17 of 30

individual antennas (i.e., instantaneous SSH from Equation (8)). The results of the C2
campaign before and after data filtering are shown in Figure 11. Notice how the unfiltered
residuals of antennas A1 and A2 (at the vessel’s bow) are more scattered than antennas
A3 and A4 (and the joint solution), suggesting a dominating pitch motion at the vessel’s
bow and that the vessel is more stable near its mass center (cf. Figure 7). Such a revelation
implies inferior results for the C4 campaign (recall that the center of mass solution could
not be computed).
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Figure 11. Residuals of the C2 campaign for antennas A1–A4 and the mass center solution (denoted
CoM), (a) before and (b) after low-pass filtering.

After filtering, significant discrepancies could be detected between the center of mass
and individual antenna solutions (Figure 11b). Residuals of the port side antennas generally
appeared lower than starboard antennas’ (a similar pattern can be observed for all other
campaigns). The likely cause is the change in the vessel’s general attitude. During total
station and tape measurements in the harbor, the vessel was always tilted slightly to the
right [23]. The vessel may correct its general attitude while in motion; thus, resulting in
lower and higher than actual heights for port and starboard side antennas, respectively.
Since the vessel rotates approximately around its mass center, the joint solution iSSHFinal

CoM
should consider such a motion.

To further analyze the performance of conducted computations, the unfiltered and
filtered residuals were compared (i.e., filtered results were subtracted from unfiltered). The
statistics of their differences are summarized in Figure 12. The most significant differences
were consistently detected for antennas A1 and A2, again suggesting dominating pitch
motion at the vessel’s bow. A reduced standard deviation was always (except for the
C4 campaign, which showed no improvement) produced for the mass center solution.
In contrast, the low-pass filter eliminated more noise from individual antenna solutions
(i.e., resulting in greater differences between unfiltered and filtered residuals). It, hence,
appears that the vessel’s high-frequency attitude changes were indeed eliminated (or at the
very least significantly reduced) in the iSSHFinal

CoM (cf. Section 5.1).
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results were subtracted from unfiltered) for antennas A1–A4 and the mass center solution (denoted
CoM). The black lines are mean values, and colored bars denote standard deviation estimates. Crosses
show 99th percentile minimum and maximum differences.

The described outcomes demonstrate the importance of proper planning for such
marine GNSS surveys; the location of the antenna has a significant influence on data
accuracy. Before validating this study’s results, vessel sailing-related corrections must be
estimated and removed from the filtered residuals. The following section describes their
empirical derivation.

5.3. Vessel Sailing-Related Corrections

In Figure 11b, abnormal peaks can be detected in the C2 campaign mass center solution.
These coincide with the occasions of the vessel’s stopping; for example, to collect water
samples. This phenomenon occurs due to the disappearance of the squat effect that causes
a vessel to sail deeper than its nominal draft. The squat is a function of a vessel’s velocity
and dimensions, but is also influenced by depth in shallower, more confined waters [57].
Since the surveys were generally conducted in relatively deep and open marine areas, it
is assumed that depth has a negligible influence on the squat. The only slight exception
could be campaign C3, which also surveyed shallower regions of the Baltic Sea (notice the
near-shore routes in Figure 2).

Due to occasional stops, the velocity could be related to height changes between a
moving and static vessel, by utilizing filtered residuals over distances up to 3 km. These
estimates that represent squat values at various velocities are presented in Figure 13a
as black dots. Since the vessel’s dimensions are constant, the squat is approximately
a quadratic velocity function [37,57]. It was, thus, estimated as a least-squares fit of a
quadratic function to the empirical data. A linear squat approximation, also shown in
Figure 13a, is further discussed in Section 6.4.
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The second vessel sailing-related correction that must be considered is the static draft.
Due to fuel consumption, the vessel floats gradually higher. The lowest/highest estimates
of the static draft are, correspondingly, at the time of harbor departure/return. Thus, the
static draft was approximated from differences in tape measurements conducted before
and after marine survey campaigns. Since tape measurements may contain errors in the
range of static draft itself (e.g., notice the difference between the campaign C4 estimates
in Figure 13b), the empirical data were considered altogether, whereas all negative values
were excluded. The static draft was then estimated as a distance-related least-squares fit of
a linear trend (Figure 13b).

The empirically derived vessel sailing-related squat (a function of the vessel’s velocity
v) and static draft (a function of the total traveled distance s) corrections were subse-
quently applied to the filtered residuals (Equation (5) modification; also notice the functions
presented in Figure 13):

rF+C
CoM(ϕ, λ, t) = rF

CoM(ϕ, λ, t)− {squat(v)} − {static dra f t(s)}
= rF

CoM(ϕ, λ, t)−
{
(−0.0012)·[v(t)]2

}
−
{

5.95·10−5·s(t)
}

,
(21)

where the first set of curly braces denotes squat correction, and the second set, static draft
correction. The values of v and s are given at a GNSS observation epoch t. Note that the
vessel’s velocity is considered in knots, and the total traveled distance is in kilometers from
the beginning (i.e., home harbor) of the campaign. The term rF+C

CoM denotes filtered and
corrected residuals, which were validated as described in the following section.

5.4. Validation and Least-Squares Adjustment of the Results

Ideally, the filtered and corrected residuals should be near-zero. However, such
idealistic results cannot be expected, due to errors in the total station, tape, GNSS, and
TG measurements; estimated corrections’ inaccuracies; and deficiencies in the used VLM,
HDM, and geoid models. For instance, an examination of the residuals’ statistical properties
(Figure 14a) shows biases between the results of different campaigns (notice mean values).
A likely explanation is errors in tape measurements conducted in the harbor, for reducing
surveys’ GNSS results to the sea surface (cf. Equation (8)). Since such measurements are
subjective (the surveyor had to assess the optimal measure from the moving sea surface)
and the vessel swayed slightly during the measurements, the tape-determined values likely
induce the most significant errors.
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The residuals’ standard deviation estimates vary between 1.8 cm and 5.5 cm
(Figure 14a), demonstrating, in general, the satisfactory performance of the results, es-
pecially considering the variety of different datasets combined. The highest standard
deviation estimate describes the C4 campaign, which is expected, as only two GNSS an-
tennas (instead of four) could be used for the iSSHFinal

CoM solution (cf. Section 5.1). Thus,
the vessel’s high-frequency attitude changes likely contaminated the solution. On the
other hand, although the second half of campaign C1 was conducted in windy and wavy
conditions (due to a rising storm; recall the discussion in Section 4.1), the resulting standard
deviation estimate was only 2.8 cm, suggesting that the approach used could successfully
eliminate the vessel’s high-frequency attitude changes and marine conditions’ influence on
GNSS measurements.

Another principal measure is the consistency of the residuals, which were, hence,
compared at the campaign–internal intersections, by defining two criteria: (i) distance
between points less than 250 m, and (ii) time between intersections (also consecutive points)
more than 30 min. The two criteria had to be true at the same time. According to the first
criterion, nearby parallel routes could also yield an intersection (geoidal heights and DT
remain relatively unchanged over short distances), to avoid a lack of detected intersections
when no actual route crossings existed. Moreover, if a vessel stopped for more than 30 min
(e.g., to collect water samples) and did not drift significantly (more than 250 m), the stopping
was counted as an intersection (the low-pass filtering influence disappears with 30 min:
53 measurements × 30 s = 26.5 min). The resulting statistics (Figure 14b) indicate a good
consistency, with generally near-zero mean differences, and standard deviation estimates
varying between 1.8 cm and 3.4 cm. Notably, the NKG2015 geoid model errors do not affect
these comparisons, since the model is static (i.e., not a time-dependent variable).

The defined criteria were further employed to compare residuals of different cam-
paigns at their intersections, following the principles described above. Notice in Figure 15
that the absolute values of mean differences (sign difference is due to the subtraction
order) and standard deviation estimates differ slightly, for example, if campaign C1 is
compared to C2 and vice-versa. Since the algorithm searches intersections by moving
along the validated campaign, the two tests may yield different points for comparisons,
due to the second intersection search criterion (i.e., the algorithm moves along different
routes, detecting different points based on the definitions). Generally, these assessments
show a good agreement between the residuals of different campaigns, in terms of standard
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deviation. The most significant residual differences were detected between campaigns C2
and C3, resulting in standard deviation estimates of 4.4 cm and 5.0 cm. The compared
intersections were primarily detected in the relatively shallow Väinameri (cf. Figure 2),
which could imply errors in squat estimation, but Väinameri also has more than 300 islands
and islets, which may have influenced the HDM-embedded DT modeling.
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Figure 15. Statistical properties of filtered and corrected residuals’ differences at intersections between
campaigns. The black lines are mean values, and colored bars denote standard deviation estimates.
Crosses show minimum and maximum differences. Note that color shows the validated campaign
and the X-axis validation dataset. In square brackets are the total number of detected intersections for
each comparison.

Similarly to Figure 14a, Figure 15 suggests biases in the data (notice mean values).
As described earlier, errors in tape measurements likely contributed significantly to these
estimates. Hence, to increase the consistency of the residuals (and reduce the potential
influence of tape measurement errors), the bias differences between campaigns were
estimated by free network least-squares adjustment:

X̂ =
(

AT PA
)−1

AT PL, (22)

where vector L denotes the estimated residuals’ mean differences between campaigns at
intersections (i.e., the mean values shown in Figure 15) and design matrix A corresponding
comparisons. Thus, a system of [6!/(6− 2)!] − 4 = 26 linear equations was compiled
(order matters, due to the second intersection search criterion, and for 4 comparisons, no
intersections were detected). Weights P were assigned according to the number of detected
intersections between campaigns (cf. Figure 15). The estimated bias corrections denoted by
vector X̂ (consisting of 6 estimates, one for each campaign) were then subtracted from the
filtered and corrected residuals. This approach resulted in least-squares adjusted residuals,
denoted as rF+C+A

CoM (ϕ, λ, t) in the following.
Figure 16 presents the comparisons between the initial (filtered and corrected) and

least-squares adjusted residuals. Since free network adjustment was used, the average value
of the six mean residual estimates (i.e., the average of the 6 values shown in Figure 16a)
remained unchanged. It can be noticed that the mean residuals of campaigns agree better
after adjustment (Figure 16a) and that the results are more consistent (histograms in
Figure 16b combine residuals of all six campaigns). However, since some biases still
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exist (which cannot be detected due to lack of intersections), the combined data standard
deviation in Figure 16b exceeds that of most individual campaigns in Figure 14a.
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Figure 16. The (a) mean values of residuals (the initial ones coincide with those in Figure 14a) and
(b) histograms of residuals (all campaigns combined).

5.4.1. The Final Data Processing Results

The results in Figure 16b suggest that around a 5 cm accuracy can be achieved with the
presented methodology, but it is also evident that a data bias of 5.2 cm exists simultaneously.
According to Figure 17, the bias primarily originates from areas in the Gulf of Finland and
Väinameri (refer to Figure 2) and appears to possess a long-wavelength nature. The bias
could likely represent the NKG2015 geoid model errors to some extent. Similarly probable
is that there are errors in the estimated DT, since even after correcting the used HDM with
TG data, the determination of instantaneous DT with an accuracy of a few centimeters is a
difficult task. It could also be that the tape measurements were systematically conducted in
a way that resulted in lower than actual SSH. Unfortunately, these are all assumptions, and
the origin of the bias currently remains unknown.
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However, recall that this study aimed to derive accurate SSH from shipborne GNSS
surveys. As a final step, the SSH was restored from filtered, corrected, and adjusted
residuals (Equation (6) modification):

SSHF+C+A
CoM (ϕ, λ, t) = rF+C+A

CoM (ϕ, λ, t) + D̂T(ϕ, λ, t) + [N(ϕ, λ, t0) + GC(ϕ, λ)·(t− t0)], (23)

where D̂T and N are correspondingly the DT and NKG2015 geoidal heights initially used
to reduce SSH into residuals. The geoid change denoted as GC is restored to obtain the
actual SSH (recall that Equation (7) initially eliminated geoid change for data consistency).
Assuming minimal error propagation during data filtering, the derived SSH should be
mostly free of DT and geoid model errors. It is, thus, plausible that the expected accuracy
of the derived SSH exceeds that of the presented and discussed residual values. There-
fore, the derived SSH data are suitable for subsequent applications, such as validation
of various marine models and measurements (with a limiting factor that measurements
must be conducted at the same time as marine survey campaigns). Notably, the presented
methodology works under harsh weather conditions (recall that the second half of the C1
campaign was conducted in stormy conditions), which is often the case in real life when
marine campaigns are planned long in advance (i.e., the weather becomes unpredictable).

6. Discussion

This paper has described a methodology for deriving accurate SSH from the initial
untreated post-processed shipborne GNSS measurements (detailed in [23]). The results indi-
cate a 4.1 cm height determination accuracy, in terms of standard deviation (cf. Section 5.1),
for the unfiltered SSH data. Since sea state conditions should not influence this estimate
(i.e., the estimate represents a rigid system), it can also describe the final SSH accuracy,
assuming sufficiently well-estimated vessel sailing-related corrections (cf. Section 5.3). Note
that the application of the low-pass filter may have improved the accuracy by reducing
data noise. Further data validation demonstrated standard deviation estimates of 1.8 cm to
5.5 cm for the determined residual values of individual campaigns (cf. Figure 14a), whereby
the combination of all campaigns provided an estimate of 5.0 cm (cf. Figure 16b). The
standard deviation estimates of campaign–internal intersections varied between 1.8 cm
and 3.4 cm (cf. Figure 14b). By comparing the residuals of various campaigns to each other
at intersections, the standard deviation estimates also remained within 5 cm (cf. Figure 15).

These results suggest that the developed methodology can provide at least a 5 cm
accuracy for the SSH. For comparison, Baltic Sea region geoid validation studies (using
NKG2015 model) have indicated the following agreement (in terms of standard deviation)
with shipborne GNSS measurements: 3.4 cm [11], 3.8–6.8 cm [12], 4.2–12.0 cm [24], and
1.2–27.9 cm [32]. Other previous studies that investigated shipborne GNSS-determined
SSH demonstrated 5–15 cm [10], 4.0–5.3 cm [33], and 7.4–11.9 cm [38] accuracies, in terms
of standard deviation. The results of this study are, hence, in good agreement with the
previous results, or surpass them.

Another notable result is that all GNSS data collection was autonomous [23], implying
that GNSS devices can be installed on various vessels and for extended periods. Here,
CORS-based post-processing of GNSS data were primarily used, but distant offshore
locations may similarly be of interest for SSH measurements. It has been demonstrated in
earlier studies that, for instance, the CSRS-PPP approach can provide reasonable height
determination accuracy on such occasions, and even for transoceanic scenarios [24,37,38].
In future studies, it could be interesting to investigate the potential of the developed
method exactly in distant offshore locations (using, e.g., CSRS-PPP instead of relying on
CORS-based post-processing). This could provide essential SSH datasets with satisfactory
accuracy for marine-related studies.

As is evident from the previous analyses and discussions, the presented joint SSH
derivation and validation entails several steps and datasets that can influence the results.
The following sections now examine the impact of some of these components. For that
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purpose, a single step or dataset was exchanged for an alternative, whereby all other data
processing was conducted as described above.

6.1. Dynamic Bias Prediction Method

Previously, refs. [15,30] used exact interpolators to predict offshore DB (required for
correcting the used HDM for DT determination). Such an approach inherently assumes that
there are no errors in the TG data and TGs connections to the height system(s), as well as
that the estimated DB at a TG station is an expected value for all nearby offshore locations.
In Section 4.1, it was suggested that this might not be the case. Therefore, a new approach
was developed for estimating DB uncertainties and predicting offshore DB with an inexact
interpolator (least-squares collocation) employing these estimates. The difference between
an exact and inexact interpolator is now investigated.

A well-performing inverse distance weighted interpolation method (out of various
exact interpolators, this one appears to provide the best results—Jahanmard, V., personal
communication, September 2021) was used to predict offshore DB. A comparison with the
developed approach is presented in Figure 18a. Notice that the residuals of the inverse
distance weighted method are more spread out and biased; thus, highlighting the significant
impact of the DB prediction approach on the results. Since the developed approach does not
require the predicted DB to follow estimates at the locations of TG stations, the differences
between the two histograms are primarily the direct impact of potentially erroneous (or
misleading, since DT at TG stations may not represent offshore conditions) TG data.
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Figure 18. (a) Histograms of residuals (all campaigns combined): the impact of the DB prediction
method, and (b) filtered, corrected, and least-squares adjusted residuals, derived using inverse dis-
tance weighted interpolation for DB prediction. Numbered circles in (b) denote the used TG stations.

Figure 18b presents residuals of the C2 campaign, derived using inverse distance
weighted interpolation to predict offshore DB. Notice the residuals over a decimeter near
TG14, whereas no such residuals appeared when the newly developed method was used (cf.
Figure 17). This difference is a direct cause of the issue described in Section 4.1, where the
estimated DB at TG14 was significantly higher (more than usual) than at the neighboring
TG stations, likely due to offshore-directed strong winds, which may have pushed the
water away from the harbor (i.e., lower TG readings result in higher DB, cf. Equation (3)).

An alternative example from Section 4.1 can also be further discussed. Namely, a
significant contributor to the more negative bias of the inverse distance weighted method
in Figure 18a is TG4. It was demonstrated in [23], how the DT at TG4 was up to 8–9 cm
higher in comparison to the vessel’s nearby harbor (higher DT results in lower residual
values, cf. Equation (2)). Relatedly, differences around a decimeter appeared for campaigns
C2 and C3 near TG4, between the inverse distance weighted method and the developed
approach. These examples show how near-TG localized phenomena propagate to the
estimated offshore DB with exact interpolators and demonstrate the superior performance
of the developed approach.
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6.2. Data Filtering Approach

In the production of SSH data, it would be convenient to skip the data validation step
(as it requires derivation of DT), which means direct filtering of SSH data. However, in
Section 2, it was suggested that gradients of DT and geoid might contaminate the low-pass
filtering results. The Equation (20) low-pass filter was, hence, applied directly to the SSH
data, to test this assumption. Subsequently, the filtered SSH data were reduced to residual
values by the Equation (2) principle, and all following data processing was conducted as
described in Section 5. The results were then compared to the initially derived residual
values (Figure 19a). From this comparison, the directly filtered SSH resulted in slightly less
biased residuals, whereby the variation of the residuals appears statistically insignificant.
However, Figure 19b shows (an example from campaign C3) the actual impact of gradients
on the filtering results (notice the peaks in the results when SSH was filtered directly).
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Figure 19. (a) Histograms of residuals (all campaigns combined): the impact of the data filtering
approach, and (b) a comparison between residuals (a section of campaign C3) resulting from the
two approaches.

The comparison in Figure 19b demonstrates the necessity of reducing the SSH to
residual values before data filtering. Otherwise, gradients of DT and geoid may result
in avoidable discrepancies of over 5 cm (the primary contributor being the geoid). An
alternative could be to increase the GNSS data sampling rate, which would allow a shorter
filtering window (spatial) length (cf. Figure 10), since a lengthy window causes such error
propagation. Nevertheless, in steeper gradient areas, this may not be sufficient to avoid
errors shown in Figure 19b. At the very least, geoidal heights should be reduced from SSH
before data filtering, since the gradients of the geoid contribute the most to the described
errors. Furthermore, note that the squat estimation was unsuccessful from SSH data directly,
resulting in nearly twice as low squat estimates, meaning more negatively biased results (for
the experiment in this section, the squat correction was applied as described in Section 5.3).

6.3. Choice of a Geoid Model

The accuracy of marine geoid models is often unknown, as the conventionally used
precise GNSS-leveling control points cannot be used for validation purposes over marine
areas. It can be assumed that the deficiencies in models may reach up to a few decimeters in
the shorter wavelength spectrum. For instance, [11] and [15] showed errors over a decimeter
in a marine gravity data void area in the NKG2015 geoid model (in the eastern Gulf of
Finland, cf. Figure 2). In contrast, the Estonian national geoid model EST-GEOID2017 [58]
appears to perform better, due to additional marine gravity data being included in the
model development (see [11], who also provide a comprehensive review of these two
models and their differences). The differences between the two models along the vessel’s
routes are shown in Figure 20b.
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Figure 20. (a) Histograms of residuals (all campaigns combined): the impact of geoid model choice,
and (b) histograms showing differences between the NKG2015 and EST-GEOID2017 models (along
the vessel’s routes) and the SSH datasets derived using these models during data processing.

For the next experiment, the NKG2015 geoid model was exchanged for the EST-
GEOID2017 during data processing. The resulting discrepancies are compared in Fig-
ure 20a. Note that the red histogram differs from those in Figure 16b, Figure 18a, and
Figure 19a, since the comparison was conducted over a reduced area (EST-GEOID2017
does not extend southward from 57◦ N). The comparison in Figure 20a demonstrates
the slightly better performance of the EST-GEOID2017 model, which is consistent with
previous studies’ results.

Since the geoid models contain errors, it would be interesting to know how model
errors influence the resulting SSH data. This question can be investigated, as differences
exist between the two used geoid models. Figure 20b suggests that the data filtering error
propagation is negligible (as assumed in Section 5.4.1), because the two SSH datasets are
practically the same. This finding indicates that if a geoid model has reasonable accuracy,
the model’s inaccuracies do not influence the derived SSH (by reducing SSH to residuals
for data filtering), which also implies that errors in DT do not propagate significantly either.
The results would likely be poorer by neglecting geoid and DT information entirely during
data processing (recall the example in Section 6.2).

6.4. Squat Estimation Function

Ideally, squat information should be provided by a vessel-specific squat table. Such a
table was not available for this study. Thus, the squat correction was estimated empirically
as a direct data derivative (cf. Section 5.3). Since the squat is approximately a quadratic
velocity function, a quadratic function was fitted to the empirical data in the least-squares
sense. As an alternative, a least-squares fit of a linear function was also used to approximate
squat correction (cf. Figure 13a). The resulting residuals from using these two functions are
compared in Figure 21. Note that the offset term was not considered for the linear function,
as was the case with the quadratic function (cf. Equation (21)).

Although the use of the quadratic function is, in theory, more correct, the results
in Figure 21 indicate a better performance for the linear function, as the residuals are
significantly less biased toward negative. It, thus, appears that the quadratic function
underestimates the squat correction. The result also implies that a portion of the 5.2 cm
bias in the data originates from inaccurate squat correction.
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7. Conclusions

This contribution presented a methodology for deriving accurate SSH from initial
untreated post-processed GNSS data. The methodology involves a joint validation of the
results using a geoid model and realistic DT to reduce SSH to residual values. Since GNSS
measurements should be low-pass filtered to eliminate the effect of sea state conditions, the
approach can also enhance SSH data accuracy, by avoiding error propagation due to DT and
geoid gradients, which in this study could have caused larger than 5 cm errors. Furthermore,
a rigid system of four GNSS antennas was used to eliminate the vessel’s high-frequency
attitude changes from the measurement data. Such a system is also beneficial, as it can
be validated internally. Accordingly, the results indicated a 4.1 cm height determination
accuracy for the whole SSH dataset. Other data validation (e.g., examination of residual
values and intersection analyses) results ranged from 1.8 cm to 5.5 cm, in terms of standard
deviation; suggesting that SSH can be determined with an accuracy of around 5 cm using
the shipborne GNSS method.

As mentioned, the validation requires DT information. A new method was developed
that combines the properties of TG data and an HDM. Tide gauge data allow estimating
the spatiotemporal bias of an HDM; thus, linking it to used vertical datum (e.g., a novel
geoid-based Baltic Sea Chart Datum 2000), whereby the qualities of spatiotemporal bias are
used to constrain TG data errors. As a result, realistic DT relative to an equipotential surface
can be obtained, which could be beneficial in oceanographic research for studying marine
processes accurately (e.g., determination of mean DT relative to an equipotential surface
for studying currents). According to the SSH residual value validations, the developed
approach was demonstrated to surpass the one used by [15,30], with an improvement in
standard deviation estimate from 6.3 cm to 5.0 cm, and mean residual from −8.0 cm to
−5.2 cm.
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