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Abstract: The generalized Pareto (GP) distribution model is often used to describe the amplitude
statistical feature of sea clutter. Generally, the parameters of GP distribution are estimated by
moments estimators. However, when the sea state is high, the appearance of sea spikes will increase
the echo of the anomalous scattering units, which leads to a decrease in the parameter estimation
accuracy and target detection performance. To improve the parameter estimation accuracy, this paper
proposes a novel parameter estimation method based on variable intervals. Considering the local
properties of sea clutter, we take a variable interval of the entire sea clutter series for parameter
estimation, where the interval position is selected according to the sea state conditions. For contrast,
the bipercentile parameter estimation and truncate moment estimation are also introduced. Finally,
the experiment based on the real measured X-band sea clutter datasets indicates that the proposed
method outperforms the state-of-the-art moments estimators.

Keywords: sea clutter; Pareto distribution; moments estimation; target detection

1. Introduction

Sea clutter is the backscattered interference signal from the sea surface. In the field of
radar target detection under a sea background, maritime radar usually faces interference
from heavy sea clutter echoes, which severely restrict the radar target detection perfor-
mance [1,2]. Among the complex properties of sea clutter, the probability density function
(PDF) of the sea clutter amplitude distribution model is the theoretical basis for designing
the constant false alarm rate (CFAR) detector [3]. In order to improve the target detec-
tion performance, the sea clutter model needs to be accurately matched, and the model
parameters should be accurately estimated. In the past few years, plenty of sea clutter
distribution models have been investigated, such as Rayleigh distribution, Weibull distri-
bution, Log-normal distribution and K-distribution [4-9]. However, due to sea clutter not
only being affected by natural environmental factors such as wind speed, wind direction,
and sea conditions but also by frequency, incident angle, signal bandwidth and other radar
working parameters [10], sea clutter usually presents temporal-spatial correlations and
non-Gaussian properties [11], of which the sea clutter is often described by K-distribution
with Gamma-distributed textures [12]. However, with the development of radar technology,
radar resolution has been improved continuously, and the K-distribution fitting perfor-
mance of the sea clutter tail part is degraded under low glancing angle. To overcome the
shortcomings above, the generalized Pareto (GP) distribution model with inverse Gamma
texture is proposed [13-16], which not only considers the temporal-spatial correlations
and tailing characteristics of sea clutter, but also has a relatively simple probability density
function expression. Therefore, the GP model is widely used in sea clutter modeling and
target detection field [17-22], and it is important to research accurate parameter estimation
methods for GP distribution.
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The most commonly used parameter estimations are maximum likelihood (ML) esti-
mator and moments (MoM) estimators [23-25]. In general, since the accuracy of parameters
of the ML estimator is higher than the MoM estimator, the ML estimator is preferred for
parameter estimation such as Rayleigh distribution, Weibull distribution and Log-normal
distribution. However, due to the computational complexity of ML estimators being higher
than MoM estimators, it is difficult to use ML estimators to estimate the parameters of
K distribution and GP distribution with a compound model. Therefore, the parameter
estimation method of the GP distribution is mainly based on the MoM estimator [26-28].
However, the traditional MoM estimator only considers the entire sea clutter amplitude
series and ignores the local properties of the sea clutter. When the sea state is high, with
the appearance of sea spikes, the measured sea clutter data usually contain anomalous
scattering units with a strong power value, which leads to a decrease in the performance of
the MoM estimator. Moreover, the MoM estimators may be invalid when the value of the
shape parameter dissatisfies the restricted conditions [29,30].

To overcome the shortcomings of the MoM estimators, the authors of [31] constructed
the bipercentile (BiP) parameter estimation method. However, only a set of biquantiles
is used to perform parameter estimation in the BiP method, which leads to a decrease
in the stability of parameter estimation. In order to enhance the stability of parameter
estimation, the truncated moment estimation was proposed in reference [32]. The main idea
of truncated moment estimation is to combine quantile information and moment estimation.
However, the truncated moment estimation is unable to adjust the initial position of sea
clutter sequence for parameter estimation according to sea state.

In order to further decrease the influence of sea spikes for parameter estimation
and enhance the accuracy of parameter estimation, this paper proposes a novel parameter
estimation method based on the local statistical properties of sea clutter amplitude sequence.
The proposed method is an improvement on the MoM estimation estimators, which focus
on the local properties of sea clutter. The proposed method takes the sea clutter data in a
special interval for parameter estimation, and the interval position is selected according to
the sea state, which can adapt to different maritime radar working environments. When the
sea state is high, the larger amplitude sea clutter sequences are dominant, and the interval
position is selected in the middle and tail part of the sorted series. Likewise, when the sea
state is low, the interval position is selected in the front and middle part of the sorted series.
Then, the zero-moment is also constructed as a part of the parameter estimator, which
increases the parameter estimation accuracy. Through analysis of real and simulated sea
clutter datasets, the results show that the proposed method can increase the accuracy of the
parameter estimation for GP model.

The remainder of this paper is organized as follows. Section 2 introduces the PDF of
the GP Distribution and the MoM, BiP and truncated moment estimators. Then, the variable
interval estimation (VIE) method is proposed, while the algorithm procedures are discussed
in detail. Section 3 accomplishes the VIE of GP distribution based on the measured and
simulated sea clutter data and analyzes the parameter estimation performance. Section 4
summarizes the full text.

2. Method

In this section, the PDF of the GP distribution is first introduced. Then, in order to
testify the effectiveness of the proposed method, the MoM, BiP parameter estimation [19]
and truncated moment estimation [20] are derived. At last, the proposed VIE is discussed
in detail, and the common goodness of fit test (GOF) methods are also introduced briefly.
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2.1. The PDF of the GP Distribution

The GP distribution is a compound Gaussian distribution model, which is a production
of the fast changing speckle component and the slow changing structural component. The
reception vector of the GP distribution is expressed as:

c=+/tu 1)

where c is the reception vector, u is the rapidly varying speckle component, and 7 is a slowly
varying texture component. Moreover, the speckle component u obeys a complex Gaussian
random variable with a mean value of 0, while the slowly varying texture component
is a random variable subject to inverse gamma distribution. The PDF of inverse gamma
distribution is expressed as follows:

o= (2) Ttew(-2) ®

where a is the scale parameter, A is the shape parameter of inverse gamma distribution, and
I'(-) is the gamma function. The magnitude of the sea clutter vector can be expressed as:

®)

where ¢(i) is the i-th component of the sea clutter vector. When the texture component (i)
is known, the clutter amplitude x(7) obeys the Rayleigh distribution. The expression of the
conditional PDF of the clutter amplitude x(i) is:

flx|t) = szexp(—z) 4)

According to the total probability theorem, the PDF of the GP distribution is deduced
as follows, which is equal to the definition of the square root of the Pareto distribution [6]:

2ax
0= ©

where x represents the sea clutter amplitude, a represents the scale parameter, and A
represents the shape parameter, which determines the non-Gaussian nature of sea clutter.
The shape parameter A decides the tail length of the PDF. When A — co, the GP distribution
degenerates to the Rayleigh distribution, and the GP distribution has a shorter tail. When
A — 0, the GP distribution has a heavier tail. The scale parameter a decides the average
power of the sea clutter. When the value of scale parameter a increases, the average power
of the sea clutter will decrease.

2.2. The MoM of GP Distribution

The methods of the MoM estimator and ML estimator are used to estimate param-
eters of the sea clutter model. Due to the computational burden of ML methods, the
ML estimator is unsuitable to estimate the GP distribution parameters. Therefore, the
estimator-based MoM is taken to estimate the GP distribution parameters, which have less
computational cost.

According to the PDF of the GP distribution and the principle of the MoM method,
the k-th moment of GP is calculated as (6):

* k+1
E(XF) = 24 / X dx ©)
( ) | (aA-1a2 1)
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where X* represents the k order origin moment of the sea clutter amplitude sequence.
Substituting r = 4x2 into (6), the following expression can be obtained.

k/2 k/2
E(XF) = <2> A/riwdr @)
p (r+1)
According to the definition of the Beta function [ ##71/(1 + )*"“dt = T(z)['(w) /T(z + w)

0
and the property of the Gamma function I'(z 4+ 1) = zI'(z), the k-th MoM estimator of the

GP distribution is defined as (8):

E(Xk) _ (2>k/2 1+ k/i)(i()/\ —k/2)

®)

When A > k/2, Formula (8) is valid. Then, the half and one moments estimation are
selected to obtain the GP distribution parameters, which is expressed as (9):

!

H() - () TG
) - (3)

©)

2.3. BiP Parameter Estimation

There are plenty of sea spikes in the sea clutter sequence, and sea spikes will cause a
decrease in the accuracy of MoM. Moreover, when we use the MoM estimator to estimate
the parameters of GP distribution, the shape parameter A must satisfy restricted conditions.
In order to solve the problems above, the BiP is proposed. The specific algorithm of BiP is
shown as follows.

According to the PDF of the GP distribution, the cumulative distribution function
(CDF) of GP distribution can be derived as (10):

T A
F(x)=P(t<x) = /f(T)dT =1- (1 +a/\_1x2> (10)
0
where P(A) represents the probability of the appearance of A. Next, we define the concep-
tion of quantile point as follows:
o= P(x <xy)=F(xy) (11)

where « represents an arbitrary quantile point and 0 < a < 1, x, represents this quantile
point correspond to the value of amplitude of sorted sample sequence. Then, substitute the
CDF of GP distribution into (11), and we can obtain an equation as follows:

(1 + a/\_lxa)/\(l —a) =1 (12)

Therefore, we can utilize arbitrary bipercentile #; and &, to obtain an equation set to
estimate the parameters. The equation set can be expressed as follows:

(1+ a)\‘lxal))‘(l —) =1 (13)
(1+ a)\_lxaz))\(l —ap) =1
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2.4. Truncated Moment Estimation

Since the BiP method only uses a pair of quantile points in a sea clutter series to
perform parameter estimation, which severely affects stability of parameter estimation.
To overcome this defect, the truncated moment estimation is proposed, and the specific
algorithm of the truncated moment estimation is inferred as follows.

According to the quantile point a and the PDF of the GP distribution, the second
truncated moment is defined as follows.

Xo

man = [ 2f(x)dx (14)

0

Substitute the PDF of the GP distribution into (14), and the truncated moment estima-
tion can be simplified as follows.

SR S U G SRR e RV R B (15)
25T gA—1) 1+ar—1x,2 Y \1+ar-1x,2

Moreover, when we use the quantile «, the Formula (12) is sure to exist. Therefore,
we can simultaneously utilize Equations (12) and (15) to estimate the parameters of GP
distribution, and the equation set can be shown as follows.

T S A A-1 a1 A
2T (A =1) 1+ar—1x,2 Y \1+ar-1x,2 16)

= filre ()

2.5. The VIE Method

It is known that the statistical property of sea clutter varies with the changing of sea
state. In order to further enhance the accuracy of parameter estimation, this paper proposed
a novel parameter estimation method based on the variable interval, where the sea clutter
interval for parameter estimation is chosen based on sea state. The detailed processing of
the VIE method is discussed as follows.

Radar echo acquisition and preprocessing. Suppose that X = {x(k), k=1,2,3...N }

represents the original radar sea clutter time sequence. Then, sea clutter time sequence X is
sorted in order from smallest to largest, which is expressed as:

X:{x(k),k:1,2,3...N} (17)

Variable interval location selection. Rather than estimating the distribution parameters
based on the whole sea clutter sample, only the samples in the selected interval are taken
for parameter estimation. The criterion for the interval position selection is discussed as
follows. First, the percentile /1, I; is defined as follows.

{l,h0<h <lh<1} (18)

Suppose the length of sea clutter series is N, and the interval position is L3, L, which
are corresponding with Iy, I, then the corresponding relationship between /1, I and Ly, L
is shown as follows.

{ £y = X (19)
*(Ly) = X(N1p)

where %1 ) and £1,) represent the starting and ending of sea clutter sequences in the
interval, respectively. The criterion for choosing the interval location is mainly according
to the sea state. When the sea state is less than 2, the sea surface is calm and the small
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amplitude sea clutter sequences are dominant. In this condition, the interval is selected in
the front and middle part of the sea clutter amplitude series X. When the sea state is more
than 3, sea spikes emerge and the large amplitude sea clutter sequences are dominant. In
this condition, the interval should be selected in the middle and tail part, which can obtain
a more exactly parameter estimation result of the tail part. Moreover, when the sea state
is near 3, the interval can be selected in the middle part. The sketch map of the interval
location selection is shown in Figure 1.

Variable interval location Selection

> x( i) x( i+1)* x( YT, X,

Front part
(low sea state)

Middle part
(middle sea state)

(g2)2 g -‘xw—zd-‘xtN—n-‘x(m}

Tail part
(high sea state)

Y

Amplitude

Figure 1. Interval position selection sketch map.

In practice, the selections of interval location are also based on the sea state. According
to the sea state, the interval locations for parameter estimation can be preliminarily selected.
Then, the locations of the interval are slightly adjusted by searching the superior interval
based on the GOF results.

The sea clutter series in the interval can be defined as:

X' = {x(Ll)'x(Ll‘H)”“’x(Lz—l)’x(Lz)} (20)

Parameter estimation based on variable interval. First, according to the PDF of the GP
distribution, the second-order interval moment is calculated as follows.

2(1y)
= / X2 f(x)dx (21)

A1)
Then, the mean square of the sea clutter series in the interval is calculated as follows.

2)

1
x? (22)
1)

X(L
M2xwy Xy = N )y
1

=xr

Since there are two GP parameters to be estimated, it is necessary to construct two
equations to calculate the parameters. The half and one MoM method takes the first-order
moment as the second equation for parameter estimation. To increase the parameter esti-
mation accuracy, the zero-order interval moment is constructed to estimate the parameters.
The essence for calculating the zero-order moment is to compute the percentage of the sea
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clutter sequence X’ in the interval to the entire sequence X. According to the PDF of the
GP distribution, the zero-order interval moment is calculated as follows.

*(Ly)
W) x(1y) = / flx)dx =1 -1 (23)
(L)
where w,,, .y, , represents the zero-order moment of the theoretical value and I; — I,
(L)) TP

represents the zero-order moment of estimated value.
Finally, according to (20)—(22), the second-order and zero-order moments are combined
to estimate the GP parameters, which are shown as follows.
20w %ay) = 230y ¥(1y) (24)
Wy =2 h

Substituting the measured sea clutter data X’ and PDF of the GP distribution into (24),
the following equation can be obtained.

u/\(x<L2)2—x(L1)2>+A—A2 1 X(Ly) 5
— (b-h)=x§ ¥ x
e Vi 25)

—A —A
<l + tl)\ilX(Ll)z) — (1 + tl)\ilX(Lz)z) =h—-h
Then, the parameters a and A are obtained by solving (25).

2.6. Histogram Statistics and GOF Test

After counting the histogram of the sea clutter series, the fit errors between the
histogram statistics of the sea clutter amplitude series and fitted distribution model are
analyzed. Then, the mean square difference (MSD), the Kolmogorov—-Smirnov (K-S) dis-
tance, and the modified mean square difference (MMSD) methods are taken to evaluate the
consequent of the GOF test. MSD and K-S distance are used to test the fitting effect of the
entire fit model, MMSD focuses on testing the fitting effect of the tail of the fit model.

(1) The calculation of MSD is defined as:

N 2

Dusa = 5 1 (fr(56) = f(0) 26)

k=1

where f,(-) represents the frequency of sea clutter sequence in histogram, f;(-) rep-
resents the PDF of fit model, k represents the sequence number of the sea clutter
sequence, N represents the length of sea clutter sequence.

(2) The calculation of K-S distance is defined as:

KSD = max(|Fo(x) — Ex(x)]) 7

where KSD represents the K-S distance, Fy(x) represents the CDF of the fit model, and
Fn(x) represents the empirical CDF of the sample sequence.
(3) The calculation of MMSD is defined as:

2

M
Dmde = ﬁkm§:1 (fi’ (xktail) - ft (xktail )) (28)
{kail

kit = 1,2, -+, M;1 = F(xg,,) < Pf}
where the definition of f;(-) and fi(-) are same as MSD, x, , represents the sample
aggregation of tail. If the smallest xj,  is the detection threshold, the function 1 —
F(xg,,,) < Psis CFAR detection, Py is the false alarm probability.
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Moreover, the flow chart of the proposed parameter estimation method is shown
in Figure 2.

Original sea clutter
sequence

Y
Sort the sea clutter
sequence

A
Choose interval
location according
to sea state
|

J

Calculate the two-order Calculate the zero-order
moment based on the data moment based on the data
from the interval from the interval
[ ]

Y
Parameter
estimation for GP
distribution
Y
Calculate histogram

of measured sea
clutter data

Goodness of fit test

Figure 2. Flow chart of the proposed parameter estimation method.

The proposed parameter estimation method is presented in Figure 2 and can be
summarized as follows:

Step 1: Radar echo acquisition and preprocessing. Sort the original sea clutter time se-
quence according to the criterion from smallest to largest and obtain the sorted sea clutter
sequence X.

Step 2: Variable interval location selection. Select the sea clutter data form the sorted sea
clutter sequence X based on the sea state.

Step 3: Parameter estimation for GP distribution. Calculate the one-order and two-order
moments based on the data from interval and estimate the parameters of GP distribution
through simultaneous equations.

Step 4: Goodness of fit test. Calculate the fit errors between the histogram of measured sea
clutter data and the fit model based on the MSD, K-S distance and MMSD algorithm.

3. Results and Discussion

In this section, the real measured X-band sea clutter data are taken to analyze the
performance of the proposed parameter estimation method. Moreover, the Monte Carlo
experiments are also performed to enhance the persuasiveness of the proposed method.

3.1. Real Sea Clutter Datasets Introduction

In this section, the real measured X-band sea clutter data are taken to analyze the
performance of the proposed parameter estimation method. The real X-band sea clutter
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dataset is collected with McMaster University IPIX radar in 1998, the IPIX radar operates
in gaze mode. The main parameter of IPIX radar is shown in Table 1 and the range-time-
intensity image of the sea clutter datasets is shown in Figure 3, where Data 1# are under
high sea state, Data 2# are under middle sea state and Data 3# are under low sea state.

From Figure 3, it can be confirmed that the number and amplitude intensity of sea spikes
are larger under a high sea state.

Table 1. Main radar parameters.

Parameter Type Data 1# Data 2# Data 3#
Radar height 30 m 30 m 30 m
Band width 5 MHz 5 MHz 5 MHz
Range resolution 30m 30m 30 m
Beam width 0.9° 0.9° 0.9°
PRF 1000 Hz 1000 Hz 1000 Hz
Frequency 9.3 GHz 9.3 GHz 9.3 GHz
Operation mode Grazing Grazing Grazing
Sea state 4 3 2
«104 Data 1# «10% Data 2#
1 1
2 2
3 =
% 3 :;1 3
£ £
[\] [\]
4 4
5 5
6 6
5 10 15 20 25
range range
(@) (b)
«10% Data 3#
1
)
8
2
= 3
£
(3]

N

6

5 10 15 20 25
range

(c)

Figure 3. Range-time-intensity image of X-band radar echoes: (a) high sea state; (b) middle sea state;
(c) low sea state.
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3.2. Parameter Estimation Analysis of Statistical Model

In this section, real measured sea clutter datasets of different range bins are selected
to analyze the parameter estimation performance of the GP distribution. Then, the GP
distribution parameters are estimated by the proposed method according to the calculation
procedures in Section 2. For contrast, the BiP and truncated moment estimation methods
are also analyzed. Figure 4a shows the histograms and theoretical distribution curves of the
overall amplitude PDF based on different parameter estimation methods under a high sea
state. Except for the purple dotted curve estimated by the traditional second-fourth MoM
method, the other curves can match the sea clutter datasets well in Figure 4a. Likewise, it
was also found that the fitted curve of MoM deviates far from the statistical histogram in
Figure 4b, which indicates that the emergency of sea spikes with an increasing sea state
will severely influence the performance of the MoM estimator. The histogram of data #3
and the PDF of fitted curves based on the four parameter estimation methods are shown in
Figure 4c. From Figure 4c, it was found that the red curve fitted by the proposed method
has a better matching effect with the statistical histogram, especially in the tail part. The
more detailed discussion of the distribution model-matched results are analyzed from the
GOF methods in the next section.

8000 T T 10000
Histogram Histogram
L = = :The Proposed method | 9000 - The Proposed Method b
7000 ! .
Truncated Moment Estiamtion I Truncated Moment Estimation
| — — — -Moments Estiamtion 8000 [ \‘ ———— Moments Estimation q
6000 H \‘ Bipercentile Parameter Estimation | - I Bipercentile Parameter Estimation
il 7000 | 8
| 1
5000 f| ) ‘
3 z 6000 | 30! i
g 5 Mk
| Il 25 |
= g 5000 i}
[ [0 |
L 2 i
[ ) - 4000 ]|
~ fHHE
T~ 3000 | {11
e = - ol 1 ‘y | \\
_______ 2000 { \
—————— I

6.5 7/1 75 8 85 9 1000

Normalized clutter amplitude

10 12 14 16 18 0
Normalized clutter amplitude

(a) (b)
1800 T T T T T T
Histogram
1600 The Proposed method B
Truncated Moment Estiamtion
1400 | Moments Estiamtion i
Bipercentile Parameter Estimation
1200 80 q
3
c 1000 - / ]
0] h
=] /
g /
Q goor 4
@ [
600 F | .
400 | -
200 1
0 S 1 —
0 1 2 3 4 5 6 7 8
Normalized clutter amplitude
(9

Figure 4. Histogram of measured sea clutter data: (a) high sea state (Data 1#); (b) middle sea state
(Data 2#); (c) low sea state.
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3.3. Analysis of the GOF Results

In this section, the GOF results of the GP distribution are tested by the MSD, K-S and
MMSD methods. Since the matching effect of the curve fitted by the MoM is inferior under a
higher sea state and when the variable interval takes almost the entire sea clutter sequence to
perform parameter estimation under a lower sea state, the proposed method will degenerate
MoM. Therefore, the MSD, MMSD and K-S distance are calculated respectively based on
BiP, truncated moment estimation and the proposed method.

Figures 5-7 show the GOF results of three parameter estimation methods in different
range bins under different sea states. Since the sea state of Data 1# in Figure 5 is about 4, the
interval is selected in the middle and tail part of the sea clutter series according to criterion
discussed in Section 2. From Figure 5, it was found that the MSD and K-S results based
on BiP and the truncated are worse because the BiP method only uses a pair of amplitude
values in sea clutter series, which affects the accuracy and stability of parameter estimation,
and the truncated method is unable to adjust the initial position of the sea clutter sequence
for parameter estimation according to the statistical feature of the sea clutter, while the
proposed method has the smallest MSD and K-S results, which represents the effectiveness
of the proposed method. This is because the proposed method not only takes advantage
of the information of bipercentile points, but it also utilizes the partial properties of the
sea clutter series, which can better adjust the interval location according to the statistical
feature of the sea clutter. Moreover, it can also be found that the MMSD results based on
the proposed method are the smallest, which mean that the proposed VIE method can also
improve the parameter estimation performance of the tail part of the PDF, which is helpful
to perform target detection and to decrease the false alarm rate.

Moreover, the experiment based on Data 2# is also analyzed. Since the sea state of
Data 2# is collected under a middle sea state, the interval is selected in the middle part of
the sea clutter series. Figure 6 shows the GOF results of Data 2#. From Figure 6, it was
found that the parameter estimation performance of the proposed method is better than
that of the other methods, which is consistent with the results in Figure 5.

To further analyze the model-matching effect of the three parameter estimation meth-
ods, we have also performed the GOF experiment based on Data 3#. Since the sea state
of Data 3# is relatively low, the interval is selected in the front and middle part of sea
clutter sequences. From Figure 7a, it was found that the MSD results of the three parameter
estimations are similar when the sea state is relatively low. The reason is that the number
of sea spikes in the sea clutter sequences decreases, and the distribution of the sea clutter
amplitude statistical histogram becomes more homogeneous under a low sea state condi-
tion. Nevertheless, the proposed method is still able to improve the accuracy of parameter
estimation from the MSD, K-S and MMSD results in Figure 6.

To summarize, from the real sea clutter results analyzed in Figures 5-7, we can con-
clude that the proposed VIE method has a better parameter estimation performance than
the other method under either sea state. Moreover, we can find that the parameter estima-
tion performance of the proposed method gradually increases with the increase in the sea
state level. This phenomenon indicates that the proposed method has a better performance
improvement for parameter estimation under a higher sea state, which contributes to a
decrease in the false alarm rate and enhances target detection performance under complex
sea clutter background.

To further illustrate the effectiveness of the proposed method, the other 200 range
bins are randomly selected from 10 IPIX datasets to perform parameter estimation, and the
mean values of the MSD, MMSD and K-S results from the 200 different sea clutter range
bins are calculated, and the results are shown in Table 2. From Table 2, it was found that the
results of MSD, K-S and MMSD based on the proposed method is smallest, which proves
the effectiveness of the proposed method.
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Figure 5. GOF results under a high sea state: (a) Msd_results (Data 1#); (b) Ks_result (Data 1#);
(c) Mmsd_results (Data 1#).
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Table 2. Different parameter estimation performance analyses.

Parameter Estimation Method MSD K-S MMSD
Proposed method 5.865 x 1074 4.09 x 1072 1.0332 x 10~
BIP method [31] 9.673 x 1074 5.395 x 102 1.968 x 10~?
truncated moment estimation 4 ) —9
method [32] 6.091 x 10 4595 x 10 2.655 x 10

3.4. Parameter Performance Analysis through Monte Carlo Experiments

In Section 3.3, the GOF results of the parameter estimation method was analyzed
through real sea clutter datasets. To further analyze the performance of the proposed VIE
method, we performed the Monte Carlo experiments to enhance the persuasiveness of the
proposed method. In this section, the spherically invariant random process (SIRP) method
is taken to generate the simulated sea clutter data, which obey GP distribution with different
parameters [33-40]. The simulated sea clutter amplitude series are shown in Figure 8a.
While the histogram of simulated sea clutter series and the theoretical distribution curves
are shown in Figure 8b. In Figure 8a, to make the generated sea clutter data closer to the
real data, the larger-amplitude echoes have been added to simulate the sea spikes. From
the results in Figure 8b, it was found that Rayleigh distribution, Log-normal distribution,
Weibull distribution and K distribution fit worse to the simulated sea clutter data, while
the Pareto distribution matched the data well. The results above confirm the validity of the
simulated sea clutter.

x10*

Amplitude
- N N w w B
(4] o (4] o (3] o

o
T

o

Histogram
— — — -Rayleigh distribution | 7
Normal distribution
Weibull distribution | 7
K distribution
= = Pareto distribution |

Frequency

3 4 5 6 15 20 25 30 35 40
Pulse x10% Normalized clutter amplitude
(a) (b)

Figure 8. The simulated sea clutter sequence: (a) sea clutter amplitude sequence; (b) histogram of
simulated data.

Through the simulated sea clutter datasets, we performed 1000 times independent
replicated experiments to estimate the parameters of GP distribution based on the four
mentioned methods discussed in the paper. Then, the relative mean square error (RMSE)
of the shape parameter A and scale parameter a were calculated, and the formula for
calculating the RMSE of shape parameter A is shown as follows:

~ 2
T&(A—A
RMSE), = — ! 29
() 2

where L represents the times of independent replicate experiment, A; represents the es-
timated value of the shape parameter A, and the RMSE of the scale parameter 4 is also
calculated as follows:

2

Loa
RMSEa_lz(al ”) (30)

L=\ a
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where 4; represents the estimated value of scale parameter 4, and L represents the times of
the independent replicate experiment.

The calculation results of the RMSE are shown in Figure 9a, which represent the RMSE
calculation results of shape parameter A , and Figure 9b represents the RMSE calculation
results of scale parameter 4. From Figure 9, the cyan curve represents the calculation results
of RMSE based on the proposed method, both the shape parameter and scale parameter
have smaller RMSE calculation results than that of the other three methods. Therefore, we
can conclude that the proposed method has a higher parameter estimation accuracy, which
indicates that the proposed parameter estimation method has better performance.

Shape parameter Scale parameter
T T T T T T

10° T T 102 T .
1 " —©5— Moments Estimation
10° —5— Moments Estimation o 103 F Bipercentile Parameter Estimation f{
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1034 : : : ‘ . . : ‘ ‘ ‘ ‘ ‘
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(a) (b)

Figure 9. RMSE calculation results of two parameters: (a) RMSE of shape parameter; (b) RMSE of
scale parameter.

4. Conclusions

This paper mainly emphasized the parameter estimation of the GP distribution model
of sea clutter. To overcome the shortcomings of the MoM-based parameter estimation
methods, a novel parameter estimation method based on variable intervals was proposed
for GP distribution. Considering the local properties of sea clutter, we took a variable
interval of the entire sea clutter series for parameter estimation, where the interval position
was selected according to the sea state conditions. Moreover, the zero-moment was con-
structed as a part of the proposed parameter estimator, which could increase the parameter
estimation accuracy. Through the analysis of real measured sea clutter data, the proposed
method had a better parameter estimation performance than the state-of-the-art moments
estimators. The proposed algorithm was applicable for small radar observation scenarios,
which belong to the same sea state. For large radar observation conditions with different sea
states, the proposed method should be combined with the sea state separation method. For
future practical system applications, the sea state should be a priori obtained or estimated
before using the VIE method
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