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Abstract: This paper proposes a cloud-based mangrove monitoring framework that uses Google
Collaboratory and Google Earth Engine to classify mangroves in Southeast Asia (SEA) using satellite
remote sensing imagery (SRSI). Three multi-class classification convolutional neural network (CNN)
models were generated, showing F1-score values as high as 0.9 in only six epochs of training.
Mangrove forests are tropical and subtropical environments that provide essential ecosystem services
to local biota and coastal communities and are considered the most efficient vegetative carbon stock
globally. Despite their importance, mangrove forest cover continues to decline worldwide, especially
in SEA. Scientists have produced monitoring tools based on SRSI and CNNs to identify deforestation
hotspots and drive targeted interventions. Nevertheless, although CNNs excel in distinguishing
between different landcover types, their greatest limitation remains the need for significant computing
power to operate. This may not always be feasible, especially in developing countries. The proposed
framework is believed to provide a robust, low-cost, cloud-based, near-real-time monitoring tool that
could serve governments, environmental agencies, and researchers, to help map mangroves in SEA.

Keywords: mangrove; deforestation; convolutional neural networks; Google Collaboratory; Google
Earth Engine; monitoring framework

1. Introduction

Mangrove forests are unique tropical and subtropical ecosystems located at the inter-
sections between land and coastal environments [1]. Mangrove trees have the unique ability
to live in saline ecosystems because they have evolved to use salt in their photosynthesis
and struggle to grow in its absence [2]. Due to their locations, mangroves provide numerous
essential ecosystem services to coastal communities [3]. They sustain marine and terrestrial
habitats [4], mitigate the impacts of tsunamis and storms on coastlines [5], support local
fisheries [6], and efficiently sequester carbon [7]. Nonetheless, although mangroves play an
essential role within their habitats [1,8], their cover has been declining globally for the past
two decades due to deforestation, with the most extensive removal occurring in Southeast
Asia (SEA) [9], where exploitative illegal activities [10] and the growth of agriculture and
aquaculture as parts of aggressive economic strategies [1,10] are key drivers of mangrove
loss [5].

Although mangrove forests only make up 0.7% of the global tropical forest cover [8],
they account for ~50% of the global carbon stock worldwide [7], sequestering around four
times the amount of carbon of inland tropical forests [1]. Scientists estimate that mangrove
deforestation alone is responsible for ~10% of the global annual carbon released into the
atmosphere [8]. The figure is particularly relevant for SEA, which alone accounts for ~30%
of the global mangrove forest cover [11]. Thus, the aggressive removal of mangroves in SEA
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disrupts local ecosystems and has global implications, particularly on global net carbon
frameworks and climate change mitigation efforts [12,13].

Mangrove forests are long strips of trees along coasts and rivers [11], and studies
have often failed to distinguish them from other inland forests using satellite remote
sensing imagery (SRSI) [1,10]. Although the scientific community has endeavoured to
produce highly accurate maps using ever-advancing remote sensing technologies [14],
mapping mangroves remains challenging [15]. In a study on global mangrove distribution
mapping by Bunting et al. [9], a traditional machine learning (ML) classifier, such as random
forest (RF), was used to produce a global baseline map of mangroves for 2010, accurately
discerning mangrove forests from other forests. Other scholars have identified four types
of mangroves according to their sedimentary properties: deltaic, estuarine, lagoonal, and open
coast [3].

Scientists widely adopt traditional ML methods, such as support vector machines [16],
k-nearest neighbour [17], and RF [10], to classify land cover types in SRSI [18]. However,
researchers have recently started using methods to map mangroves from complex space-
borne multi-spectral images and proposed using more sophisticated ML classifiers such
as convolutional neural networks (CNNs) [15,19]. CNNs are biologically inspired ML
architectures that emulate the ability of the visual cortex to decompose and recompose
information through interconnected neurons, allowing recognition [20]. These architectures
have several applications, from speech to medical condition recognition [21], and have
excellent large-scale natural image classification performance thanks to their ability to
‘learn’ hierarchical representations [22].

In recent years, CNNs have proven to be more powerful than traditional ML methods
in SRSI classification [23] because, unlike RF, they can capture the semantics of an image
(spatial information) using pixel values alone [24] and are now preferred when classifying
complex landcover types (LCTs), such as vegetation [18]. Nevertheless, a recurrent limi-
tation of CNNs is the need for a considerable amount of labelled data to ‘learn’ features
robustly. Labelling SRSI is an often tedious and lengthy process, and there is a limited
amount of pre-labelled datasets available out there, making their use for classification tasks
with CNNs challenging [25].

There are several methods for adapting CNNs to the task of classifying increasingly
complex hyperspectral SRSI, such as training from scratch or using pre-trained CNNs as
feature extractors [26,27]. The latter is called transfer learning (TL), and it involves using
CNNs that are pre-trained on large labelled natural image datasets such as ImageNet [28]
to train target SRSI [29]. This method overcomes the lack of labelled data [23] and enables
CNNs to be focused on extracting the semantics of observed scenes [30]. Recently, scientists
have deployed CNNs specialised in image segmentation, such as U-Net, because of their
efficacy in learning the spatial relations between LCTs, especially with limited labelled
images [31].

Most of the CNNs analysed demonstrated impressive SRSI classification results, many
with an accuracy above 97% [29,32], but almost all were generated using powerful pro-
prietary computers and supercomputers. Some scholars have reviewed the integration
of cloud-based systems such as Google Earth Engine (GEE) and Google Collaboratory
(GC) to access and classify SRSI using traditional classifiers such as RF [33,34], with some
implementing classifications with CNNs [35,36]. GEE is widely used in environmental
research because it stores and provides access to many SRSI datasets [32]. GC is a browser-
based interface built on Jupyter Notebook’s open-source tools to support code and data
visualisation [37]. It is a fairly new tool and is often used in academia to teach ML [38].

Several studies have been performed on mangrove forest mapping for SEA. One
previous study has used inventories and comparisons on single- and multi-date remotely
sensed datasets to identify mangrove deforestation hotspots in the region [11]. There are
studies that demonstrated the utility of GEE for mapping mangroves in SEA, including
one that used artificial neural network (ANN) and GEE to develop a mangrove vegetation
index mapper [39], and a simple tool called Google Earth Engine Mangrove Mapping



Remote Sens. 2022, 14, 2291 3 of 19

Methodology [40]. Nevertheless, no studies have attempted to classify mangrove forests in
SEA with CNNs using only cloud-based platforms. Furthermore, no study has used a deep
learning mangrove classification pipeline to seamlessly use freely available EO data in GEE
via Google Colab (GC).

Although cloud platforms may not offer as much computational power as super-
computers, there is a growing need to create accessible monitoring tools to enhance and
empower local communities worldwide and meet sustainable development goals [41]. This
research, therefore, aims to create a cloud-based mangrove forest monitoring framework
that is computationally less intensive to implement using GEE, GC, Google Drive (GD),
and Google Cloud Storage (GCS), which uses freely available earth observation data to
distinguish both mangroves from non-mangrove vegetation and map different mangrove
typologies. Through this framework, local communities can generate new training data by
computing new imagery and feeding them to the model. In doing so, they can use these
models to assess how the local landscape is changing and determine if there are activi-
ties, such as illegal deforestation, that require tackling. Using a cloud-based system will
empower local communities to perform their own monitoring, and not rely on specialists
in the field, as it is an affordable resource to process large datasets [42]. Lastly, GC is a
fairly new tool for developing EO-based deep learning models so the frameworks and
procedures described in this study can fuel further research.

2. Materials and Methods
2.1. Software Description
2.1.1. Google Collaboratory

The project employs GC as its core platform because it offers a user-friendly interface
while accessing powerful GPUs from the Google servers [38]. Additionally, using GC
addresses the core limitation of CNNs, which is the need for computers with powerful
GPUs to parallelise the training process. Nevertheless, CNNs can be trained using CPU
power, but the process would be significantly slower [43]. GC is available in free and Pro
(paid monthly) versions. The project used the latter to access the more powerful Nvidia T4
(or P100) GPUs, RAM up to 24 Gb, and get runtime limits of up to 24 h [44].

2.1.2. Monitoring Framework

The monitoring framework was split into three GC notebooks, each serving a different
purpose (see Supplementary Figure S1). Splitting the workflow allows for better code
maintainability and helps frame each of the notebooks as a standalone tool that does not
rely on the others to operate. The user may only need, for example, to export GEE images
into patches and then use them for training elsewhere or import patches from a different
source and only use the framework for training or making predictions. Nonetheless, the
user will need to follow the order of the notebooks if wishing to use the entire workflow.
The monitoring framework prioritises using GD over GCS due to the latter having higher
maintenance costs. The user, however, may use either cloud storage because the framework
supports both.

2.1.3. Custom Packages

The project introduces three custom Python packages with integrated testing that have
the task of unifying, standardising, and simplifying some of the most common methods
of integrating GEE with GC and TensorFlow (TF), aiming to improve the reproducibility
of the workflow (Table 1). Some of the most important tasks include adapting GEE’s
JavaScript backend to its Python API for GC implementations, allowing for seamless
interchangeability between Sentinel-2 and Landsat-5, Landsat-7, and Landsat-8 sensors.
The packages also provide a single solution to implementing the multitude of methods to
integrate ML in GC using TF and TFRecords patches exported from GEE, many of which
are proposed by Google [45]. Most of these methods were considered too short or not
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well-documented, especially for a beginner user, and they all failed to execute multi-class
classification tasks in a reproducible way (i.e., they only worked for the examples provided).

Table 1. Details of the custom packages introduced in the project.

Package Name Version Language Description

eeCustomTools 0.1.0 Python 3
Support for satellite imagery classification through computation of
spectral indices, image segmentation, and cloud masking for Sentinel-2,
Landsat-5, Landsat-7, and Landsat-8 sensors.

eeCustomDeepTools 0.1.0 Python 3 Support for manipulating and converting TFRecords exported through
Google Earth Engine into batches ready for training using Keras.

CustomNeuralNetworks 0.1.0 Python 3 Implementation of custom Keras Neural Networks.

2.1.4. Code Metadata

The project was developed in Python 3.8 using Jupyter Notebooks and Visual Studio
Code on a Macintosh computer and JavaScript on the GEE browser-based platform. Al-
though the project does not rely on platforms outside the generated workflow, some parts
required using GEE’s interactive tool to draw the export areas and drop points to identify
the LCTs around SEA. Unfortunately, this process was not possible directly in GC due to
limitations of the GEE Python API for GC when the project was carried out, but recent
updates of the geemap package (see below) have made this possible now.

Python modules such as json, subprocess, and pathlib were used to access TFRecords
from the target storage. The ee and geemap packages were used to access GEE’s Python
API (the former) and output GEE maps (the latter). TensorFlow was the core library to
implement the ML workflow using TFRecords exported from GEE. Keras is the API with a
TF backend that enabled the generation and training of CNNs. The packages matplotlib,
numpy, and pprint were used for visualisation purposes (numpy enabled the TFRecords files
to be converted to arrays and facilitated plotting). Finally, the google.colab package was used
to enable users to access target GD or GCS. Although users are strongly encouraged to use
the monitoring framework online, it may also be used on a local machine using Jupyter
Notebooks, with some caveats (i.e., accessing GD and GCS from within the Notebook
will no longer be possible). Ultimately, the only requirement for using GC is an internet
connection and an up-to-date version of one’s preferred web browser (Google suggests
using Chrome, Safari, or Firefox) [46].

2.2. Study Area

The project uses the median pixel values of Sentinel-2 (S2) multi-spectral images
between January and December 2016 (Figure 1). S2 was preferred to Landsat sensors
because of its finer spatial resolution (10 m for blue, green, red, and NIR bands and 20 m for
other bands, as opposed to 30–60 m with Landsat) as it is regarded as an essential feature
to detecting subtle differences between LCTs in complex SRSI [15].

2.3. Random Forest Classification

The first stage of the preliminary classification identified single points (latitude/longitude
coordinate couples) for each of the nine LCTs using GEE’s online-based interactive map
(listed in Supplementary Figure S2). The identification process was performed using the
median image for 2016 to align with the year used by Worthington et al. [3], to produce the
mangroves’ shapefiles baseline. The process selected an average of 20 points for each of the
9 LCTs in different countries of SEA to account for different lighting conditions and the non-
homogenous count of mangroves’ shapefile, for a total of 1080 points (Table 2). Although
the identified points covered a large area, they were all close to the equator, and the
potentially different field of view of the Sentinel-2 sensor when the images were captured
was not considered an issue, as it would have affected the points equally. Furthermore,
buffers were computed around each point (5 m for clouds and 50 m for the rest, due to



Remote Sens. 2022, 14, 2291 5 of 19

clouds covering smaller areas) to gather additional pixels to attribute to each of the LCTs.
Ultimately, it is worth noting (this is explained further in Section 2.7) that after an initial
exploratory training phase, the classes were dropped from nine to seven, combining urban,
clouds, and ground LCTs into a single class.

Remote Sens. 2022, 14, x 5 of 21 
 

 

 
Figure 1. RGB image of Southeast Asia generated in Google Earth Engine using the cloud-masked 
Sentinel-2 sensor mosaicked imagery captured in 2016. The image does not show all the classifica-
tion points due to its scale, and each point on the map represents a cluster of multiple points. Points 
and export areas were also generated on GEE. 

2.3. Random Forest Classification 
The first stage of the preliminary classification identified single points (latitude/lon-

gitude coordinate couples) for each of the nine LCTs using GEE’s online-based interactive 
map (listed in Supplementary Figure S2). The identification process was performed using 
the median image for 2016 to align with the year used by Worthington et al. [3], to produce 
the mangroves’ shapefiles baseline. The process selected an average of 20 points for each 
of the 9 LCTs in different countries of SEA to account for different lighting conditions and 
the non-homogenous count of mangroves’ shapefile, for a total of 1080 points (Table 2). 
Although the identified points covered a large area, they were all close to the equator, and 
the potentially different field of view of the Sentinel-2 sensor when the images were cap-
tured was not considered an issue, as it would have affected the points equally. Further-
more, buffers were computed around each point (5 m for clouds and 50 m for the rest, due 
to clouds covering smaller areas) to gather additional pixels to attribute to each of the 
LCTs. Ultimately, it is worth noting (this is explained further in Section 2.7) that after an 
initial exploratory training phase, the classes were dropped from nine to seven, combining 
urban, clouds, and ground LCTs into a single class. 

  

Figure 1. RGB image of Southeast Asia generated in Google Earth Engine using the cloud-masked
Sentinel-2 sensor mosaicked imagery captured in 2016. The image does not show all the classification
points due to its scale, and each point on the map represents a cluster of multiple points. Points and
export areas were also generated on GEE.

Table 2. Number of mangroves’ shapefiles used in each country within the area of interest (AOI) (left
panel) and points used for each of the classes identified in each country (right panel). Philippines
and Indonesia were not used due to the complexity and small size of their respective countries’
boundaries, making image processing and class identification challenging. The number of points
for each class was kept constant at twenty, where possible (some countries did not have some of the
mangroves’ typologies, or the shapefiles were too small), to overcome the imbalance in mangroves’
shapefiles count in each country.

Mangroves’ Shapefiles Used within the AOI * Number of Points for Each Class Identified in Each Country

Delta Estuary Lagoon Open
Coast Delta Estuary Lagoon Open

Coast Water Non-
Mangrove Cloud Ground Urban

Cambodia 0 7 3 8 0 20 20 20 20 20 20 20 20
Laos 0 0 0 0 0 0 0 0 20 20 20 20 20

Malaysia 8 48 10 58 30 30 30 30 20 20 20 20 30
Myanmar 4 20 11 33 30 30 30 30 25 20 20 20 10
Philippines - - - - - - - - - - - - -
Indonesia - - - - - - - - - - - - -
Thailand 1 31 6 40 30 20 20 20 15 20 20 20 20
Vietnam 2 10 3 17 30 20 20 20 20 20 20 20 20

Total in
AOI ** 90 946 628 2509 120 120 120 120 120 120 120 120 120

* The AOI is the whole image in Figure 1. ** Total number of mangroves’ shapefiles from Worthington et al. [3]
within the AOI.

The second stage was to segment the median image composite using simple non-
iterative clustering, which divides an image into spectrally different small regions to
improve classification performance [47]. Finally, the entire scene was classified by feeding
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the segmented multi-band image to a standard RF classifier algorithm using 200 indepen-
dent decision tree classifiers for each pixel [48]. The classification used 21 bands, including
12 spectral bands (B1–B12) and 9 spectral indices (Figure S2). The classification values were
stored as an additional band called ‘classification’ to the base median image composite for
a total of 22 bands.

A grid was applied to the image to obtain patches of 256 × 256 pixels to align with
the literature [49]. Only patches contained within the Export Areas (shown in Figure 1)
were exported onto GD as TFRecords to avoid exceeding the memory allowed in GEE for a
single process, obtaining a total of 48,786 patches.

2.4. Convolutional Neural Networks

The project proposes the U-Net architecture to perform the multi-class classification
of SRSI (Figure 2). U-Net was originally designed for binary segmentation in medical
imagery [50] to generate results with a small number of labelled data [51]. Nonetheless,
U-Net has since become a standard in densely labelled SRSI [52], demonstrating superior
performance over other CNNs and adapting well to multi-class classification tasks [24,53].
The U-Net architecture used here diverges from what was first proposed by Ronneberger
et al. [50], emulating the U-Net architectures used in SRSI classifications [49,54].
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Figure 2. The proposed U-Net architecture was adapted from Ronneberger et al. [50]. The model’s
inputs were patches of size 256 × 256 pixels with 12 bands (here, the input image is shown as an
RGB image for visualisation purposes). The green boxes represent an image as it progresses through
the U-Net, with modified pixel sizes (bottom-left of boxes) and number of channels (bands) (top of
boxes). The output is a single-channel image with a user-defined number of classes (here, seven).

The left side of the proposed U-Net encodes the image through convolutions and
max-pools operations into (semantic) feature representations at multiple levels, followed
by ReLU activation functions. The right side decodes the image through up-sampling
operations, concatenating the learned semantics and projecting it in higher resolutions to
obtain a dense classification through a probability distribution [51]. The skip-connections
enable the model to compare the encoded image to its decoded counterpart and only use
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the pixels with the highest probability of being correctly classified (Figure 2). The final layer
is a convolution that uses a SoftMax function to obtain a multi-class probability distribution
and generate a single-channel (band) image with a user-defined number of classes (here,
seven). A difference with the original U-Net [50] is the presence of batch normalisations
before each ReLU activation.

The U-Net architecture in Figure 2 was trained from scratch (called U-Net hereafter)
(i.e., the model is yet to produce any weights that represent the ‘learned’ features) using
the dataset of 48,786 patches of size 256 × 256 pixels exported from GEE, but only using
the 12 spectral bands in the input images (B1–B12) (the user, however, can use an arbitrary
number of bands). Additionally, to evaluate the strength of the proposed model, this was
compared to two other U-Nets that used VGG19 [55] and ResNet50 [56] as feature extractors
(or encoders), which replaced the left-hand side structure of Figure 2 (called VGG19 and
ResNet50 moving forward). VGG19 and ResNet50 were used with weights pre-trained
on ImageNet to understand the adaptability of TL to complex SRSI segmentation tasks.
However, using pre-trained models limited the number of bands used for the training to
three (see Section 4 for an explanation of the limitations). It was then decided to use bands
B3, B4 and B8, in combination, to exploit the near-infrared region to discern vegetation
better using the characteristic red edge of plants. Mangroves can be easily distinguished
from other land covers such as ground and water using this spectral feature, which is
unique to plants [39]. Ultimately, spectral indices were not fed to any of the models because
studies found that they do not improve the accuracy of the models, as they can be directly
extracted from the data [24].

2.5. Hyperparameters Search

Although most studies agree with using the categorical cross-entropy for U-Net
classification tasks, often using weights to compensate for imbalanced data [50,51,57], the
task of obtaining weights for TFRecords was not as straightforward. TFRecords cannot
be handled like tensors or arrays, and they can only be controlled in ‘batches’ (stacks) of
data. The dataset could not be explored to understand the recurrence of a class unless it
was converted into tensors or arrays, which was not, however, computationally feasible.
Ultimately, it was decided to use the recently developed Focal Loss (FL) function, designed to
downweigh well-classified categories and ‘focus’ on those not-well-classified to compensate
for the categorical imbalance [58]. In other words, if a single 256 × 256 patch had 90% of
the class ‘non-mangroves’, and only 10% of the class ‘delta’, then the FL function would
focus more on the latter to unpack its semantics. FL is available in the TF addons library as
‘SigmoidFocalCrossEntropy’ [59]. The FL function is defined by the equation:

FL(pt) = −αt(1− pt)
γ log(pt), (1)

where γ is the focusing parameter that downweighs well-classified samples, whereas α is a
regularisation parameter that stabilises the loss [58]. Scientists have compared FL to other
loss functions and demonstrated its superiority [60] and promising performance in U-Net
models [61].

The optimiser of choice was the Adaptive Moment Estimation (Adam), which combines
an adaptive learning rate (LR) (step size down the loss landscape) with a momentum (a
parameter that controls the steepness of the gradient) [62]. The optimiser is defined as:

θt+1 = θt −
η√

ν̂t + ε
m̂t, (2)

where θ is the parameter, η is the LR ν̂ and m̂ are the first (mean) and second (variance)
momentum, and ε is the error term [31,62,63]. The adaptive LR makes Adam an efficient
optimiser in image segmentation tasks with U-Net [31]. The LR was tested as 0.001 (default)
and 0.0001, and the batch size was set to 12.
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2.6. Accuracy Assessment

The performance of the RF classifier run in GEE was assessed using a confusion matrix,
producer and user accuracies, and kappa coefficient. The producer accuracy determines
the probability that the classified samples represent that category on the ground. The user
accuracy determines the probability of the samples to be correctly classified. Finally, the
Kappa coefficient determines the overall accuracy of the classification. All three coefficients
provide a percentage of numbers between 0 and 1 [15,64]. The RF classifier was trained
using a 70–30% training–test split, whereas the deep models were trained using an 80-10-
10% split. The splitting process ensured the use of ‘unseen’ data to validate the performance
of the classifiers.

The performances of the deep models were also evaluated using the loss, the F1-score
(the harmonic average of precision and recall), and the categorical accuracy (CA) metrics,
similar to other studies [24,53,65]. F1-score is defined as:

F1 = 2∗ Precision ∗ Recall
Precision + Recall

, (3)

where Precision is the ratio of correctly predicted classes among all the predicted classes,
while Recall is the ratio of correctly classified classes out of all predicted classes [49].
The F1-score was the preferred metric to identify the best-performing models because it
accounts for false negatives and false positives, which was deemed more important in
a classification problem where the classes are imbalanced. The CA is expressed as the
percentage of classified pixels that match the original classification (i.e., the classification of
the RF classifier) [66], accounting for true positives and true negatives. The CA metric was
only used to explain the performance of the models.

Finally, the deep models were tested on a small arbitrarily chosen area of size
12 × 256 × 256 pixels and evaluated on the single classes using user and producer accura-
cies.

2.7. Training Process

The study trained 30 models for over 480 h of cumulative GC runtime. First, the
analysis began training the U-Net using all the nine classes in Figure 2. However, it was
immediately apparent that the number of classes was too large for the models to learn the
semantics of the scene effectively and efficiently, probably due to its complexity. Therefore,
it was decided to use seven classes instead: the four mangrove typologies, ‘water’, ‘non-
mangroves’, and ‘others’ (clouds, ground, and urban combined).

The models regularly reached the 24 h GC Pro runtime limit, only training for 7 epochs
at maximum in a single runtime. The runtime limit was not an issue, as the models were
saved onto GD at each epoch using the ModelCheckPoint method within the Keras API [67].
The method enabled the models to be loaded and continue the training in a new runtime.
Nevertheless, each model saved at every epoch was over 350 Mb, resulting in a total of
2.5 Gb of space in GD for 7 epochs. Since the project aimed to emulate a near-real-time
monitoring tool with minimal budget requirements (only 15 Gb are free in GD), it was
decided to evaluate and compare the performances of the models trained on only seven
epochs to evaluate the accuracy of short training sessions.

3. Results
3.1. Performance Comparisons

The RF classifier in GEE showed very high accuracy for both the user and producer,
with an overall accuracy of k = 0.997 (Table 3). The result was significant because it ensured
that the accuracy assessment of the deep models was based on a very accurate preliminary
pixel-wise classification using the traditional RF method.
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Table 3. Confusion matrix of the random forest classifier, with relative producer and user accuracies
and kappa coefficient. The accuracy was assessed on a 70–30 split between the training and the
test set.

Delta Estuary Lagoon Open Coast Water Non-Mangrove Others Producer

2716 0 0 0 0 0 0 1.00
0 2689 0 0 0 0 0 1.00
0 0 2591 0 0 0 0 1.00
0 0 0 2619 0 0 0 1.00
9 0 0 0 2336 0 2 0.995
0 0 0 0 0 2168 0 1.00

30 1 0 0 0 2 5100 0.994

User 0.986 0.999 1.00 1.00 1.00 0.999 0.999 k = 0.997

As for the deep models, U-Net showed the lowest loss and the highest F1-score and
CA overall. All the models reached the lowest loss on the validation sets at epoch seven,
with loss = 0.068, 0.099, and 0.121 for U-Net, VGG-19, and ResNet50, respectively, showing
no signs of overfitting (Figure 3). Overfitting occurs when the model fits the training set
‘too well’, causing an increase in the generalisation error (i.e., the model stops learning) [68].
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The lack of overfitting may be due to the number of filters used in the network,
which were fewer than what was originally used by Ronneberger et al. [50]. Scholars
have observed a positive correlation between the number of filters and the chance for the
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model to lose information [49]. Additionally, batch normalisation helps avoid overfitting by
regularising the loss [65]. Despite the presence of skip-connections, which helps ‘smooth’
the loss [63], the loss for the VGG19 and ResNet50 was problematic at times (Figure 3). The
issue was possibly due to the complexity of the loss-landscapes [63], which was expected
due to the heterogeneity of the scene. The complexity may have hindered the segmentation
task [30] and led the models to dwell in ‘local minima’. The issue indeed persisted using a
smaller LR (0.0001) [68].

Across all the epochs, the best models (i.e., those with the highest F1-score on the
validation set) were at epochs six, seven, and four, for U-Net, VGG19, and ResNet50,
respectively (Table 4). The metrics analysis showed that U-Net and ResNet50 maintained
an F1-score above 0.7 across training, validation, and test sets, whereas VGG19 dropped
the F1-score dramatically on the test set. The result eloquently demonstrates that VGG19
struggled to identify the false negatives and positives when tested on unseen data. On
the other hand, unsurprisingly, CA showed very high values for all the models, probably
inflated because the metric ignores data imbalance [66].

Table 4. Metrics of the best-performing models according to the F1-scores for the validation sets (rows
in bold). The datasets were split as 80-10-10% for the training, validation, and test sets, respectively.

Model Epoch Dataset Loss Precision Recall F1-Score Accuracy

U-Net 6
Training 0.043 0.989 0.840 0.908 0.932

Validation 0.068 0.961 0.668 0.788 0.907
Test 0.062 0.981 0.645 0.778 0.910

VGG19 7
Training 0.044 0.990 0.827 0.901 0.930

Validation 0.100 0.987 0.676 0.803 0.894
Test 0.100 0.988 0.261 0.412 0.896

ResNet50 4
Training 0.035 0.993 0.876 0.931 0.948

Validation 0.125 0.990 0.543 0.701 0.732
Test 0.127 0.993 0.542 0.701 0.725

The loss showed low values for all the models. However, this is both a strength and
a limitation. It is a strength because it demonstrates that the models could navigate the
loss landscape and find ‘local minima’ and allow for reliable predictions. On the other
hand, it is a limitation because it means that the models could not be trained for more
epochs without risking overfitting the data [68]. The U-Net model showed the lowest losses,
probably thanks to its ability to ingest any number of channels (bands) for the input images,
as opposed to only three for VGG19 and ResNet50. The precision metric revealed very high
values across the models, demonstrating the ability of the models to distinguish between
true and false positives. However, the recall metric proved that both VGG19 and ResNet50
suffered from the weight of false negatives. U-Net was the only model that ‘passed’ the
accuracy assessment, showcasing good predictive ability across the board.

The results were confirmed by visualising the classification of the test set for each of
the models as the epochs progressed. The U-Net demonstrated to be capable of learning
the semantics of the images and discerning between different classes very well, explaining
the high F1-score obtained on the test set (Figure 4A). On the other hand, VGG19 and
ResNet50 struggled to learn semantics and discern between classes. The progression of the
epochs (Figure 4B,C) reflects what is seen in Figure 3B,C, where the loss and the F1-score
fluctuated. It seemed that the models may have needed a few more epochs of training to
capture the complexity of the scenes. Nonetheless, the loss values did not show much room
for improvement without the risk of overfitting.
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When analysing the classification performance at the class level of the best-performing
models through producer and user accuracies, it was evident that the positive metrics seen
so far were driven mainly by the correct classification of non-mangrove classes (Table 5). To
that end, mangrove typologies, particularly lagoon and open coast, were poorly classified
by all models, with U-Net showing slightly better accuracies. This issue may be linked to
the high spectral similarities between mangrove typologies and the significant intra-class
heterogeneity in the SRSI [26]. After all, the differentiation between mangrove typologies
by Worthington et al. [3] was mainly based on sedimentology rather than the plant’s canopy
structure, meaning that the mangroves may very well look alike from space, both optically
and spectrally. Moreover, mangroves’ dense canopy does not allow them to discern the
soil’s structure beneath them.
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Table 5. User and producer accuracies of the deep models which scored the highest F1-score on the
validation sets.

Epoch Delta Estuary Lagoon Open Coast Water Non-Mangroves Other

U
-N

et User
6

0.044 0.244 0.00 0.00 0.529 0.868 0.493

Producer 0.165 0.361 0.00 0.00 0.350 0.055 0.498

V
G

G
19

User
7

0.008 0.00 0.00 0.00 0.197 0.963 0.931

Producer 0.209 0.146 0.00 0.00 0.498 0.211 0.264

R
es

N
et

50

User
4

0.00 0.011 0.006 0.00 0.333 0.903 0.117

Producer 0.00 0.187 0.103 0.00 0.372 0.148 0.372

The inability of VGG19 and ResNet50 to classify water correctly was somewhat sur-
prising. This is because the models employed in the study are designed to better interpret
the semantics of the images and the shapes/outlines of the objects in them, which are very
distinct for water bodies. However, this was isolated to VGG19 and ResNet50 because
both U-Net and the preliminary classification using RF distinguished water bodies well.
Furthermore, the ‘non-mangroves’ class was the best-classified category across all models.
This was expected because the plant’s spectral features are very distinct [39]. Finally, the
class ‘other’ (i.e., clouds, ground, urban) was best classified by the VGG19 model. However,
this may have been a product of the failure in segmenting the rest of the features in the
SRSI, as seen in Figure 4B.

U-Net was the ‘most balanced’ model, discerning between more classes than VGG19
and ResNet50 and segmenting the images better. Nevertheless, the model failed to capture
the differences between mangrove typologies, which may be an issue unrelated to the
model (as discussed earlier).

3.2. Spatial-Temporal Performance of U-Net

Given that the U-Net was the best-performing model of the study, it was decided
to test its adaptability and performance in a multi-year classification task. Although the
model showed poor performance in classifying mangrove classes, it showed promising
results with the rest of the classes. This was evident when merging the classified patches
into a single scene for an arbitrary target area (Figure 5, 2016 and Table 6) and visually
comparing it to RGB images of the same area (Figure 6, 2016). The model’s greatest strength
was its ability to capture the shapes of the riverbanks, but it often confused what could be
flood plains (i.e., rice fields or wet ground) with water. Nonetheless, the U-Net might have
confused some mangrove typologies with non-mangrove forest. Additionally, the U-Net
showed some issues at the edges of the patches (multiple squares are visible in Figure 5,
2016), although this is a known issue with U-Net models [52] that can be overcome by
generating patches with overlapping pixels [24].

When the U-Net was used to classify median composite images from 2017 and 2018, it
soundly failed to discern between classes (Figures 5 and 6, Tables 7 and 8). The model could
distinguish between the class other and the rest of the classes, but it could not capture the
differences between mangrove and non-mangrove forests, and it could not segment water
bodies properly (i.e., rivers were mostly ignored). The inability to segment waterbodies
was unexpected, especially considering that these, particularly the larger ones, are mostly
similar across the three median-values images (Figure 6). The issue may be due to the
interannual variability of plant phenology, which is known to vary with changing climatic
conditions, water availability, and seasonality [2]. These last two factors are especially
relevant along riverbanks in SEA due to the impact of both rainfall and distinct high- and
low-tide ranges’ variability over time [69]. Tides play a crucial role in the identification of
mangroves from space, as they can often be inundated and look spectrally similar to water,
even if the canopy stands above it. The spectral reflectance of the canopy can effectively be
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altered by the presence of more suspended sediments and water beneath [70]. Additionally,
saturated ground can too be spectrally similar to water. Moreover, light conditions, water
vapour, and pollutants in the atmosphere may have distorted the reflectance of bodies on
the ground. Ultimately, other unknown underlying processes may have altered the spectral
properties of the features in the images (e.g., drought, lower groundwater recharge, lower
salinity).
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Table 6. Confusion matrices with relative user and producer accuracies produced using U-Net for
the 2016 classified image.

Delta Estuary Lagoon Open Coast Water Non-Mangrove Others Producer

4611 23,548 0 0 35,982 21,626 19,398 0.044
10,836 55,274 0 0 72,801 51,592 36,145 0.244
1169 6237 0 0 9154 5059 6566 0
1768 10,660 0 0 14,958 8835 9226 0
6524 27,151 0 0 95,956 30,584 21,134 0.529
207 3623 0 0 1887 789 2598 0.087

2930 26,547 0 0 43,218 23,853 93,986 0.493

User 0.164 0.361 0 0 0.350 0.006 0.497
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Figure 6. Median RGB images of the target area in 2016, 2017, and 2018. The images were captured
by Sentinel-2. Only images with less than 30% cloud cover were selected, and remaining clouds were
masked. The scalebar and north arrow apply to all images.

Table 7. Confusion matrices with relative user and producer accuracies produced using U-Net for
the 2017 classified image.

Delta Estuary Lagoon Open Coast Water Non-Mangrove Others Producer

218 440 0 0 32,371 62,378 9758 0.002
311 420 0 0 62,132 140,710 23,075 0.002
50 195 0 0 8794 15,501 3645 0
47 91 0 0 13,152 26,679 5478 0

421 1210 0 0 84,185 81,384 14,149 0.464
5 4 0 0 1043 6613 1439 0.726

203 346 0 0 45,499 75,688 68,798 0.361

User 0.174 0.155 0 0 0.341 0.016 0.545

Table 8. Confusion matrices with relative user and producer accuracies produced using U-Net for
the 2018 classified image.

Delta Estuary Lagoon Open Coast Water Non-Mangrove Others Producer

306 438 0 0 38,538 50,112 15,771 0.003
582 1103 0 0 73,624 119,179 32,160 0.005
60 102 0 0 10,308 12,935 4780 0
74 193 0 0 15,974 21,629 7577 0

491 1496 0 0 95,223 68,422 15,717 0.525
25 74 0 0 1273 3173 4559 0.349

294 637 0 0 57,315 50,652 81,636 0.428

User 0.167 0.273 0 0 0.326 0.010 0.503
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4. Discussion

The use of GC was surprisingly stable throughout the project, and any drop in the
internet connection (provided they were not for too long) did not lead to runtime failures
and affected the completion of the training. The stability of GC is an essential aspect of the
platform, particularly when the internet connection is not consistently stable. Although
the cost of GC’s Pro version is low, the project has indirectly shown that using GC’s free
version would not be feasible for a particularly intensive task. This is true unless the user
is comfortable with consistently saving and picking up the training multiple times, has a
large amount of Google Storage available (which has a monetary cost), and can wait for
Google to allow for another training session. Unfortunately, there is no way of saying when
the server will be ‘free enough’ to let a free user start training sessions again.

The project has revealed substantial differences between the U-Net model and VGG19
and ResNet50, demonstrating that TL was not appropriate for such a complex classification
task. Although all the models failed to classify some mangrove classes, VGG19 and
ResNet50 showed an evident inability to segment the images (Figure 4B,C). Some scholars
argue that pre-trained models contain unnecessary information for classifying highly
variable SRSI [71,72] and that the use of pre-trained models as feature extractors is best-
suited for small-scale datasets [26]. Furthermore, the VGG19 and ResNet50 models could
only accept three bands if used with pre-trained weights, potentially losing meaningful
SRSI semantics and spectral properties.

The use of seven classes may have overwhelmed the models and identifying fewer
classes could improve the results. Some scientists, for example, argue that generating a
model for each of the target classes increases the classification accuracy, especially when the
scene presents unbalanced distributions of LCTs [53]. Moreover, given that distinguishing
between mangrove typologies was particularly challenging, it may be helpful and may lead
to better results to group all mangrove classes into one and maintain the rest as separate
(i.e., mangroves, water, non-mangroves, clouds, ground, urban classes).

The pixel-wise classification performed with the RF classifier may have some design
issues because the classes were manually identified using a median image composite for a
single year. It is evident that selecting the image with which to perform the preliminary
classification using RF classifiers (or other ML algorithms) and create training patches
requires careful considerations, and using median composite of images captured over a
whole year may not be ideal due to the dynamicity of land surfaces [34]. Seasonality and
water availability have a considerable effect on the spectral reflectance of land features,
and training classifiers using images of the same year that account for the changes of LCTs
over time in the training datasets could lead to more reliable preliminary classifications.
To that end, and especially if mapping coastal environments such as mangrove forests,
including images with different tide dynamics may help the models to better discern
between mangroves and water, allowing to capture features otherwise ‘hidden’ if using
median pixel values. Some scholars have developed the Submerged Mangrove Recognition
Index (SMRI) using the high-resolution Gaofen satellite to assess the effects of tides across
the year, coupling images captured at different tide heights and correcting the classification
according to the detected differences and informing on the actual spatial distribution of
mangroves [73]. Nevertheless, while adding SMRI to the bands of the images fed to the
classifier could better inform the models of interannual land features’ variability, it would
require collecting significant EO data corresponding to high and low tides to better calibrate
deep learning models.

Finally, although the U-Net model could cleverly distinguish the semantics of inland
LCTs that have subtle spectral differences, features on coastlines and riverbanks resulted
more challenging to classify, especially due to the interaction with water. The results of the
multi-year classification have demonstrated that training the U-Net model on a median
pixel-value image for a single year could be both inaccurate and misleading. It could be
inaccurate due to the lack of tide dynamics information (and other seasonal signatures),
and misleading because it ‘forces’ the model to generate weights and learn a semantic that
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may not be correct. To solve the issue, it is important to not only account for interannual
land features’ variability, but also to feed images of multiple years to the model to account
for different environmental conditions that may alter features’ spectral reflectance over
time (e.g., light conditions, sensor errors, different amounts of pollutants in the air). While
testing the transferability to the SMRI computation to Sentinel and other coarser spatial
resolution satellites is a worthy research endeavour, it is presently outside the scope of our
research.

5. Conclusions

Mangrove deforestation jeopardises the survival of tropical coastal communities while
contributing to alimenting carbon emissions worldwide. Although the growth of com-
puting power enables scientists to develop better and more accurate monitoring tools to
guide interventions, increasingly intensive tasks and complex algorithms are becoming
unsuitable for commercial and personal computers.

This paper has presented a cloud-based alternative to owning proprietary supercom-
puters that enables anyone with a computer and an internet connection to perform complex
classification tasks using Google Colab and Google Earth Engine, with the help of the
proposed custom Python packages. The mangrove monitoring framework was developed
as an attempt to standardise and unify some of the most used tasks to handle TFRecords
in a machine learning workflow while providing thorough documentation and guidance.
Moreover, the framework has explored novel image segmentation architecture such as
U-Nets, comparing the strengths and weaknesses of training from scratch and fine-tuning
using pre-trained VGG19 and ResNet50 as encoders to the U-Net model.

The analysis has shown that an untrained U-Net model is superior in segmenting
complex satellite remote sensing images compared to U-Net using VGG19 and ResNet50
models as feature extractors. Nevertheless, although the model provided some good
results, feeding too-complex semantics (i.e., different mangrove typologies) has hindered
the training process and affected the results. In the future, researchers may wish to extend
the current work by preliminarily classifying mangroves accounting for interannual land
features’ variability, with a particular focus on the effects of tide dynamics to mangroves’
spectral signature. It will also be important to feed the model with images captured across
several years to account for ongoing environmental condition changes and to consider
mangroves as a single class rather than splitting them by type. In addition, the presented
U-Net model could be extended by adding more layers to avoid overfitting and may also be
pre-trained using one of the multi-class remote sensing imagery datasets available online
(e.g., BigEarthNet—https://bigearth.net) (accessed on 1 January 2022). However, this last
step needs to be taken with care if desiring to maintain storage costs and low training
runtimes.

The authors believe that the proposed monitoring framework can lead the way to cre-
ating low-cost, cloud-based, open-source tools that governments, environmental agencies,
and researchers can deploy to monitor mangroves (and more) in SEA and around the rest
of the world.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs14102291/s1, Figure S1: The monitoring framework
is composed of three Google Collaboratory Notebooks. Figure S2. Steps followed to (Step1) obtain
the 2016 median image of the Area of Interest (AOI) in Figure 1 and obtain spectral indices, (Step 2)
identify Land Cover Types (LCTs), (Step 3) segment the image, and (Step 4) run the Random Forest
(RF) classifier.
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