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Abstract: Fusarium oxysporum f. sp. raphani is responsible for wilting wild rocket (Diplotaxis tenuifolia
L. [D.C.]). A machine learning model based on hyperspectral data was constructed to monitor
disease progression. Thus, pathogenesis after artificial inoculation was monitored over a 15-day
period by symptom assessment, qPCR pathogen quantification, and hyperspectral imaging. The host
colonization by a pathogen evolved accordingly with symptoms as confirmed by qPCR. Spectral
data showed differences as early as 5-day post infection and 12 hypespectral vegetation indices were
selected to follow disease development. The hyperspectral dataset was used to feed the XGBoost
machine learning algorithm with the aim of developing a model that discriminates between healthy
and infected plants during the time. The multiple cross-prediction strategy of the pixel-level models
was able to detect hyperspectral disease profiles with an average accuracy of 0.8. For healthy pixel
detection, the mean Precision value was 0.78, the Recall was 0.88, and the F1 Score was 0.82. For
infected pixel detection, the average evaluation metrics were Precision: 0.73, Recall: 0.57, and F1
Score: 0.63. Machine learning paves the way for automatic early detection of infected plants, even a
few days after infection.

Keywords: machine learning; Diplotaxis tenuifolia; Fusarium oxysporum f. sp. raphani; precision
agriculture; qPCR; pathogen quantification

1. Introduction

Wild rocket (Diplotaxis tenuifolia [L.] D.C.) is a perennial herbaceous species belonging
to the Brassicaceae family, which is spontaneous in the Mediterranean basin (centre of ori-
gin) and is now carefully cultivated as baby-leaf salad crop for the fresh, high convenience
food chain. This horticultural reference is a highly successful ingredient of ready-to-eat and
minimally-processed packaged preparations due to its strong nutraceutical characteristics,
fibre content, low calories, and distinctive spicy taste and flavor that make it a favourite
for quick and dietetic meals. Italy is leader in Europe for wild rocket production with an
estimated area of 4000–4800 ha [1,2] and yields of up to 10 tonnes per ha [3].

Cultivation systems under plastic tunnels are becoming highly intensive with the
mechanization of crucial parts of the cycle (e.g., precision seeding, fresh cutting and top-
ping, crop treatments) and the automatization of irrigation and fertigation [4]. Continuous
recultivation with the same or closely-related crop species and the high number of plants
per square metre make over-exploited wild rocket fields more susceptible to sickness and
disease phenomena that adversely affect overall productivity due to a decline in natural
soil suppressiveness and uncontrolled proliferation of pathogens [5]. Under these condi-
tions, the facultative pathogen Fusarium oxysporum can be favored by reduced competitive
rhizospheric interactions with other microorganisms and by plant stresses that increase
susceptibility [6]. F. oxysporum has been noticed in Europe on wild rocket since 2002 [7],
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on which the presence of two formae speciales, conglutinans and raphani, have also been
observed [8,9], signifying this pathogen heterogeneity as an additional risk factor for the
crop. In compatible interaction, F. oxysporum enters the host through accidental/natural
wounds on the roots, develops into the vascular system, and causes occlusion of the vessels
due to the sudden elicited plant response. As result, infected wild rocket plants show
stunted growth, widespread yellowing, wilting, and even complete desiccation [10]. Wild
rocket wilt is a seed-transmitted disease [11], which is much feared by growers due to the
dramatic impacts on yields and quality. Due to its endophytic progression, the pathogen is
very difficult to eradicate by curative means at a very advanced stage of plant infection
therefore, preventive strategies and the early detection of disease outbreaks are desirable to
increase the effectiveness of more targeted antifungal interventions and to stop the rapid
and aggressive spread of pathogen propagules in the soil environments.

In this perspective, digital sensors in a machine vision scenario would prove very help-
ful in supporting disease monitoring routines of highly specialized and productive farming
systems (e.g., baby leaf vegetables) by improving robustness at both a high frequency and
large scale.

Remote sensing (RS) plays a crucial role in precision agriculture, also called “precision
farming”, “digital farming”, or “agriculture 5.0”, being a very useful technology that
allows large-scale crop monitoring in a synoptic, remote, and non-destructive way [12].
Typically, it involves a sensor capable of collecting electromagnetic radiation reflected or
emitted by plants, which is then further processed to produce information about traits in
the agricultural system and their space and temporal variations. RS data can be applied to
decipher various plant characteristics, such as crop health or disease presence, irrigation
period, nutrient deficiency, or yield estimates [13].

Hyperspectral imaging is a robust remote sensor-applicable technology based on the
outputs of optoelectronic probes working in the broad visible-near infrared (VIS-NIR)
spectral regions, which allows users to understand the health status of a crop through
remote interpretation of spatially-distributed canopy reflectance signals. The plant surface
reflects a portion of incident light in a pattern along detectable wavelengths that is shaped
by its biochemical and physical properties. Insofar, reflectance levels are also informative
about ongoing changes in plant physiology and/or biology and can be used to predict
possible disease states associated with plant. Hyperspectral imaging has been used to
remotely detect many plant diseases that can be well discriminated based on changes in
the cell structure and biochemical properties occurring in stems, leaves, flowers, and/or
fruits that develop specific symptoms. Zhao et al. [14], for example, using a line-scanning
hyperspectral imaging system working in the 380–1030 nm range, selected contributory
wavebands to model pigment distribution in response to the occurrence of angular leaf
spot in cucumber leaves. Currently, basic research is continuously looking for meaningful
connections between plant spectral responses and changes in vital and healthy parameters
to provisionally apply the spatio-temporal detection of plant stresses using optoelectronic
devices [15,16]. Remote sensing with hyperspectral instruments for the early detection of
ongoing plant infections is a non-invasive and non-destructive method that can help to
increase the effectiveness of plant disease management by supporting farmers’ choices on
the spatial and temporal distribution of interventions as has recently been suggested for
Leek white tip disease [17]. Bauriegel and Herppich [18] highlighted the increased possibil-
ities of accurately assessing Fusarium head blight in wheat by identifying hyperspectral
signatures associated with the decrease in physiological activity of the attacked tissues.
Zhang et al. [19] applied hyperspectral and multispectral imaging, to detect and distinguish
different damage on apple (caused by wind, insect, bruises, decay, hail, russeting, spot, scar,
stem, and calyx), achieving a 93.6% and 91.4% accuracy, respectively.

However, the collection and management of huge volumes of data are the main
bottleneck in image processing and analysis requiring advanced algorithms and high
computing power [20]. Machine learning (ML) methods provide a powerful tool to analyze
this type of big datasets, aimed at establishing a direct relationship between a signal
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measured by sensor and biophysical variables [21]. The development of ML pipelines
is the next generation solution to optimize the data processing stage that lends itself
to the early detection of plant disease [22]. Indeed, Liang et al. [23] set up a feasible
method for the detection of Sclerotinia stem rot in Arabidopsis thaliana (L.) Heynh. based
on hyperspectral imaging coupled with extreme ML management to select three optimal
wavelengths to achieve the overall accuracy of 93.7% in diagnosis. Hornero et al. [24] have
recently combined radiative transfer models and ML techniques to assess holm oak decline
based on high-resolution VIS-NIR spectral, thermal, and other plant functional traits. A
400–1000 nm hyperspectral data cube was used to identify disease-centered vegetation
indices and the learning of a 3D convolutional neural network for the early detection of
grapevine vein-clearing virus infections [25]. On peanut, hyperspectral sensors and ML
were successfully applied to identify the most important wavelengths in discriminating
between healthy and Athelia rolfsii-infected plants [26].

The aim of the present study was the detection of Fusarium wilt caused by F. oxysporum
f. sp. raphani Kendrick & Snyder (FOR) in wild rocket based on hyperspectral imaging
combined with ML modeling, at different stages of the disease, from pre-symptomatic to
visible symptoms. Specific stepwise goals were the evaluation of spatiotemporal spectral
fingerprinting of diseased/healthy canopies; quantitative identification of disease progres-
sion by real-time PCR; verification of differences between spectral profiles of healthy and
infected plants at each stage of disease; and the execution of the XGBoost ML algorithm [27]
to develop models capable of identifying all levels of disease severity in totally independent
plants, even a few days after infection.

2. Materials and Methods
2.1. Fungal Strain

The pathogenic isolate used in this study was F. oxysporum f. sp. raphani, isolated
from wild rocket, cultured from monosporic, characterized, and stored at −80 ◦C as
conidial suspensions in 30% glycerol in the fungal collection of CREA-Centro di ricerca
Orticoltura e Florovivaismo (Pontecagnano Faiano, Italy). Microscopic observations were
performed after 15 days of growth on potato dextrose agar (PDA, Condalab, Madrid, Spain)
medium at 25 ◦C under a light microscope (Nikon Eclipse 80i, Nikon, Melville, NY, USA)
at 40×magnification.

2.2. Experimental Plant Infection

Wild rocket cv Tricia (Enza Zaden, Tarquinia, Italy) was sown in 500 mL of sterile
vermiculite-filled pots, allowed to germinate in the dark at 25 ◦C, and then kept in a growth
chamber at 25 ◦C with a 12-h photoperiod. Irrigation was performed manually every
day and a basic NPK fertilization was applied twice a week. After 15 days of growth,
the seedlings were gently removed from the pots, rinsed in sterile water, and inoculated
with FOR by root dipping. Seedlings with cut root tips were dipped for 10 min in an
aqueous FOR conidial suspension of 106 conidia mL−1, freshly recovered from 10-day-old
cultures on potato dextrose agar (PDA, Condalab, Madrid, Spain) medium at 25 ◦C, and
transferred to fresh pots containing sterilized vermiculite. For mock inoculation, dipping
was performed in sterile water. Pots containing 5 plants each were incubated at 26 ◦C in a
greenhouse for 15 days. The experimental design was: 18 pots per treatment, inoculated (F)
and non-inoculated (C), from which 6 pots were randomly collected at 5, 10, and 15 days
post-inoculation (dpi). The potted plants were in turn subjected to disease incidence
assessment (DI%), as the percentage of symptomatic plants out of the total plants. Then,
assigned to disease severity classes (DSC) according to a 0–3 scale adapted from Larkin and
Honeycutt [28] (0 = no symptoms, 1 = mild stunting, 2 = severe stunting and leaf yellowing,
and 3 = severe necrosis/dead plants) for calculating disease severity (DS%) according the
following formula:

DS% =
∑ Class f requency× score o f class

Total number o f plants×Maximal score
× 100
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Chiang et al. [29].
In addition, hyperspectral images of the canopies were acquired and the main root

and collar tissues per plant were dissected for quantitative PCR (qPCR) analysis. Finally,
the trial size was: 2 treatments followed for 3 time points with 6 pots carrying 5 seedlings
each, for a total of 36 pots and 180 plants.

2.3. Genomic DNA Extraction

F. oxysporum f. sp. raphani was grown in potato dextrose broth (PDB, Condalab, Madrid,
Spain) on a rotary shaker at 120 rpm for 96 h at 25 ◦C. The liquid culture was vacuum
filtered through Whatman No. 4 filter paper (Whatman Biosystems Ltd., Maidstone, UK)
and the collected mycelium was frozen in liquid nitrogen and ground to a fine powder
using a sterile mortar and pestle. Samples were stored at −80 ◦C until subsequent DNA
extraction. A total of 5, 10, and 15 dpi plants (if present) were removed from the pots and
rinsed with sterile distilled water. Samples were immediately frozen in liquid nitrogen,
ground to a fine powder, and stored at−80 ◦C until further processing. Total genomic DNA
was extracted from 100 mg of processed sample by using the PureLink Plant Total DNA
Purification Kit (Invitrogen™, ThermoFisher Scientific, Waltham, MA, USA) according to
the manufacturer’s protocol. PCR amplification of the FOR internal transcribed spacers
(ITS1-4) and translation elongation factor 1α (TEF1) was performed in a Biorad C1000
Thermal Cycler (Bio-Rad, Hercules, CA, USA) following the PCR procedure reported by
Manganiello et al. [30]. Amplicons were purified by a PureLink™ PCR Purification Kit
(InvitrogenTM, ThermoFisher Scientific, Waltham, MA, USA) quantified by NanoDrop™
(NanoDrop Technologies Inc., Wilmington, DE, USA) and sent to Sanger sequencing.

2.4. In Planta Pathogen Quantification

The qPCR reactions were performed in an iCycler iQ5™ Real Time PCR Detection
System (Bio-Rad, Hercules, CA, USA) on frozen and powdered plant tissues collected in
the in vivo trial. Thermal cycling conditions of the PCR were as follows: 95 ◦C for 10 min,
40 repeats of 95 ◦C for 15 s, 60 ◦C for 60 s, and 72 ◦C for 15 s (during which fluorescence
was measured), and a final extension at 72 ◦C for 7 min. After the final amplification
cycle, a melting curve was constructed by measuring fluorescence continuously during
heating from 65 to 95 ◦C at a rate of 0.5 ◦C per s. The PCR reaction contained 5 µL of
BrightGreen qPCR MasterMix (ABM, USA), 0.3 µL of each primer (FnSc-1/FnSc-2 TAC-
CACTTGTTGCCTCGGCGGATCAG/TTGAGGAACGCGAATTAACGCGAGTC, 10 µM)
(Lin et al., 2010), 1 µL of template DNA, and sterile double distilled water to a final volume
of 10 µL. DNA from mycelium and uninoculated wild rocket roots were used to generate
calibration curves to estimate the amount of fungal DNA in inoculated samples. To gen-
erate the standard curve, 10-fold dilutions (ranging from 0.05 µg to 0.5 pg) of FOR DNA,
the concentration of which was previously determined, were subjected to qPCR under the
same conditions described above following the procedure reported by Atoui et al. [31].
Plant quantification was verified using primers targeted to the Actin II gene (AT3G18780),
TCCCTCAGCACATTCCAGCAGAT/AACGATTCCTGGACCTGCCTCATC [32]. Quan-
tification values were determined by the optical system software IQ5™ version 2 (Bio-Rad)
and cycle threshold (Ct) values were obtained. The standard curve was constructed by
plotting the Ct against the log DNA concentration. Quantification was performed by
measuring the intensity of the fluorescent signal, which is proportional to the amount of
DNA generated during PCR reaction. In all experiments, appropriate negative controls
not containing a template were subjected to the same procedure to exclude or detect any
possible DNA contamination. Five replicates of each dilution were prepared, and three
non-template controls (NTCs) were used.

2.5. Hyperspectral Imaging Workflow

Hyperspectral images (512 × 512 pixels) were acquired in the range 400–1000 nm with
a spectral resolution of 7 nm (204 bands) by the SPECIM IQ hyperspectral camera (Specim
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Ltd., Oulu, Finland). Reflectance was automatically calculated for each pixel, by the Specim
IQ Studio camera software (Specim Ltd., Oulu, Finland). Images were captured at 5, 10, and
15 dpi in a mobile greenhouse station, under natural light conditions (irradiance: 600, 576,
588 W/m2, respectively) at a height of 60 cm from the object. Each image was calibrated
against a white reference panel located next to the object, allowing fluctuations in light
condition to be excluded. Each image contained a single pot with five plants, resulting in a
total six images per treatment (infected and non-infected) per time point (5, 10, and 15 dpi).
The hyperspectral files were successfully processed using Raster R package [33]. Surgically
sampled regions of interest (ROI) were selected in correspondence of symptomatic tissues
for infected plants, reaching a variable number of pixels, ranging from 300 to 750 per plant.
For the healthy control, ROIs were randomly selected from the canopy. The DSC, DNA
quantification (pg), and FOR-to-plant DNA ratio were associated with the spectral values
of each plant (plant spectral fingerprinting) and each pixel (pixel spectral fingerprinting).
Finally, datasets consisting of 21,000 pixels distributed in 180 plants were subjected to
the subsequent calculation of VIs on the plant and the artificial intelligence pipeline on
the pixel.

2.6. Hyperspectral Vegetation Indices

The mean spectral value per plant, calculated as the average of reflectance values
for each hyperspectral band, was used to calculate 54 vegetation indices (VIs) by com-
puting the reflectance data per wavelength according to the formulas given in Table S1
of Supplementary Materials. A stepwise selection of VIs on the basis of correlation with
disease severity over time was conducted by means of a multivariate data analysis per-
formed using the Factoextra package in the R software [34]. Principal component analysis
was performed on the differential VIs values obtained by subtracting the healthy control
from its respective Fusarium wilted plant. Variables (VIs) that were highly correlated
(|correlation value| > 0.8) with the principal component (PC), which explained the highest
variability associated with the DSC of cases’ (plants), were filtered and then, subjected
to Pearson’s correlation analysis with disease severity, for further confirmation. Then,
only those showing R2 > 0.9 were selected. In order to assess their behaviors between
treatments (infected and healthy plants) and time points (5, 10 and 15 dpi), VIs were ana-
lyzed by two-way analysis of variance (ANOVA) followed by a Bonferroni correction (at
p-value < 0.05) test for both multiple (among time points) and paired (within the same time
point) comparisons, by using GraphPad Prism software. PC and hierarchical clustering
analyses were further performed using ClustVis software, to visualize the distribution of
cases (pots) in clusters coherently related to DSCs. Indices were centered and scaled by
unit variance. Hierarchical clustering was conducted by applying the maximum distance
and Ward linkage method to different observations (columns).

2.7. Statistical Analyses and Machine Learning Pipeline

Multivariate statistical tests and MLAs consume considerable amounts of resources
and time, even more so when performed iteratively. Therefore, we decided to use only
a sample of the full pixel dataset for tests that required iterations, such as multivariate
statistical tests (as described in Section 2.7.1) and the evaluation procedure of ML models
(as described in Section 2.7.2), while we used the full dataset when building specific models
for the prediction of disease status on the full plants’ images. The partial dataset consisted
of all ROI pixels of infected plants and a sample of 150 pixels for healthy plants. The
full dataset used for the final disease predictions included all pixels of healthy plants. In
addition, when we performed a further reduction of the partial dataset, we iteratively
repeated the analyses to better account for the variability in pixels information.

2.7.1. Testing the Differences between Plants’ Spectral Profiles

As a preliminary analytical step, we tested whether disease degrees were statistically
different from each other and from healthy plants in terms of combinations of spectral
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values. Preliminarily, we excluded from the dataset all infected individuals that were
classified as healthy by their visual inspection, since their spectral profile might belong
to diseased plants, even if they do not yet show visible symptoms. Then, we performed
principal component analysis (PCA) with spectral predictors to reduce variable dimen-
sionality and multicollinearity. We then used PC axes that cumulatively explain 95% of
total variance and used these new variables to feed into the tests described below. First,
we used a Permutational MANOVA (PERMANOVA) to test for differences between plants
DSCs at a pixel level. This analysis is a non-parametric version of MANOVA that uses
random permutations to obtain the p value of the F-test. In detecting differences between
disease severity classes, we also performed a pairwise comparison between groups by
means of a Permutational MANOVA in pairs (hereafter pairwise PERMANOVA) with
Bonferroni correction of the p values. In the PERMANOVA, we tested for differences in
the spectral profiles of pixels in a multi-way framework considering three factors: DSC,
ranging from 0 (healthy individuals, DSC 0) to 3 (DSC 1, DSC 2 and DSC 3); dpi, reported as
5, 10, and 15 days; and the pots’ identification number (POTS). We performed two versions
of these tests: The first considering both control (healthy) and treated (infected) plants,
and a second using only the PC axes of the infected plants. The rationale for this double
analysis is based on the fact that the spectral profiles of healthy and infected individuals
might marginally overlap when infected plants are in their very early stage of disease,
i.e., only 5 dpi. With these tests we can get an estimate of how difficult the discrimination
between healthy individuals and those displaying mild symptoms is, i.e., the difficulty of
very early detection. We expected that only a small number of tests would show a signifi-
cant difference between heathy (DSC 0) and early diseased (DSC 1) leaf pixels, whereas a
larger number of tests would be able to correctly discriminate between healthy leaf pixels
and those in the intermediate-to-late infection stage (DSC 2 and 3). For these tests, we
used a partial version of the full pixel dataset containing 150 randomly sampled pixels
per control (healthy) plant. In fact, we anticipate here that, for the test including both
the healthy and infected plants, our personal computer workstation, equipped with an
Intel I9 series CPU (with 20 logic cores) and 64-Gb RAM, was not able to carry on the
analysis, since the computational resources were not sufficient to process this large amount
of data. Therefore, we reduced the dataset by randomly sampling 1000 pixels (without
replacement) and then, performed both PERMANOVA and pairwise PERMANOVA. We
repeated the sampling 100 times, thus generating 100 new random datasets on which to run
100 PERMANOVA and pairwise PERMANOVA tests. We performed the PERMANOVA
and its pairwise version in R software [35] using the adonis function in the vegan package and
the script provided in https://github.com/pmartinezarbizu/pairwiseAdonis (accessed on
10 November 2021), respectively.

2.7.2. Machine Learning Pipeline and Models’ Performance Measure Strategy

MLAs must be tested in their predictive performance by independent datasets. In
many studies, the original dataset is randomly divided into a training dataset and testing
dataset: The former used to calibrate the model and the latter to test the predictive perfor-
mance of the model. In this study, we decided to use a kind of “block cross-validation”
in which we set apart entire pots for model calibration and some other pots for model
evaluation. With this strategy, we called cross-pots prediction, we ensured that the training
and testing datasets were totally independent. This means that we calibrated the models
using the plants included in some pots and then tried to predict the degree of infection of
the plants in other pots. More specifically, the images were first processed by performing
soil/plant classification from the Raster R package [33] and then we randomly selected
80% of the total pots to calibrate the models and the remaining 20% was used to measure
the predictive performance of the models. We repeated this procedure of splitting the pots
100 times and then calibrated and built as many models as possible.

The MLAs used for classification are sensitive to the relative frequency distribution of
classes because shared combinations of variable values can be misattributed to the most

https://github.com/pmartinezarbizu/pairwiseAdonis
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frequent categories. Typically, when there is a predominance of some classes over others
(classes’ imbalance), a commonly employed strategy to consider this problem includes re-
sampling the observations of the least abundant classes or subsampling the most abundant
classes. In this study, we have the prevalence of healthy pixels as these represent the whole
or a large portion of the surface of a healthy leaf, while, in most cases, a ROI represents
only a small portion of the infected leaf. We decided not to consider the issue of class
imbalance because we want to simulate a typical natural condition in which the disease
occurs only on a portion of its leaves. Furthermore, since healthy plants might share the
spectral profile of some pixels with infected plants due to stochasticity or unfavorable light
conditions during the spectral photography procedure, tuning the model as to maximize
the specificity (i.e., the correct identification of true negatives in this study) may be useful
to reduce the frequency of a type I error (false positive) represented by healthy plants
classified as infected.

Since cross-pot prediction is an iterative procedure, we used the partial dataset in-
cluding all infected pixels and only a sample of 150 pixels for each control (healthy) plant.
Since we considered whole sets of pots for the training and testing operations, we decided
not to perform any dimensionality reduction of the variables. The reasoning behind this
decision is that to avoid those variables potentially chosen for a specific set of pots would
have been useless for discriminating DSC in plants of totally different pots. However, this
choice allowed us to let the specific MLA we employed iteratively choose the predictor
variables that would potentially be useful for discriminating the DSCs of different pots (see
next section).

Since some plants were infected but visually classified as DSC O (healthy) because
they showed no symptoms at the time of inspection (i.e., they were false negative), we
excluded these plants from the training dataset and subsequently used them to predict
their status via the MLA.

In general, we measured the overall ability of the algorithm to discriminate between
different DSCs in the test dataset, first at the individual pixel level and then, at the plant
level (i.e., considering the average spectral profile of a plant). More specifically, our aim was
to identify the stage of the disease at which the models were able to correctly discriminate
between healthy and infected plants. An important issue to consider is that infected plants
were visually classified at their maximum level of disease they showed (i.e., as either DSC
1 or DSC 2 or 3), but on the same leaf all degrees of disease can occur as the infection
evolves in the vessels and can manifest itself indirectly on the canopy. For this reason, we
trained the model using all different stages of infection but for the evaluation of cross-pot
prediction we used an indicator strategy with which we only measured the ability of the
models to correctly classify a plant as healthy or infected, i.e., no matter what the stage of
the infection was. We consider this strategy more realistic and useful since we recognize
that operator’s assessment of disease may be subjective and insensitive to the spatial pattern
of leaf symptoms.

For all these models, we provided both total and partitioned accuracy measures, i.e.,
considering all the DSC classes in the test dataset and separately considering plants at 5, 10,
and 15 dpi, respectively.

We then repeated the previously described discrimination ability measures at the
plant level, considering the average spectral profile of each individual plant. We tested
the prediction performance of the models by means of a confusion matrix strategy, which
provides accuracy metrics for multi-level classification. The confusion matrix was used
for both training and test datasets to measure the influence of class imbalance on model
prediction performance. Regarding the test datasets, when the confusion matrix results
showed a serious problem of class imbalance (accuracy p value > 0.05), for the same dataset
we calculated the confusion matrix a second time by randomly oversampling classes with
few observations until they were as abundant as the largest class.

Finally, we measured the ability of the MLA to perform pixel-level predictions on pots’
images. For this purpose, we built models by using the full dataset of all available pixels, i.e.,
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including both the ROI of infected plants and all pixels of healthy plants. More specifically,
we built two complete models: The first considering class imbalance by oversampling
less abundant classes and a second without correcting for this problem. We called these
models Balanced and Imbalanced Full Models, respectively. The prediction ability of these
models was measured by setting apart 8 pot images with control (healthy) and infected
plants (2 pots for each of the considered DSC). The prediction results were then displayed
as images.

2.7.3. The Extreme Gradient Boosting Algorithm

Extreme Gradient Boosting (XGBoost) [27] is the MLA we employed in this study.
The XGBoost algorithm iteratively combines subsequent decision trees while keeping only
those trees that improve the accuracy of the model output. The algorithm has a specific loss
function through which it evaluates the trade-off between prediction accuracy and model
complexity. The loss function [L(∅)] is expressed by the following formula:

L(∅) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk). (1)

The first is the cost (l), a measure of the prediction error where ŷi is the predicted
values and yi is the relative known value. The second term represents the complexity of the
model (Ω), where fk denotes the specific tree added to the model to improve the prediction
performance. By means of this function, the algorithm can choose the set of those decision
trees that simultaneously improve the prediction performance of the model and minimize
the complexity of the model [27]. XGBoost is a flexible algorithm with many regularization
parameters to reduce overfitting problem. It has been shown to outperform other gradient
boosting methods in dealing with sparse data and for its low computational resource
requirement. In this study, we performed XGBoost and the tuning of its parameters by
means of the functions provided in the caret package [36] of the R software.

3. Results
3.1. FOR Microscopic and Molecular Characterization

The F. oxysporum f. sp. raphani strain 09413 isolated from symptomatic wild rocket
seedlings was characterized by microscopic and molecular investigation before use in the
in planta experiment. Fifteen-day old colonies, developed at 25 ◦C in the dark on PDA,
appeared whitish on the upper side and white-purple in the center on the reverse side.

Microscopic investigations revealed curved macroconidia with 3–5 septa, ellipsoid
microconidia, and globe-shaped chlamydospores, compatible with the morphological
characters of FOR. ITS 1-4 and TEF1 sequences were blasted separately against nr/nt
database, achieving 100% identity and query coverage percentages with the FOR isolate
SKH18147. The sequences were deposited in GenBank under accession numbers OK148128
and 2501399, respectively.

3.2. Progression of Wild Rocket Tracheofusariosis

The development of the disease was monitored during a 15-day time-course from
inoculations (Figure 1): The time patterns of DI% and DS% showed sub-linear increasing
behavior (Figure 2a,b). Survey of infected plants during the time-course indicated that the
first symptoms were barely detectable at 5 dpi with slight leaf chlorosis.

Then, the yellowing became progressively severe as the days passed and the diseased
plants became stunted with some necrosis on the leaves. However, at intermediate time
points that the severity of the disease showed some variability among plants, indicating
that the infection was not perfectly synchronized. At the end of the experiment, all infected
plants were symptomatic and displayed drastic physiological changes, such as visible
growth alterations in the presence of disease-associated symptoms. About 30% out of them
were dead, while DI% and DS% reached levels averaging about 100 and 80%, respectively.
PCR quantification of FOR genomic DNA was performed to assess the magnification of
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fungal spread in the vessels and colonization of plant stems from the earliest stages of
infection. It was accurately quantified against the standard curve with a linear correlation
coefficient (R2) value of 0.9953 (Figure 2c). Consistent with the described phenotypic
patterns of the disease, a stepwise increase in fungal DNA was also detected in infected
plants over time (Figure 2d). In addition, to verify that the BrightGreen dye detected only
a PCR product, samples were subjected to the heat dissociation protocol in the final PCR
cycle. Thus, the dissociation curve showed a single peak, demonstrating the presence of
only one product in the reaction.
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3.3. Plant Reflectance Datasets

Reflectance profiles obtained by means of all pixel-wise spectral data from healthy and
infected plants in the spectral range of 400–1000 nm, were displayed for each time point
from 5 to 15 dpi (Figure 3a).

During the incubation period of the FOR/wild rocket, the differences between the
reflectance levels in infected and healthy samples (Dif. = λF − λC) started to increase,
at 5 dpi, in the regions between 520–580 (green) nm and 680–1000 nm (red edge and
near infrared). Moving up to 10 dpi, slight differences even in the NIR spectral region
(750–1000 nm) began to be consolidated. At 15 dpi, the spectral signature of diseased
plants showed dramatic incremental shifts across the analyzed spectrum consistent with
the highest DSC levels of disease severity (DSC 3). In this perspective, visualizing the
changes in reflectance patterns according to disease severity class, there were no significant
differences to show between DSC 0 and DSC 1, while in plants displaying a DSC 2 of disease,
substantially increased reflectance in the 400–700 nm range was observed (Figure 3b).

3.4. Temporal Patterns of Hyperspectral Vegetative Indices

Spectral signatures of infected samples during disease progression were first charac-
terized by calculating 54 literature hyperspectral indices (Table S1) reported to be able to
describe specific biochemical and/or physiological properties of plants [37]. Then, the most
informative VIs, based on their best correlation with disease, were selected by perform-
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ing stepwise multivariate data analysis. Principal component analysis performed on the
differential VIs of Fusarium wilted minus healthy plants, showed a distribution of cases
(samples) along the first two components (PC1 and 2) representing, respectively, for 55 and
17.8% of the total variability with one time point (5 to 15 dpi), clustering based along PC1
(Figure 4a,b).
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Figure 2. Disease incidence (panel (a)) and disease severity (panel (b)) percentages assessed on
FOR-infected wild rocket (red line) compared to healthy control (blue line). Standard curve for
qPCR quantification of FOR genomic DNA from pure culture against cycle threshold (CT) values
(panel (c)). Quantification by qPCR of fungal DNA expressed as picograms (pg) of fungal DNA per
nanogram (ng) of the main root and collar DNA (panel (d)). Values with different lowercase letters
(a–c) are significantly different (p-value ≤ 0.05) according to ANOVA and Bonferroni correction test
for multiple comparisons.

The best VIs candidates for the ability to discriminate between healthy and infected
plant status over time are selected based on the highest values of variable correlation with
PC1 than a R2 threshold value of 0.90, assuming that this component alone can explain
most of the variability in samples attributable to the in vivo experiment disease severity
(Figure 4c). Thus, 12 out of 54 vegetation indices were identified showing Pearson’s coeffi-
cient greater than 0.90 in direct correlation with DSI (Figure 5). Thus, the best performing
vegetation indices were: PRI515, RVI, G, and RGRcn, which are positively correlated with
DSI and: NDVI, Red Edge NDVI, OSAVI, HVI, mNDVI705, HNDVI, NDVI 705, and SAVI,
which were negatively correlated with DSI. In addition, each of the selected indices was
tested alone with a two-way ANOVA to significantly differentiate healthy from infected
plants at each time-point. As shown in Figure 6, all selected indices were significant in
describing narrow spectral differences between infected and healthy plants at 10 dpi, except
mNDVI705, which captured significant differences only at 15 dpi. These 12 selected VIs
were subjected to a further restricted PCA that showed the distribution of cases along PC1,
explaining almost all the variability contained in the dataset (93.8%), closely related to the
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DSC level, with a clear separation between clusters of healthy and infected plant in the
DSC range between 1.5 and 3 (Figure 7).
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Comparison of spectral curves of healthy© and FOR-infected (F) plants at 5, 10, and 15 dpi by
using color gradients light to dark green and red, respectively (panel (a)). Means of hyperspectral
reflectance averages rearranged per level of disease severity class: Healthy, level 0 (DSC 0, green);
mild stunting, level 1 (DSC 1, yellow); severe stunting and yellowing, level 2 (DSC 2, orange); and
necrosis/dead plants, level 3 (DSC 3, red) (panel (b)).

However, there was an overlap between infected plants with DSC levels below 1.5
and healthy ones. The high degree of separation of diseased from healthy samples by
the selected VIs was also shown by hierarchical clustering, where the highest DSC values
corresponded to the highest values (in absolute terms) of each hyperspectral VIs (Figure 8).

3.5. PERMANOVA Results

The PCA was able to identify 26 orthogonal PC axes that explained approximately
95.3% of the total variances and were used to feed into the following analyses. The
100 PERMANOVA tests performed with as many random samples from the complete
dataset (including both control and infected plants) found significant differences between
groups in only a few cases. PERMANOVA gives only one result on mean distances between
all classes considered, whereas we were also interested in pairwise differences between
groups. Therefore, we ran the pairwise version of PERMANOVA to test whether the
number of significant differences between healthy and highly infected plants was greater
than the number of significant differences between healthy and early infected plants. The
results showed that, in fact, only 1 simulation out of 100 showed significant differences
between DSC class 0 (the healthy plant pixels) and DSC 1 (the early infected), while
2 simulations out of 100 showed significant differences between DSC 0 and DSC 2, and
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3 simulations showed significant differences between DSC 0 and DSC 3. In addition,
6 simulations out of 100 produced significant differences between DSC 1 and DSC 2, 3
produced significant differences between DSC 1 and DSC 3, and 6 simulations out of
100 produced significant differences between DSC 2 and DSC 3. With the same pairwise
comparisons but taking into account the contribution of the dpi, we found that only
3 simulations out of 100 produced significant differences. When considering the pot
identity (POTS), the pairwise PERMANOVA tests showed that only 5 simulations out
of 100 produced significant differences between DSC classes. Summary statistics of the
100 pairwise PERMANOVA tests are given in Table S2 in the Supplementary Materials.
The single PREMANOVA performed on infected individuals showed only statistically
significant differences between DSC (df: 2, F = 1776.13, p << 0.01), dpi (df: 2, F = 19.44,
p << 0.01) and POTS (df: 15, F = 102.78, p << 0.01). The pairwise PERMANOVA test
performed with infected plants only showed details of significant differences between DSC,
dpi, and POTS (see Table 1). The difference between the PERMANOVA results performed
on all individuals and on infected plants only shows that pixels on healthy plants negatively
affect the ability of the test to discriminate between DSC.
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Figure 4. Principal component analysis biplot for Fusarium (F)-infected wild rocket plants (n = 90)
examined at 5, 10, and 15 dpi in each replicate (1–5) per pot (A–F) (cases, panel (a)) for differential
values (infected − healthy) of 54 literature vegetation indices (variables, on panel (b)) according to
principal component 1 (PC1) and 2 (PC2) explaining 55.0 and 17.8% of the total variance, respectively.
The colors in panel A are related to the observed disease severity classes while in panel b are linked
to the contributions (contrib) of each VI to the definition of the principal dimensions. Coefficients of
variable correlation with the two principal components are showed in panel (c).
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(p-value ≤ 0.05 and R2 > 0.9) with disease severity classes (DSC) exhibited by wild rocket infected
with F. oxysporum f. sp. raphani.

3.6. Machine Learning Models Results and Early Detection

The XGBoost algorithm showed a very high predictive performance on the training
dataset. At the pixel level, the accuracy values of the 100 models showed a range of 0.988
and 1 with a mean value of 0.997. The related p-values were all equal to 0, indicating that
the abundance of relative classes in the training dataset did not affect the algorithm’s ability
to correctly reproduce the observations. Scoring the contribution of the variables to the
prediction performance of the 100 training datasets showed that the most important were
the spectral bands ranging from the 90 to 94th position (together representing 74% of the
models), while the second most important variables included bands 1, those from the 90 to
100th position (excluding the bands in 96th and 97th positions) (together representing 86%
of the models) (Figure 9).

With regard to the evaluation of the models by independent observations of individual
pixels, and considering the overall accuracy of the indicator predictions, 85 out of 100 test
datasets were corrected for the class imbalance problem and all had a prediction accuracy
value greater than 0.7 (Figure 10). For healthy pixel class detection, the mean value of
detection Precision was 0.78 (ranging from 0.19 to 0.93), the mean Recall was 0.88 (ranging
from 0.36 to 1), and the mean F1 Score was 0.82 (ranging from 0.25 to 0.93). With regard
to the detection of infected pixels, the average Precision value was 0.73 (ranging from
0.52 to 0.97), the average Recall was 0.57 (ranging from 0.25 to 0.82), and the average F1
Score was 0.63 (ranging from 0.36 to 0.84). Detailed values of the evaluation metrics are
given in Table S3 in the Supplementary Materials.
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Figure 6. Average of the selected literature hyperspectral vegetation indices calculated on the canopy
reflectance data from FOR-infected (F, red) and control healthy (C, dark blue) wild rocket plants
at 5, 10, and 15 dpi. Bars with different lowercase letters are significantly different (p-value ≤ 0.05)
and asterisks indicate the significance level (* p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001;
**** p-value ≤ 0.0001) of the pairwise comparisons between indices of FOR-infected and control
healthy plants. Analyses were conducted applying ANOVA and Bonferroni correction test for
multiple comparisons.
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Figure 7. Principal component analysis biplot for infected (F, n = 18) and healthy control (C, n = 18)
wild rocket pots examined at 5, 10, and 15 dpi (cases) for the 12 selected vegetation indices (variables).
Unit variance scaling is applied to the rows; SVD with imputation is used to calculate principal
components. X and Y axis show principal component 1 and principal component 2, explaining 93.8%
and 2.4% of the total variance, respectively. Color grouping was performed by considering the disease
severity classes (DSC) in the range 0 = healthy to 3 = highly infected. The prediction ellipses are such
that with probability 0.95, a new observation from the same group will fall within the ellipse.
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Figure 8. Heatmap obtained by hierarchical clustering of the 12 selected vegetation indices in relation
to DSC. The analysis was conducted on infected (F, n = 18) and healthy (C, n = 18) wild rocket pots
at 5, 10, and 15 dpi. DSC and VIs values represented following color scales A and B, respectively.
Indices values (rows) were centered, and a unit variance scale was applied. The different observations
(columns) were clustered using maximum distance and Ward linkage.

Still considering the indicator prediction strategy, we also employed a model evalu-
ation procedure in which observations at 5, 10, and 15 dpi were used as three separated
testing datasets, as previously described in the Material and Methods section. When the
testing dataset, including observations at 5 dpi, only are considered, 80 out of 100 testing
datasets were corrected for class imbalance. Of these, 39 (49%) had prediction accuracy
values greater than 0.7, and 72 (90%) had accuracy values greater than 0.6, demonstrating
that very early detection of plant’s disease was a possible but still a difficult task at this
stage of disease.

When considering plant pixel datasets at 10 dpi and with an indicator prediction, 62
out of 100 predictions were successfully corrected for class imbalance and 49 of these (79%)
showed accuracy values greater than 0.7 (see Figure 10 for a graphical summary of all the
results described above). These results are very promising and show that early prediction
at 10 dpi is a real feasible task for MLA. After 15 dpi (the mid-stage detection), 95 out of
100 datasets were corrected for class imbalance, and 94 of these (99%) showed accuracy
values greater than 0.7. Details on all the evaluation metrics are given in Table S3 of the
Supplementary Materials.
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Table 1. Results of pairwise Permutational MANOVA applied only to infected plants. DSC: Disease
severity classes; dpi: Days post infection; and POTS: Pots identification number.

DSC 1 vs. DSC 2

Df Sum of Sqs R2 F Pr (>F)
DSC 1 159.8 0.02076 98.91 0.001
dpi 2 69.7 0.00905 21.57 0.001
POTS 13 2170.9 0.2819 103.33 0.001
Residual 3280 5300.6 0.6883
Total 3296 7701.1 1

DSC 1 vs. DSC 3

Df Sum of Sqs R2 F Pr (>F)
DSC 1 6054.3 0.43793 4308.88 0.001
dpi 2 584.1 0.04225 207.85 0.001
POTS 15 2041 0.14763 96.84 0.001
Residual 3662 5145.4 0.37219
Total 3680 13824.8 1

DSC 2 vs. DSC 3

Df Sum of Sqs R2 F Pr (>F)
DSC 1 2958.5 0.28265 1331.24 0.001
dpi 1 343.8 0.03285 154.72 0.001
POTS 10 1348.8 0.12886 60.69 0.001
Residual 2617 5816 0.55564
Total 2629 10467.3 1
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the ML models for the 100 iterations of the cross-pots predictions. The x-axis of the plot ends at 104
since this was the maximum spectral band sampled as the two most important predictor variables in
the 100 iterations.
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Figure 10. Bar plot showing the frequency of overall and partial accuracy statistics for the
100 resampled testing datasets. Each bar represents the total of the 100 predictions on testing pots
(the height from 0 of the violet bar). From the left, the first 4 bars show the prediction results at the
pixel level, while the last bar shows the same results but at the plant level. The height from 0 of the
blue bars indicates the part of the predictions that have a high accuracy (>0.7). The height of the
yellow bars indicates the number of only predictions made on datasets that showed the correction for
class imbalance and gave accuracy values greater than 0.7. The height of the light green and orange
bars are for special cases: The light green bar indicates that all datasets that were corrected for class
imbalance showed high accuracy, while the orange bar indicates that all datasets that showed high
accuracy was also corrected for class imbalance.

When an attempt was made to predict the severity of the disease of the whole individ-
ual (i.e., by considering the mean values of the spectral profile of a plant), the prediction
results were very encouraging, especially for early detection. In fact, with indicator pre-
diction, 94 out of 100 averaged datasets were corrected for the class imbalance problem.
Eighty-six of these showed accuracy values greater than 0.7, with ~92% of cases having
good to high prediction success. Regarding the partitioned accuracy for plants with 5 dpi,
41 out of 100 datasets were corrected for class imbalance and all had accuracy values above
0.7. When considering plants with 10 dpi, 46 datasets out of 100 were corrected for class
imbalance and, 42 of these (91%) had accuracy values greater than 0.7 (see Figure 10 for a
summary of all results described above). After 15 dpi, 89 out of 100 datasets corrected for
class imbalance and all of these had accuracy values greater than 0.7.

When we considered the dataset, including all those pixels of plants that were infected
but showed no visible symptom of disease (false negatives) after 5 dpi, the 100 XGB models,
on average, classified 83% of the pixels as healthy, 17% as DSC 1, and no pixels were
classified as DSC 2 or 3. At 10 dpi, the model classified 75% of the false negative pixels as
healthy and 25% as DSC 1. No false negatives were visually classified at 15 dpi. Details on
all evaluation metrics are given in Table S3 in the Supplementary Materials.
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Considering the full models (i.e., models trained with the dataset including all healthy
plant pixels, setting apart 8 testing pots, and corrected for class imbalance), the accuracy
values for the prediction of the testing dataset at the pixel level was 0.84 (p = 0), the total
Precision was 0.95, the Recall was 0.89, and the F1 Score was 0.92. The prediction accuracy
of the same dataset but without the correction for class imbalance was 0.896 (p = 0), the
total Precision was 0.93, the Recall was 0.99, and the F1 Score was 0.96. Figure 11 shows the
predictions of the two models over 4 out of the 8 sampled pots retained to test the models.

The model with correction showed to better classification of infected pixels (sensitivity
higher than specificity), while the model without correction performed better in classifying
true healthy pixels (specificity higher than sensitivity) (Table 2).

Table 2. Observations vs. predictions of the full models (with and without correction for class
imbalance) on the pot images of the testing datasets. On the left, observations and associated
predictions produced by the full model accounting for class imbalance. On the right, observations
and predictions produced by the full model not accounting for class imbalance.

Model with Correction for
Class Imbalance

Model without Correction for
Class Imbalance

Observations Observations

Pr
ed

ic
ti

on
s d0 d1 d2 d3

Pr
ed

ic
ti

on
s d0 d1 d2 d3

d0 6864 276 43 14 d0 7620 416 122 14
d1 673 157 81 0 d1 68 20 47 7
d2 158 105 228 182 d2 7 102 181 202
d3 0 0 9 756 d3 0 0 11 729
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Figure 11. Graphical results of full model predictions on independent datasets. The rows of the plots
in the figure represent, from the top, the pots of healthy and infected plants at 5 (very early detection),
10 (early detection), and 15 (mid-stage detection) dpi. The columns of the images represent, from the
left side, the original image of each pot, the prediction by the model correcting for class imbalance and
the prediction produced by the models not correcting for class imbalance. The legend to the right of
each prediction indicates the color of each disease stage: White for pixels classified as healthy, yellow
for pixels classified as DSC 1, and orange and red indicating as DSC 2 and 3 levels, respectively.
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4. Discussion

Hyperspectral sensors capture the reflectance characteristics of an object by measuring
a so-called hyperspectral fingerprint in the form of a data cube, which shows the spatial
(x, y) and spectral (z) dimensions of the reflectance values per wavelength [38,39]. Many
studies have shown that plant reflectance patterns are affected by abiotic stresses, pests,
plant pathogens, and/or biological control agents, as well as any other treatments that affect
plant physiology, emphasizing the value of hyperspectral imaging sensors in phenotyping,
detection, and/or monitoring plant disease [30,40–45]. These tools help to highlight spatial
variability occurring in the canopy and have shown, in correspondence to previous research,
an interesting ability in alert about generalized non-specific changes (symptoms) related to
biotic stressors in the basal sap-flow system [46,47].

In the current study, imaging analysis accomplished on FOR-infected plants revealed
spectral features associated with disease progression over time, as corroborated by qPCR
on interaction DNA in the root collar tract and symptomatic epigeic manifestations dis-
played by the plants. Hyperspectral fingerprints of infected plant canopies suggested that
Fusarium wilt caused a significative reduction in leaf light absorbance compared to the
healthy reference in most of the band range increasing over time, probably associated with
impairment of photoactive mechanisms related to pigment concentrations, water relations,
and cell structure [48]. Fusarium wilt is a dramatic consequence of vessel occlusion due to
the plant’s reaction to fungal colonization, which drastically reduces solutes and acropetal
water flow affecting color tightness, cell turgor and epigeic tissue activity within a few days,
inducing premature leaf senescence and slowing down plant growth [49]. Olivain and
Alabouvette [50] documented with microscopy photographs the dynamics of colonization
of tomato by a pathogen Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen,
which starts from wounds in the roots and leads to vascular infection in the stem just within
7 days from penetration, after the fungus has passed through the plant’s defenses (i.e.,
biochemical deposits and physical barriers). It is plausible that the endophytic growth of
the pathogen in wild rocket plants, which are smaller than tomato, produced detectable
distress effects already near the first time point of this study, worsening over time. In-
deed, quantification of endophytic fungal DNA revealed the FOR-colonization rate of the
wild rocket vascular system, indicating a temporary arrest of fungal spread in the range
5–10 dpi, probably due to the overcoming of plant defenses activated by pathogen/damage-
associated molecular patterns [51,52]. As the extent of foliar symptoms is determined by
differences in the initiation of infection [53] and the rate of colonization [54], this observed
lag phase [55] is a prelude to the observed outbreak of disease at 15 days.

Spectral changes in the early stages of the disease were strongly based on fluctua-
tions and progressive flattening of reflectance levels detected in the absorption regions of
chlorophyll (420–470, 490–550, 630–650, and 650–740 nm) and carotenoids (500–533 nm) as
a likely consequence of chloroplast destruction and chlorophyll degradation [56–58]. The
tendency to decrease photosynthetic efficiency and chlorophyll content is the first visible
effect of the tracheofusariosis, as also recorded in the “cultivated rocket” Eruca sativa Mill.
by Chitarra et al. [59] just before visible plant withering. Under Fusarium wilting stress,
the leaf apparatus is a recipient through the xylem of toxins secreted by the pathogen
into the vessels (i.e., fusaric acid), which play a crucial role in damaging mesophyll cell
membranes and chloroplasts due to the occurrence of oxidative stress [60–62], resulting in
the suppression of all related photosynthesis processes, the development of leaf chlorosis,
and yellowing [63]. While plant physiological responses to water shortage, which in the
long run leads to leaf curling, wilting, and the appearance of necrosis, are somewhat more
delayed than the abovementioned pigmentation anomalies due to the activation of plant
self-protective mechanisms (i.e., stomatal closure, accumulation of proline, abscisic acid,
and soluble sugars) according to the study by Sun et al. [64] on cucumber infected by
Fusarium oxysporum f. sp. cucumerinum J.H. Owen. Interestingly, these circumstances are
also well captured by hyperspectral fingerprinting. Indeed, in advanced stages of wild
rocket tracheofusariosis, a stronger increase in leaf reflectance was observed around the
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near-infrared wavelength range (700–1000 nm), indicating deep changes in leaf health
(700–750 nm), cell structure (760–800 nm), biochemical characteristics (800–960 nm), protein
(900–920 nm), and water content (960–980 nm) [65,66]. According to the current hyperspec-
tral patterns, with reference to Solanum lycopersicum L./F. oxysporum pathogenesis, Marín
Ortiz et al. [67] associated the increase in reflectance levels in the VIS 510–520, 650–670, and
700–750 nm ranges to the lowering of leaf photosynthetic pigments due to the infection,
while only a tenuous variation in the 750–1000 nm region was attributed to a marginal
disturbance of the water state.

In the current study, 54 different VIs from the literature were applied to the dataset in
order to reduce data noise [68], and to help characterize the observed biological phenomena
based on reflectance patterns. A total of 12 out of these VIs are highly correlated with the
progression of Fusarium wilting (Pearson R2 > 0.9) and belong to the NDVI group (NDVI,
HNDVI, mNDVI 705, Red Edge NDVI, NDVI 705), which refers to the nutritional and
vegetational status of the canopy [69]; the SAVI group (SAVI and OSAVI), which has been
proposed to assess canopy cover and to predict yield [70]; the RGB group (G, HVI, RVI,
RGRcn) related to photosynthetic pigments [71–74]; and, finally, PRI 515 alone, relating
to water content [75]. Some of these selected indices have already been reported to be
meaningfully correlated with the severity of diseases that cause significant physiological
and structural changes in the canopy on different plant systems [30]. For example, NDVI
has been applied to monitor the progression of Rhizoctonia solani Kühn in lettuce [76] and
the disease severity of Ascochyta blight in chickpea [77]. SAVI was successfully used to
estimate in the severity of cotton root rot caused by Phymatotrichopsis omnivora (Duggar)
Hennebert [78] and Fusarium Head Blight on wheat [79], respectively. The PRI515 index
has been proposed as more robust to identify canopy structural changes [80] and as a pre-
visual indicator of water stress [75] and has also been successfully applied in the detection
of Fusarium Head Blight in wheat in the early stages of disease [81]. G and RVI have been
applied for the assessment of the severity of leaf rust (Puccinia triticina f. sp. tritici Eriks.)
and powdery mildew of wheat, respectively [82,83]. The spectral location of these VIs
is consistent with the dynamic of pathogenesis discussed above. Indeed, VIs related to
changes in leaf pigmentation and/or photosynthesis proved useful to discriminate between
diseased and healthy plants in the early stages of plant/pathogen interaction with high
significance. On the other hand, the VIs referring to plant status next to the plant withering
showed the highest levels of significance in the pairwise comparisons.

The MLA we employed proved to be very powerful in discriminating between healthy
and diseased plants at any time and even at the level of a single detection pixel. This makes
the very early detection of disease a difficult challenge for classical multivariate tools. The
statistical analyses we performed proved that the PC axes of the canopy spectral profiles
cannot discriminate between true healthy and diseased plants, mainly due to the very high
similarity of the reflectance of healthy and infected plants 5 days earlier. On the other hand,
once the true healthy plants were removed from the analyses, significant discrimination
between different levels of disease severity was possible. The XGBoost algorithm was
used with our cross-pot prediction criterion to test model performance on two sets of pots,
for model training and for the performance assessment. Predictions were made at both
pixel and canopy levels and showed very high accuracy. MLA detected the occurrence of
diseased plants at 5 dpi with good accuracy (>0.7) in 85% of all considered datasets, which
were statistically balanced in terms of DSC frequency. These predictions were made at the
pixel level, i.e., classifying each individual pixel of a leaf as healthy or infected, according to
our scores. When we used the average spectral profile of the plant, the XGBoost algorithm
produced a good prediction of early detection in 92% of all datasets that we considered
statistically balanced in terms of DSCs distribution. Recently, the algorithm has been used
to aid the identification of wild rocket plants affected by powdery mildew based on the
spectral response [84].

Based on the accuracy results along different time points after infection, we acknowl-
edge that very early detection (5 dpi) is still difficult to carry out; only 39 out of 100 datasets
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were correctly classified as healthy or infected. Importantly, only 80 out of 100 datasets
were corrected for class imbalance implying that ~50% of them could be correctly clas-
sified. MLA has been shown to achieve early disease detection at 10 dpi. In fact, 79%
of the datasets corrected for class imbalance showed a prediction accuracy greater than
0.7. Detection of an intermediate stage (15 dpi) was an even easier task as 99% of the
balanced testing datasets were correctly classified (see Figure 10 for a graphical summary
of these results). Our results showed that a good way to correctly discriminate healthy
from infected individuals is to use the mean spectral profile of the canopies (Figure 10).
The accuracy of cross-pots prediction is only one strategy we employed to test the ability of
MLA in the early detection of wild rocket tracheofusariosis. However, we would like to
stress here that any good model training strategy includes collecting as many observations
as possible in its pipeline. For this reason, we trained two full models with the full datasets
of observations and retained only 8 pots separately for their independent evaluation. The
first model was built by resampling the least abundant class observations to reduce class
imbalance, while the second model was set up without the correction. The choice to also
consider a model without correction was dictated by the condition that leaves of healthy
and infected plants may share a rather variable portion of their spectral profiles due to the
non-specific symptomatology of tracheofusariosis that becomes more evident in the later
stages of infection and the empirical assignment of the relative disease score. Thus, the
leaves of an infected plant may still have pixels with a spectral profile typical of a healthy
plant and in this case, the model may erroneously include the true spectral profiles of the
healthy sectors of true diseased leaves in the variability of infected plants, and thus classify
the true healthy plants as infected. In this case, it is important to inform the model of
this problem by training it without accounting for class imbalance and then, assigning the
healthy spectral profiles shared by healthy and infected plants to the true healthy plants.
This procedure should reduce the “specificity” component of the prediction accuracy. This
strategy is only valid if the class of healthy plants is the most abundant, as in this study. The
results of the two full models showed that our hypothesis on this problem was partly true
but shed light on a more complicated phenomenon. Taking into account the comparisons
between observations and predictions of the full model with and without correction, as
expected, the first one misclassified many healthy pixels as infected, while the model
without correction solved this problem. In contrast, the model without correction failed
because many infected pixels could be classified as healthy. The predictions produced
by the model without correction showed more pixels predicted as healthy (white pixels)
on both control and infected plants, while the predictions of the model with correction
produced more yellow to red (infected) pixels on control plants as well. This means that the
two models helped to overcome some classification problems, but both have the following
shortcomings: The model with correction for class imbalance is too sensitive to disease
detection and thus to the identification of false positive and the model without correction
has a higher type I error rate and may fail to identify early stages of infection. We suggest
that considering one of the two models depends closely on the task of crop monitoring.
If the aim is disease detection because we suspect that the pathogen may have entered
the plants, then the model with correction should be used. On the other hand, if we are
sure that the plants are somehow protected from possible infection and we simply want to
monitor the crop, then the model without correction could be used.

The ML approach skimmed the most important variables (bands) to image-based
prediction of wild rocket Fusarium wilt symptoms over time, show the strongest impact of
reflectance data acquired from a few wavelengths in the 660–690 nm range corresponding
to the so-called red spectral range, which is involved in plants storing energy through
photosynthesis [85,86]. Thus, the reflectance in this narrow region can be used as a valid
index of the photosynthesis rate, since it correlates with the efficiency of the photochemical
processes taking place in the thylakoid membranes of chloroplasts, which host the pho-
tosynthetic pigments organized in the photosystems (PS) I and II [87]. Paired molecules
of chlorophyll a absorb at 680 nm in the PSII, and at 700 nm in the PSI [88]. The decrease



Remote Sens. 2022, 14, 84 23 of 27

in the absorbance of red light, therefore, is a sign of a non-effective quantum yield of PSII
and PSI [89], which in the initial stage of the wilting progression can be explained by the
degradation of chlorophyll a and peroxidation of the thylacoid plasmalemma due to the
photoprotective action of ethylene induced by exposure to F. oxysporum toxin, accompa-
nied also by a significant reduction in stomatal conductance [90]. Indeed, this evidence is
consistent with the results of previous research concerning chlorophyll-associated VIs that
are highly correlated with F. oxysporum disease progression on Physalis peruviana L. [91],
and on banana [92]. These results highlighted the importance of capturing hyperspectral
information on chlorophyll a transported by PSII in the phospholipidic membrane of thyla-
coids, to detect early infections of F. oxysporum f. sp. raphani on wild rocket. Finally, it is
noticed that bands referable to the red-light range are also present in the formula of many
of the VIs selected in this work for the effective early identification of latent infections.
Thus, identifying only hyperspectral information that is strictly necessary for crop detection
for early disease detection is essential for the application of the spectral approach on a
larger scale, such as field uses. Indeed, upscaling possibilities depend on several factors
including the simplicity, lightness, and cost-effectiveness of the sensor, which may facilitate,
for example, its incorporation into carriers (e.g., light drones, tractors, operating machines)
or greenhouses structural supports. This study is designed for the acquisition of top-view
hyperspectral images, under conditions, even if controlled, that are very close to the real
ones in which wild rocket vegetation grows at the soil line. However, the system needs
to be implemented for practical applications, taking into account other limiting factors
such as the distribution of plant leaves at different heights and/or stages and bidirectional
reflectance distribution function that defines the scattering of the reflected radiance that
may require correction [93]. The research conducted here aims to support farmers towards
the effective monitoring and management of tracheofusariosis of wild rocket by benefiting
from the non-destructive early identification of the plant’s spectral response to pathogen-
esis. Since fungal infection develops endophytically in a short period of time far before
symptoms have become widely visible, the rapidity of intervention with preventive and/or
curative measures, is crucial to prevent further spread of the disease and/or to circum-
scribe and isolate outbreaks, limiting both current and future crop damage (e.g., inoculum
accumulation). The optoelectronic sensor system is also potentially scalable, allowing high
throughput monitoring of large aboveground areas and mapping of potential outbreaks in
a short time, providing information well in advance of traditional visual surveillance. In
this perspective, the early identification of diseased plants, such as a kind of invasive alien
species, to be treated or eliminated from cultivation can be strategic to improve the results
of phytopathological crop management.

5. Conclusions

High-performance VIs that were selected in this work were able to capture spectral
changing referring to the progression of Fusarium wilting on wild rocket, proving to
be effective in discriminating between different disease stages, and was corroborated by
ANOVA tests. Hyperspectral imaging proved to be a powerful and accurate approach
to assess the spatio-temporal distribution of spectral fingerprints of diseased and healthy
plants, in a perspective of disease early detection. Although powerful classical statistical
techniques were not able to detect differences between uninfected plants and less evident
symptoms of infection, the XGBoost modeling algorithm proved to have high predictive
performance for the early stages of disease detection, even with totally independent testing
data, as in the cross-pots prediction evaluation strategy we performed here. Discrimination
between healthy and infected pixels was accurate in 85% of our experimental cases, while
it was accurate in 86% of the studied datasets when the single plant level was considered.
At the individual pixel level, with datasets corrected for class imbalances, the detection
of the disease signature at a very early stage of infection (5 dpi) was accurate in 49% of
the sampled datasets, while the detection of the disease after 10 days (early detection) was
accurate in 79%. The identification of spectral bands referable to the red-light range in the
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ML algorithm could optimize remote sensing strategies to detect infected plants. Therefore,
the ML algorithm can support the early identification of diseased wild rocket plants and/or
the assessment of their condition by using spectral markers of the canopy that deviate from
the normal plant physiology and inform about the health status.

The application of these technologies can guide disease control strategies and proper
crop management by foreseeing disease severity overtime, driving the application of
antifungal treatments and, subsequently, lowering the chemical pressure on the specific
cropping system and the environment in general.
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