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Abstract: While the alpine grassland ecosystems on the Tibetan Plateau (TP) have generally im-
proved in recent years, some grasslands still suffer from varying degrees of degradation. Studying
the restoration potential (R) of the grasslands on the TP is crucial to the conservation and restoration
of its alpine grassland ecosystems. Few studies have assessed the restoration value of the alpine
grasslands on the TP. We attempt to estimate the actual (ANPP) and potential net primary produc-
tivity (PNPP) of the grasslands on the TP. On this basis, we defined R as the “gap” between the
current and highest achievable levels of restoration of a grassland. Then, R estimates were yielded
for the alpine grasslands on the TP, which we used to analyze the restoration value of these grass-
lands. Specifically, based on the meteorological data for the period 2001–2019, in conjunction with
remote-sensing imagery acquired by a moderate-resolution imaging spectroradiometer for the same
period, the Carnegie–Ames–Stanford approach model was selected to produce ANPP estimates for
the grasslands on the TP. Then, the Thornthwaite memorial model, the principle of similar habitats,
and the Chikugo model, were employed to generate PNPP estimates for these grasslands. In addition,
the R of these grasslands was then assessed based on the difference between their PNPP and ANPP.
The main results are summarized as follows. (1) A multiyear mean R of 332.33 g C·m–2 (81.59% of the
ANPP) was determined for the grasslands on the TP over the period 2001–2019. A notable spatial
distribution pattern of high Rs in the southwestern, eastern and middle parts of the TP, and low
Rs in the northwestern part of the TP were also identified. Most of the grasslands in areas such as
the southern part of Nagqu, the southwestern part of Ngari, Xigaze, Garze Tibetan Autonomous
Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, Gannan Tibetan Autonomous Prefecture,
Huangnan Tibetan Autonomous Prefecture, Haibei Tibetan Autonomous Prefecture, Guoluo Tibetan
Autonomous Prefecture and Yushu Tibetan Autonomous Prefecture were found to have high restora-
tion value. (2) Grasslands with a stable R account were the highest proportion (76.13%) of all the
grasslands on the TP, followed by those with a decreasing R (19.62%) and those with an increasing R
(4.24%). Grasslands with an increasing R were mainly concentrated in the southern part of Xigaze,
and parts of Yushu Tibetan Autonomous Prefecture, Guoluo Tibetan Autonomous Prefecture and
Garze Tibetan Autonomous Prefecture. (3) Analysis based on the local conditions of the TP revealed
a high restoration value for three types of grassland (i.e., alpine meadows, mountain meadows,
and temperate meadow steppes), the grasslands distributed at altitudes of 3000–4000 m, and the
grasslands located in the warm temperate zone. The results of this study are expected to provide
scientific and theoretical support for the formulation of policies and measures aimed at conserving
grasslands, as well as restoring ecosystems and degraded grasslands on the TP.

Keywords: Tibetan Plateau; restoration potential; net primary productivity; potential net primary
productivity; dynamic variation
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1. Introduction

Grasslands are one of the most widely distributed ecosystems across the globe and
account for approximately 25% of the Earth’s land area [1]. In addition, grasslands are a
vital natural resource and play an irreplaceable role in areas such as climate regulation,
wind breaking, sand fixation, biodiversity conservation, water and soil conservation, and
the maintenance of ecological balance. It also be noted that grassland around the world
are faced with the risk of degradation [2]. This is particularly true for those on the Tibetan
Plateau (TP), about half of which (49%) are alpine grasslands [2]. Although the alpine
grassland ecosystems on the TP have generally improved in recent years, some grasslands
still suffer from varying degrees of degradation. The unique ecological and environmen-
tal conditions on the TP present a tremendous challenge to grassland restoration once
degradation occurs [3].

The restoration of grassland ecosystems depends strongly on the restoration of grass-
land vegetation [4]. Grassland restoration measures applied to the TP have included
fertilization, reseeding, enclosure-assisted afforestation, and manual grassland cultiva-
tion. However, enclosure-assisted afforestation is a “double-edged sword,” as long-term
enclosures may reduce the number of species, nutrient value, and soil fertility and may
place stress on non-enclosed areas [3]. In recent years, the concept of close-to-nature (CTN)
restoration has garnered extensive attention, and has been effectively applied to vegetation
restoration. CTN restoration does not completely dispense with conventional manual
restoration measures, but instead employs them to help an ecosystem achieve sustainable
restoration primarily through self-regulation. This is also a measure suitable for alpine
grassland restoration [5].

The groundwork for grassland restoration and ecological reconstruction should center
on understanding the present and potential grassland distribution patterns within the study
area, that is, answering scientific questions such as to what level the natural grasslands can
be restored if the adverse factors are eliminated. Limitations in areas such as manpower,
material resources, and policies determine which grasslands can be restored and conserved,
so prioritizing the restoration of some degraded grassland areas is currently a relatively
good option [6]. However, the CTN restoration potential (R) and spatial distribution pattern
of the alpine grasslands on the TP remain unclear. Studying the R of the grasslands on the
TP is vital to the conservation and restoration of its grassland ecosystems.

Net primary productivity (NPP) can accurately reflect the growth conditions of grass-
land vegetation, and is sensitive to climate change and human activity [7], making it a
suitable metric for assessing the R of grasslands. Few studies have examined R, and they
have used inconsistent methods, as evidenced by the following examples. Venter et al. [8]
analyzed the degradation and R of vegetation in South Africa over the period 1986–2019,
based on the trend of the enhanced vegetation index, calculated using Sen’s slope and the
Mann–Kendall test. Gao et al. [9]. and Zhao et al. [10]. divided the Loess Plateau through
superimposition of factors such as terrain, soil, vegetation, and climate, and assessed the
R of the vegetation on the Loess Plateau based on the maximum vegetation coverage in
certain areas that conformed to the principle of similar habitats (PSH), which states that
areas with similar habitats are similar in the R of their vegetation. Li et al. [11]. developed
a comprehensive R assessment model for sand vegetation in alpine river valleys using the
analytic hierarchy process, combined with the fuzzy comprehensive evaluation method, to
investigate the R of different types of sand vegetation. Emamian et al. [12]. determined
the future potential restored vegetation conditions and the optimal areas for implementing
restoration projects in northeastern Iran by analyzing two indices, the future restoration
dispersal index and the future uncertainty dispersal index. Through the analysis of a
“chronotoposequence”, De et al. [13]. discovered that grassland reestablishment could
restore soil health in the midwestern United States, with the greatest improvements oc-
curring at high altitudes. Gao et al. [14]. estimated the potential productivity of forests
in the Chinese province of Jilin based on Paterson’s climate vegetation and productivity
index model.
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While few studies have investigated R, models have been extensively used to esti-
mate potential NPP (PNPP). Many studies have calculated PNPP based on the improved
Carnegie–Ames–Stanford approach (CASA) models: Pan and Xu [15] calculated the PNPP
of vegetation in China from 1981 to 2015 through simulations by an improved CASA model,
coupled with potential normalized difference vegetation index (NDVI) data. Li et al. [16].
calculated the PNPP using an improved CASA model and quantified the human impact on
the NPP in the Shiyang River Basin over the period 2001–2014, based on the NPP estimates
yielded by the CASA model. Lv et al. [17]. employed an improved CASA model to gener-
ate PNPP estimates for Larix principis-rupprechtii trees in China over the period 2001–2010.
Ren et al. [18]. produced PNPP estimates for natural vegetation in China from 1982 to
2012, through simulations performed using an improved comprehensive and sequential
classification system in conjunction with an improved CASA model.

Other studies have adopted the Thornthwaite memorial (TM) model to estimate PNPP:
Li et al. [19]. estimated the PNPP in Inner Mongolia over the period 1982–2015 using an
improved TM model, and on this basis analyzed the impact of climate change and human
activity on the grasslands in this region through NPP analysis. Based on the TM model,
Sun et al. [20]. calculated an annual mean PNPP of 1314 g C·m–2 for the vegetation in
Yunnan, Guizhou, and Sichuan over 2007–2016. Zhang et al. [21]. estimated PNPP for
the Shiyang River Basin over 1999–2007, based on the TM model. Jahelnabi et al. [22].
used the TM model to estimate the PNPP of the vegetation in the Gadarif State in eastern
Sudan. Yin et al. [23]. produced PNPP and actual NPP (ANPP) estimates for the Hengduan
Mountains based on the TM and CASA models, to represent the impact of human activity
on the ANPP based on its difference from the PNPP. Zhou et al. [24]. calculated the ANPP
and PNPP in the Heihe River Basin from 2001 to 2010, based on the CASA and TM models
driven by several types of data, and used the difference between these two measures to
represent the impact of human activity on NPP in an effort to evaluate the impacts of
human activity and climate change on desertification.

Some studies have employed other models to estimate PNPP. For example,
Del Grosso et al. [25]. developed a model based on precipitation and temperature (termed
as the National Center for Ecological Analysis and Synthesis model) to calculate the global
PNPP, which they compared with the results yielded by the Miami and Schuur models.
Wu et al. [26]. produced PNPP estimates for the city of Guangzhou based on the Chikugo
model, and combined them with ANPP estimates yielded by the CASA model to establish
a relative contribution index to quantitatively analyze and evaluate the impact of human
activity on NPP. Tsunekawa et al. [27]. identified potential hotspot areas of desertification
and land degradation by comparing PNPP and ANPP estimates yielded by the Chikugo
model, and an improved CASA model. Based on the classification indices-based (CI) model,
Lin et al. [28] generated NPP estimates for potential terrestrial vegetation in China over
1961–2006, and calculated an annual range of 1.93–4.54 Pg C for the total NPP of potential
terrestrial vegetation in China under present climatic conditions [29]. Zhao et al. [30] em-
ployed the CI model to yield NPP estimates for each potential type of vegetation in Inner
Mongolia over the period 1982–2009, based on an integrated orderly classification system.

The aforementioned studies have the following main shortcomings: (1) only a few
studies have investigated the R of alpine grasslands, and the definition of and methods
used to study R are inconsistent; (2) most studies are focused on the impact of climate and
human activity on NPP, while only a few assess R; (3) only one method is employed to
produce PNPP or R estimates, and they lack controls for comparison.

The TP region is less disturbed by human activities and is an ideal region to study
climate and environmental changes [31]. In reality, even without human disturbances,
there are many kinds of natural abiotic (e.g., drought) and biotic (e.g., natural grazing)
disturbances. In this study, we define PNPP as the top-level in the TP, which not only
excludes human disturbances, but also excludes all natural abiotic and biotic disturbances.
PNPP is an ideal top-level state, which may not be necessarily achievable in reality.
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We attempted to estimate the ANPP and PNPP of the grasslands on the TP, and defined
R as the “gap” between the current and highest achievable levels (theoretic) of restoration
of a grassland. Then, R estimates were produced for the alpine grasslands on the TP, and
were used to analyze the restoration value of these grasslands. Specifically, the CASA
model was selected to generate ANPP estimates, whereas the TM model, the PSH, and
the Chikugo models were used to produce PNPP estimates (referred to as PNPP1, PNPP2,
and PNPP3, respectively). The difference between the PNPP and ANPP of a grassland
was defined as its R. In addition, the R of the grasslands on the TP and its trend over the
period 2001–2019 were quantified. The degradation conditions and restoration value of the
grasslands on the TP were analyzed based on their R. The results of this study can be used
to scientifically identify the current level of restoration, R, and restoration value of different
grasslands, and they can provide empirical support for guiding grassland restoration on
the TP and relevant R calculation methods.

2. Materials and Methods
2.1. Overview of the Study Area

With an area of approximately 257.24 × 104 km2 (accounting for one-third of China’s
total grassland area and approximately 26.8% of China’s total land area), the TP (26◦00′12”–
39◦46′50”N, 73◦18′52”–104◦46′59”E) is as an important pastoral region of China that extends
across a total of 201 county-level administrative divisions in six provincial regions (Qinghai,
Tibet, Xinjiang, Sichuan, Gansu, and Yunnan). This region has a wealth of grassland
resources, and is home to 17 wide-ranging types of grassland, including alpine steppes,
alpine meadows, alpine meadow steppes, and alpine deserts [32] (Figure 1).

Figure 1. Distribution of different types of grassland on the TP.
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2.2. Data Sources and Preprocessing
2.2.1. Meteorological Data

The interpolated monthly precipitation and temperature data for the periods 2001–2019
used in this study were obtained from the National Earth System Science Data Center,
National Science and Technology Infrastructure of China (http://www.geodata.cn, ac-
cessed on 12 September 2021). The reliability estimation of the dataset has been verified by
Peng et al. [33] (spatial resolution: 1 km).

2.2.2. Total Solar Radiation (SOL) Data

Monthly total SOL was calculated using the Area Solar Radiation tool of ArcGIS
software. The digital elevation model (DEM) data used in this study that originated from
the Shuttle Radar Topography Mission data (spatial resolution: 90 m) (http://srtm.csi.
cgiar.org/, accessed on 11 September 2021.) was published by the United States National
Aeronautics and Space Administration (NASA) [34]. The data were resampled to 1 km for
subsequent analysis. The DEM data were also used to calculate PNPP2.

2.2.3. Moderate-Resolution Imaging Spectroradiometer (MODIS) Data

The MOD13A3 and MCD43A4 products provided by NASA’s earth observing system
data and information system were used in this study. The MOD13A3 product provided
monthly NDVI data with a spatial resolution of 1 km. The MCD43A4 product provided
daily MODIS band 1–7 surface albedo data, corrected by the bidirectional reflectance
distribution function and with a spatial resolution of 500 m. In this study, MODIS band
2 and 6 data extracted from the MCD43A4 product were used to calculate the land surface
water index (LSWI), which was input into the CASA model to calculate NPP.

The abovementioned data were subjected to three treatments, namely, format conver-
sion, mosaicking, and projection, using the MODIS reprojection tool. The processed data
were in Geo-TIFF format, and were projected onto the World Geodetic System (WGS)-1984
Albers coordinate system. In addition, all the data were resampled to 1 km and cropped to
produce imagery data for the TP. Moreover, monthly LSWI data were synthesized using
the maximum-value composite (MVC) technique for subsequent analysis [35].

2.2.4. Grassland Type Data and Climate Zone Data

The grassland type data were from the rangeland resources of China [36]. The climate
zone data were from the Geographic Atlas of China [37]. They were used to calculate PNPP2.

2.3. ANPP

The CASA model—currently the most commonly used tool for estimating NPP [38]—was
selected to yield the NPP estimates. This model estimated NPP primarily based on the
absorbed photosynthetically active radiation (APAR) and light-use efficiency ε through the
following Equation (1):

ANPP = APAR× ε = SOL× FPAR× ε× 0.5 (1)

where SOL is the total solar radiation (MJ·m–2), calculated using a digital elevation model
in ArcGIS software [34]; FPAR is the fraction of the photosynthetically active radiation
absorbed by the vegetation canopy, which depends on the NDVI and its maximum and
minimum values, the simple ratio index and its maximum and minimum values, and the
FPAR and its maximum and minimum values for each vegetation type (see Zhu et al. [38]
for the detailed calculation procedure); ε is the light-use efficiency (g C·m–2), which is
calculated from the monthly mean temperature, the mean temperature of the optimal
month for plant growth, the LSWI, and the maximum light-use efficiency in ideal conditions
ε* (ε* was set in this study to the global general value of 0.389 g C·m–2) (see Xu et al. for
the detailed calculation procedure) [39].

http://www.geodata.cn
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
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2.4. PNPP
2.4.1. TM Model

The TM is employed in this study to estimate PNPP1. This model was developed
through the incorporation of a revised variant of the Thornthwaite potential evapotran-
spiration model to the Miami model, and its effectiveness has been confirmed in previous
research. Specifically, the TM model estimates PNPP1 based on the relationship between
evapotranspiration and carbon sequestration, with precipitation and temperature as inputs.
This approach is more accurate than that used by the Miami model [19]. PNPP1 is calculated
using the following Equations (2)–(4):

PNPP1 = 3000
[
1− e−0.0009695(v−20)

]
(2)

v =
1.05r√

1 +
(

1 + 1.05r
L

)2
(3)

L = 3000 + 25t + 0.05t3 (4)

where PNPP1 is the annual potential net primary productivity (g C·m–2), v is the actual
annual mean evapotranspiration (mm), L is the annual mean evapotranspiration (mm), t is
the annual mean temperature (◦C), and r is the annual total precipitation (mm). The t and
r values are derived from the spatially interpolated precipitation and temperature data for
the study area for 2001–2019 (spatial resolution: 1 km; format: GeoTIFF; projected into the
WGS-1984 Albers coordinate system).

2.4.2. PSH

The PSH is adopted to analyze the PNPP2 in the study area. The principle behind PSH
is that areas with similar habitats are similar in terms of the ultimate level of restoration
(i.e., R) of grasslands [9,10]. Based on this principle, the following procedure was used to an-
alyze PNPP2. First, the grasslands on the TP were divided into 17 types (e.g., alpine steppes,
alpine meadows, alpine meadow steppes, temperate steppes, and alpine deserts). Then,
they were divided into six types by altitude: lower than 2000 m, 2000–3000 m, 3000–4000 m,
4000–5000 m, 5000–6000 m, and higher than 6000 m. Finally, they were divided into eight
types based on the climate zone where they were located: the temperate, south subtropical,
north subtropical, warm temperate, plateau subfrigid, plateau subtemperate, plateau frigid,
and plateau temperate zones. The subsequent superimposition of the obtained types of
grassland and masking of the non-grasslands yielded a total of 261 computational subareas.
The mean NPP over the period 2001–2019 was calculated for each computational subarea.
The maximum NPP in each subarea was considered its PNPP2.

2.4.3. Chikugo Model

The Chikugo model is used to produce PNPP3 estimates. Since it considers only four
factors (i.e., radiation, evaporation, temperature, and precipitation), this model is suitable
for calculating PNPP, as shown in the following Equations (5) and (6) [26]:

PNPP3 = 0.29[exp(−0.216× RDI)]× Rn (5)

Rn = RDI× L× P = RDI× (597− 0.6t)× 0.0103× r (6)

where RDI is the annual mean radiative dryness, Rn is the net radiation received by the land
surface (MJ·m–2), L is the evaporative heat loss (mm), t is the annual mean temperature
(◦C), and r is the annual precipitation (mm). See Section 2.4.1 for the data and formats used
to calculate PNPP3.



Remote Sens. 2022, 14, 80 7 of 21

2.5. Restoration Potential (R)

The R of a natural grassland is defined as the difference between its PNPP and ANPP,
as shown in the following Equations (7)–(9):

PNPPm1 and PNPPm3 = max
2001�i�2019

{PNPPi} (7)

PNPPm2 = PNPP2 (8)

Rk = PNPPmk −
1
19

2019

∑
i=2001

ANPPi where, k = 1, 2, 3 (9)

The procedure for using each of the TM and Chikugo models to calculate R is as follows.
First, the selected model was used to calculate the PNPP for each year. Then, the maximum-
value composite technique was employed to calculate the maximum PNPP (PNPPm1 and
PNPPm3) over the period 2001–2019. Finally, Rk was determined by subtracting the mean
ANPP over the 19-year period from PNPPm1 and PNPPm3. The calculation process based
on PSH was relatively simple; it dose not need to use the maximum-value composite
technique. The PNPP2 obtained in Section 2.4.2 was the PNPPm2 of PSH. The process is
described in more detail below (Figure 2). The method of calculating Ra (the aboveground
part of grassland) is the same as above.

Figure 2. Flow chart of the calculation of R.

2.6. Trend Analysis

Theil–Sen median trend analysis combined with the Mann–Kendall test was performed
to evaluate the R trends and distribution patterns on the TP over the period 2001–2019. The
results were categorized into five scenarios: a significant increase in R; a slight increase in
R; a stable and unchanged R; a slight decrease in R; and a significant decrease in R. Due to a
near absence of areas with an NPP slope of 0, the following rules were defined in this study,
based on the actual situation for the Theil–Sen median analytical process: areas with NPP
slopes below−3, between−3 and 3, and greater than 3 were considered to have undergone
a decrease in R, no change in R, and an increase in R, respectively. The significance of
the obtained trends was checked using the Mann–Kendall test at a 0.05 confidence level.
The trends were considered statistically significant if Z > 1.96, or < −1.96, and statistically
nonsignificant if −1.96 ≤ Z ≤ 1.96. The reader can see Yuan et al. and Gao et al. [40,41] for
the detailed calculation procedure.
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3. Results
3.1. Comparison of Three Types of R

Driven by the 2001–2019 PNPP and ANPP data for the TP, the TM model, the PSH, and
the Chikugo model were used to calculate the mean R for the period 2001–2019. The means
yielded by these three methods are referred to as the mean R1, R2, and R3, respectively. The
mean R1, R2, and R3 were also averaged. The results are presented in Figure 3. Specifically,
the mean R1, R2, and R3 were respectively 293.56, 647.62, and 55.82 g C·m−2,with an
average of 332.33 g C·m−2. As can be easily seen in Figure 2, despite the difference between
the mean R1, R2, and R3, the three methods yielded similar spatial R distribution patterns.
R was high in the southwestern, eastern and middle parts of the TP, but with slightly low
values in the northwestern part of the TP.

Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. Spatial distribution patterns of the R1, R2, R3 and R of the natural grasslands on the TP
over the period 2001–2019; (a–d) represent R1, R2, R3 and R, respectively.

Figures 4 and 5 show line graphs plotted based on the R data for the TP for the period
2001–2019, to depict the interannual variation of the R and Ra of the grasslands on the
TP, respectively (in Figure 5, R1a, R2a, and R3a refer to the Ra values obtained using the
TM model, the PSH, and the Chikugo model, respectively). Analysis of these two figures
revealed the following. The R of the grasslands on the TP basically exhibited a tendency to
level off over the 19-year period. The R reached its maximum of 349.27 g C·m−2 and its
minimum of 316.90 g C·m−2 in 2008 and 2017, respectively. The interannual variation of Ra
basically agreed with that of the overall R. The maximum (69.92 g C·m−2) and minimum
(61.95 g C·m−2) values of Ra appeared in 2008 and 2001, respectively.

3.2. The Trends of R

The R data for the period 2001–2019 were examined by Theil–Sen median trend
analysis. The significance of the results was checked by the Mann–Kendall test. On this
basis, R trends were obtained for the TP for the period 2001–2019, as shown in Figure 6.
Coupling analysis revealed five scenarios: significant upward, slight upward, stable, slight
downward, and significant downward trends. As shown in Figure 6, grasslands with a
decreasing R were concentrated primarily in the western and northern parts of the TP,
whereas those with a decreasing R were located mainly in the central part of the TP. Overall,
three types of R trend (upward, downward, and unchanged) could be identified from
Figure 5 for the grasslands on the TP. Grasslands with a stable R account had the highest
proportion (76.13%) of all the grasslands on the TP, followed by those with a decreasing R
(19.62%) and those with a increasing R (4.24%).
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Figure 4. Interannual variation of the R of the grasslands on the TP over the period 2001−2019.

Figure 5. Interannual variation of the Ra (aboveground recovery potential) of the grasslands on the
TP over the period 2001−2019.
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Figure 6. R trends of the grasslands on the TP over the period 2001–2019.

3.3. R Analysis Based on the Type of Grassland

Figures 7 and 8 show plots produced based on the R data for the period 2001–2019 to
depict the multiyear mean R and interannual R trend of each type of grassland on the TP
for 2001–2019, respectively. Analysis of these two figures identified tropical shrub tussocks,
tropical tussocks, warm tussocks, and warm shrub tussocks as the types of grassland with
high R values, ranging from approximately 510.21 to 619.71 g C·m–2 and fluctuating more
significantly than those of other types of grassland. However, these four types of grassland
accounted for a small proportion of the grasslands on the TP. In comparison, the figures also
showed low and non-significant interannually fluctuating R for temperate steppe deserts,
lowland meadows, temperate deserts, alpine desert steppes, temperate desert steppes,
and alpine deserts, giving the restoration of these types of grassland low value. Alpine
meadows, mountain meadows, and temperate meadow steppes, accounting for a large
proportion of the grasslands on the TP, were associated with high Rs (412.46, 476.71, and
376.41 g C·m–2, respectively), with mountain meadows having the highest R of these four
types of grassland.
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Figure 7. Statistics of the R of each type of grassland on the TP over the period 2001−2019.

Figure 8. Interannual variation of the R of each type of grassland on the TP over the period 2001−2019.

3.4. Analysis of Grassland R by Altitude

Figure 9 is the spatial distribution of the altitude on the TP. It used the DEM data in
Section 2.2.2. Figure 10 is a histogram of the R data for the period 2001–2019, showing the
multiyear mean R of the grasslands on the TP in each of the six altitude ranges specified
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in Section 2.4.2. Grasslands distributed at altitudes lower than 2000 m and higher than
6000 m were associated with high Rs. However, as these grasslands accounted for an
extremely small proportion of the grasslands on the TP, their restoration was of low value.
The dominant types of grassland on the TP were distributed primarily in the altitude ranges
of 2000–3000, 3000–4000, 4000–5000, and 5000–6000 m and were associated with high Rs,
as evidenced by their multiyear mean Rs of 301.68, 379.66, 346.40, and 263.63 g C·m−2,
respectively, the grasslands located at altitudes of 3000–4000 m having the highest R.

Figure 9. Spatial distribution of the altitude on the TP.

3.5. Analysis of Grassland R by Climate Zone

Figure 11 is the spatial distribution of the climate zone on the TP. It used the climate
zone data in Section 2.2.4. Figure 12 presents a histogram of the R data of 2001–2019 to
show the multiyear mean R of the grasslands in each of the eight climate zones specified
in Section 2.4.2. The grasslands distributed in the north subtropical and south subtropical
zones clearly had the highest Rs. However, because these grasslands accounted for a very
small proportion of the grasslands on the TP, their restoration was of very low value. The
multiyear mean Rs of the grasslands distributed in the other six climate zones (temperate,
warm temperate, plateau subfrigid, plateau subtemperate, plateau frigid, and plateau
temperate) were 223.97, 396.24, 344.55, 391.90, 199.02, and 313.38 g C·m−2, respectively,
and the grasslands in the warm temperate and plateau frigid had the highest and lowest
Rs, respectively.
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Figure 10. R statistics for the grasslands on the TP located in different altitude ranges over the period
2001–2019.

Figure 11. Spatial distribution of the climate zone on the TP.
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Figure 12. R statistics for the grasslands in each climate zone on the TP over the period 2001–2019.

4. Discussion
4.1. Research Methods

All the model-based methods used in this study have been validated in previous
relevant studies, summarized as follows. Li et al. [16]. calculated PNPP using an improved
CASA model and quantified the human impact (mean: 203.68 g C·m−2) on the NPP in the
Shiyang River Basin in 2001–2014 based on ANPP estimates yielded by the CASA model.
Wu et al. [26]. estimated PNPP for the city of Guangzhou using the Chikugo model and
calculated the NPP loss (mean: 841.54 g C·m−2) due to land-use and land-cover changes
based on the ANPP estimates yielded by the CASA model. Tsunekawa et al. [27]. identified
potential hotspot areas in terms of desertification and land degradation by comparing
the PNPP and ANPP estimates yielded by the Chikugo model and an improved CASA
model. Tong et al. [42]. calculated the human-induced NPP (mean: 454.83 g C·m–2) in five
northwestern provinces of China over 2000–2015, based on ANPP and PNPP estimates
yielded by the CASA and TM models. Gao et al. [9]. and Zhao et al. [10]. divided the
Loess Plateau into regions through the superimposition of factors such as terrain, soil,
vegetation, and climate, and then evaluated the R of the Loess Plateau based on the
maximum vegetation coverage in certain areas using the PSH. Based on the TM model,
Sun et al. [20] determined an annual mean PNPP of 1314 g C·m–2 for vegetation in Yunnan,
Guizhou, and Sichuan over the period 2007–2016. Zhang et al. [21]. estimated PNPP for the
Shiyang River Basin over the period 1999–2007, based on the TM model. Jahelnabi et al. [22].
used the TM model to generate PNPP estimates for vegetation in the Gadarif state, eastern
Sudan. Yin et al. [23] estimated PNPP and ANPP for the Hengduan Mountains based on
the TM and CASA models, and represented the impact of human activity on ANPP as the
difference between ANPP and PNPP. Zhou et al. [24]. calculated the ANPP and PNPP in
the Heihe River Basin for 2001–2010, based on the CASA and TM models driven by several
types of data, and then used the difference between these two measures to represent the
impact of human activity on NPP, with the goal of evaluating the impact of human activity
and climate change on desertification.

It can be seen that estimates varied considerably by method and region. Most pub-
lished studies employed one method to produce NPP estimates for their areas of interest,
and their results likely differed due to the difference between the methods used. In this
study, drawing lessons from previous research experience, we calculated the Rs of the TP
using three PNPP calculation methods, and averaged the results to reduce the possible
errors arising from the models and methods.
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4.2. Contribution to Carbon Sequestration

Grassland carbon sequestration is a problem that is drawing growing attention from
countries around the world, and more people have begun to pay attention to the potential
value of grasslands as carbon sinks [43]. Many believe that grasslands are perpetual carbon
sinks, and that maintaining their present conditions alone can help to achieve a carbon
sink effect, but this is not the case [44]. The conservation and restoration of the available
grasslands are a top priority for to the goal of enhancing the carbon sequestration capacity
of grasslands. Future plans should focus on preserving the low-temperature habitats of
alpine grasslands, conserving the available soil carbon stock, and improving the carbon
sequestration capacity of soils in temperate grasslands. Alpine grasslands merit more
attention since they are highly effective at sequestering carbon while being vulnerable [45].

Fang et al. [46] found that the total amount of carbon sequestered by terrestrial vegeta-
tion in China ranged from 0.096 to 0.106 Pg C/a over the period 1981–2000. Yan et al. [47]
identified the presence of large carbon sinks in the alpine meadows in the southwestern,
southern, eastern, and northeastern parts of the TP. This distribution pattern basically
matched that of R found in this study. Du et al. [48]. noted that future grassland restoration
could increase the potential organic carbon stock of alpine grassland soils on the TP by
0.83 pg at depths of 0–40 cm, suggesting that the restoration of alpine grasslands on the
TP is crucial for improving their carbon sequestration capacity. Simulations performed by
Chang et al. [49] revealed the following: (1) the implementation of restoration management
could markedly increase the organic carbon content of soils in degraded alpine meadow
steppes on the TP over the period 2011–2030; (2) this practice can allow slightly degraded
winter pastoral grasslands and moderately degraded summer pastoral grasslands to se-
quester carbon at rates of 0.04 and 2.0 Mg C ha−1 yr−1, respectively; (3) once managed
through improvement practices, the degraded Tibetan grasslands can contribute an an-
nual carbon sink of 0.022–0.059 Pg C yr−1. These results on the restoration of degraded
grasslands on the TP are indicative of its huge potential for mitigating greenhouse gas
emissions through soil carbon sequestration. All the above predictions were based on the
restoration of degraded grasslands on the TP, and are therefore particularly important for
this research field.

In this study, multiyear mean R was 332.33 g C·m−2 for the natural grasslands on
the TP over the period 2001–2019. A mean NPP of 407.30 g C·m−2 was determined for
the grasslands on the TP. These findings suggest that 81.59% of the inherent NPP of the
grasslands on the TP has yet to recover, that a large gap still exists between the current and
highest achievable levels of restoration of the grasslands on the TP, and that the grasslands
on the TP have very high restoration value. Restoring the grasslands on the TP to the
highest possible level will greatly improve grassland carbon sequestration in China.

4.3. Which Grasslands on the TP Are Worthy of Restorative Efforts?

Prudent selection of target areas for restoration is a topic of study that has yet to
be explored, presenting a challenge to future grassland restoration [50]. Diagnosis of
the degree of degradation of a grassland is a basis and prerequisite for its ecological
restoration [51]. In this study, R was defined as the gap between the highest achievable
and current levels of restoration of a grassland. Quantifiable based on NPP, this measure
can be adopted as a criterion for determining the restoration value of grasslands at specific
locations, which can then be used to identify the parts of the TP where CTN grassland
restoration would yield maximum benefits if given priority. In addition, future R trends
were calculated in this study for the grasslands on the TP, which provide a guarantee of
future accuracy to the results of this study.

High Rs are found for the grasslands in the southwestern, eastern and middle parts
of the TP. More specifically, directing restorative efforts to the grasslands in areas such
as the southern part of Nagqu, the southwestern part of Ngari, Xigaze, Garze Tibetan
Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, Gannan Ti-
betan Autonomous Prefecture, Huangnan Tibetan Autonomous Prefecture, Haibei Tibetan
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Autonomous Prefecture, Guoluo Tibetan Autonomous Prefecture and Yushu Tibetan Au-
tonomous Prefecture should produce the best results. This distribution pattern is consistent
with that of hydrothermal resources on the TP, whereas the temperature and R distribution
patterns are in even greater agreement. Therefore, temperature and grassland type may be
the leading factors affecting the R of the grasslands on the TP, which echoes the findings of
many studies that changes in NPP are predominantly affected by temperature.

Our analysis, based on the type of grassland and the local conditions of the TP, revealed
that three types of grassland, namely, alpine meadows, mountain meadows, and tempera-
ture meadow steppes, are distributed widely across the TP, and that each have an R greater
than 350 g C·m−2, with the mountain meadows having an R as high as 476.71 g C·m−2.
Prioritizing the CTN restoration of these three types of grassland may generate good results.
Altitude-based analysis reveals good restoration value for all the grasslands distributed at
altitudes of 2000–6000 m. With a mean R of 379.66 g C·m−2, grasslands located at altitudes
of 3000–4000 m have the highest restoration value. Climate zone–based analysis shows an R
above 300 g C·m−2 for all the grasslands of the warm temperate, plateau subfrigid, plateau
frigid, and plateau temperate zones. Prioritization of the restoration of these grasslands
may yield good results. With an R as high as 396.24 g C·m−2, grasslands in the warm
temperate zone have the most restoration value.

4.4. Limitations

This study still has some limitations. When the CASA model was used to calculate
NPP, ε was set to the global general value of 0.389 g C·MJ−1. However, opinions on
ε remain divided. For example, for the maximum ε of steppes in China, Wang et al. [52]
gave 0.608–1.000 g C·MJ−1 as the range, while Hunt [53] reported 3.5 g C·MJ−1 as its
sole value. Therefore, further discussion is required to identify a method better suited
for estimating the maximum ε of the grasslands on the TP. The CASA, TM, and Chikugo
models used in this study are all climate models that estimate NPP by only considering
climate factors, which may lead to some uncertainty. Moreover, derived from spatial
interpolation, the meteorological data used in this study contribute some uncertainty. In
addition, due to the interpolation accuracy of meteorological data, the temperature and
precipitation in the Himalayan region in this study may be high, which ultimately leads
to the overestimation of R of the Himalayan region in this study. Finally, we define PNPP
as the ideal PNPP without considering any factors other than climate, including human
disturbance, natural abiotic and biological disturbance. However, in reality, even without
human disturbances, there are many kinds of natural abiotic (e.g., drought) and biotic
(e.g., natural grazing) disturbances. This may contribute some uncertainty.

5. Conclusions

In this study, R, defined as the difference between PNPP and NPP, was calculated
using three methods. Focus was given to the examination of the spatial distribution and
spatial and temporal variations of the R of the natural grasslands on the TP, with the goal
of providing theoretical support for grassland conservation and restoration in this region.
The main conclusions of this study are summarized below.

First, a multiyear mean R of 332.33 g C·m–2 was determined for the grasslands on the
TP over 2001–2019. A notable spatial distribution pattern of high Rs in the southwestern,
eastern and middle parts of the TP, and low Rs in the northwestern part of the TP was
also identified. Grassland restoration had the best prospects in these areas. The R of the
grasslands on the TP over the study area was found to have changed non-significantly over
the period examined.

Second, grasslands with a stable R were found to account for the highest propor-
tion (76.13%) of the grasslands on the TP, followed by those with a downward trend in
R (19.62%), and those with an upward R (4.24%). Grasslands with an increasing R were
mainly concentrated in the southern part of Xigaze and parts of Yushu Tibetan Autonomous
Prefecture, Guoluo Tibetan Autonomous Prefecture and Garze Tibetan Autonomous Pre-
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fecture. Conservation measures should be implemented to prevent the degradation of the
grasslands in these areas, whose restorative value will continue to increase in the future.

Finally, analysis based on the type of grassland and the local conditions of the TP
revealed that CTN restoration of three types of grassland—alpine meadows, mountain
meadows, and temperate meadow steppes—may produce good results. Of these three
types of grassland, mountain meadows had the highest restoration value. Of the grasslands
located at different altitudes and in different climate zones, those located at altitudes of
3000–4000 m and those in the warm temperate zone had the highest restoration value. For
the specific urban areas of the TP, most of the grasslands in areas such as the southern part
of Nagqu, the southwestern part of Ngari, Xigaze, Garze Tibetan Autonomous Prefecture,
Aba Tibetan and Qiang Autonomous Prefecture, Gannan Tibetan Autonomous Prefec-
ture, Huangnan Tibetan Autonomous Prefecture, Haibei Tibetan Autonomous Prefecture,
Guoluo Tibetan Autonomous Prefecture and Yushu Tibetan Autonomous Prefecture were
found to have high restoration value.
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