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Abstract: The magnitude of damage caused by hail depends on its size; however, direct observation
or indirect estimation of hail size remains a significant challenge. One primary reason for estimations
by proxy, such as through remote sensing methods, is that empirical relationships or statistical models
established in one region may not apply to other areas. This study employs a machine learning
method to build a hail size estimation model without assuming relations in advance. It uses FY-4A
AGRI data to provide cloud-top information and ERA5 data to add vertical environment information.
Before training the model, we conducted a principal component analysis (PCA) to analyze the highly
influential factors on hail sizes. A total of 18 features, composed of four groups, namely brightness
temperature (BT), the difference in BT (BTD), thermodynamics, and dynamics groups, were chosen
from 29 original features. Dynamic and BTD features show superior performance in identifying large
hail. Although the selected features are more closely correlated to hail sizes than unselected ones, the
relationships are complicated and nonlinear. As a result, a two-layer regression back propagation
neural network (BPNN) model with powerful fitting ability is trained with selected features to predict
maximum hail diameter (MHD). The linear fitting R2 between predicted and observed MHDs is 0.52
on the test set, which signifies that our model performs well compared with other hail size estimation
models. We also examine the model concerning all three hail cases in Shanghai, China, between 2019
and 2021. The model attained more satisfactory results than the radar-based maximum estimated
hail size (MEHS) method, which overestimates the MHDs, thus further supporting the operational
applications of our model.

Keywords: hail size; FY-4A; machine learning; principal component analysis; neural network

1. Introduction

Hailstorms are severe convective weather systems commonly seen in the spring and
summer. Hail is precipitation produced by hailstorms in the form of balls or irregular
lumps of ice. Hailstones can be dense, minor, or giant [1,2]. By convention, hail has a
diameter of 5 mm or more, and smaller particles of similar origin are classed as either ice
pellets or snow pellets. Nevertheless, we do not exclude ice/snow pellets when analyzing
hail, and for convenient description, we refer to particles smaller than 5 mm as “small hail”
in this study. Being one of the most hazardous weather, hail causes massive damage to
residential, commercial, and agricultural properties each year worldwide. Moreover, many
studies show that hail damage caused by climate change is constantly increasing [3–8].

Hailstone size is closely related to the momentum of its falling, which directly affects
the magnitude of damage [9–11]. Larger hail would cause more severe damage and
significant losses. For instance, crops and plants can be severely damaged by hail with a
diameter less than 1 cm; cars can be damaged if hailstones are up to 2 cm [12–14]; while
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in the case of hailstones have diameters over 2 cm, buildings are affected [15]. Due to
the strong connection between damage and hail size, it is of vital importance to precisely
estimate hail size for efficiently taking action to prevent loss. However, sizing hail remains
a global challenge even today [16].

In most parts of the world, hail forecasts have improved slowly over the past few years
due to a lack of surface or in-site observations [17,18]. Hence, remote sensing usually acts
as a proxy to monitor the occurrence and development of hailstorms. For example, weather
radar is the most direct tool for recognizing hail and estimating its size [2,19–23]. The hail
detection algorithm and maximum estimated hail size algorithms (HDA and MEHS [24])
use a temperature-weighted vertical integration of radar reflectivity to detect and size
hail, which are primary methods used in many countries around the world [25–27]. The
new generation of geostationary meteorological satellites launched in recent years, such
as the Himawari-8, GOES-R, FY-4A/B, etc., has significantly improved our capacity to
monitor rapidly developing convective clouds with higher temporal-spatial resolution and
multiplied channels [28–32]. They have also been successfully applied to estimate rainfall
rate or typhoon intensity [33–37]. While some studies use satellite observations, such as
cloud-top overshooting, to identify hailstorms [10,38–40], few studies use satellite data to
retrieve hail size. In this study, when estimating the maximum hail diameter (MHD) from
FY-4A infrared channels, we use two algorithms: principal component analysis (PCA) for
selecting features and a back-propagation neural network (BPNN) for building an MHD
estimated regression model.

Even though cloud-top characteristics are similar, different environmental conditions
can produce various hailstone sizes. Therefore, it is insufficient to estimate hail sizes
exclusively through cloud-top observations. Many studies have investigated dozens of
environmental parameters indicating the occurrence and size of hail, such as convective
available potential energy, vertical wind shear, precipitable water, freezing level height, hail
growth zone thickness, etc. [41–57]. Consequently, selecting a good set of input variables
according to the correlation between variables and hail sizes needs to be conducted before
training the model. PCA is a quantitatively rigorous approach that picks out variables that
contribute most to the data variance. A significant advantage of the PCA approach is its
availability without category labels in the sample set. In addition, it has demonstrated its
ability to judge the sensitivity of weather to specific meteorological parameters [22,46,58].

Machine learning has recently garnered interest in atmospheric sciences because it can
yield usable results when physical mechanisms are not fully understood. In contrast to
empirical relationships or statistical models, machine learning can learn information directly
from data without predetermined equations. There are many machine learning algorithms,
such as decision trees [59], random forests [60], neural networks [61,62], support vector
machines [63], k-means clustering [64], deep learning algorithms such as convolutional
neural networks [65], long short-term memory [66], transfer learning [67,68], generative
adversarial nets [69], etc. However, none of them are suitable for all applications. BPNN
is used to construct the MHD estimation model in this paper. One reason is that the
relationship between MHD and input variables is nonlinear; the neural network model is
suitable for solving complex regression problems. Another reason is that the sample size is
small, and the two-layer shallow neural network is sufficient for avoiding overfitting.

We organize this paper as follows: Section 2 introduces the data and the model establish-
ment process, including the introduction of the PCA and BPNN methods; Sections 3 and 4
show the results of feature selection and model evaluation, respectively; Section 5 gives the
discussion; Section 6 provides the conclusion.

2. Data and Method
2.1. Data

This study utilizes three types of data: records of hail events with different MHD,
ERA5 reanalysis data, and FY-4A satellite images.
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Hail event records come from the National Meteorological Information Center (NMIC)
of the China Meteorological Administration (CMA), which archives historical hail datasets
from weather stations in China’s surface meteorological observational network. The MHD
has been measured or estimated visually by professionally trained meteorological spotters
since the 1950s and has become a routine observation at most human-crewed weather
stations since 1980 [70]. One record includes latitude, longitude, date, time, and MHD of
hail. The environmental conditions in the Tibetan Plateau are very different from other
regions owing to its complex terrain. Therefore, we only focus on the region of 15◦–55◦N,
105◦–135◦E, and the period from March to August 2018 in this study. Excluding those
unmatched with satellite and reanalysis data in time and space (see step 1 in Section 2.2),
150 hail events are registered. Figure 1 shows their distribution. Figure 1a exhibits the
geographical spread of those hail events in the study area. The histogram in Figure 1b
demonstrates the number of hail events over different MHDs. The peak of kernel density
estimation of the histogram (orange curve) is located at ~5 mm, and we can observe
that there are only a few giant hailstones (>20 mm). For characteristic statistics (see
Section 3.2), hail events are sorted into three size bins: MHD < 5 mm, 5 ≤MHD < 8 mm,
and MHD ≥ 8 mm, hereafter referred to as S (small size, ice/snow pellets), M (medium
size), and L (large size), respectively. As there is no unified classification standard, the
criterion is adopted to distinguish the environmental and cloud-top parameters among
different size bins. In Figure 1, the pie chart and table show the percentage and number of
S-, M-, and L-size bins separately.
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Figure 1. Distribution of hail events in this study: (a) The geographical spread of 150 hail events 
(blue dots) in the study region (15°–55°N, 105°–135°E). The sizes of dots represent observed maxi-
mum hail diameters (MHDs). The relief map is obtained from Natural Earth I with Shaded Relief 
and Water (1:10 m). (b) The histogram shows the frequency distribution of hail events with different 
MHDs. The curve displays the kernel density estimation of the histogram. The two dash-dot lines 

Figure 1. Distribution of hail events in this study: (a) The geographical spread of 150 hail events (blue
dots) in the study region (15◦–55◦N, 105◦–135◦E). The sizes of dots represent observed maximum hail
diameters (MHDs). The relief map is obtained from Natural Earth I with Shaded Relief and Water
(1:10 m). (b) The histogram shows the frequency distribution of hail events with different MHDs.
The curve displays the kernel density estimation of the histogram. The two dash-dot lines define the
ranges of three size bins: S ([0, 5 mm)), M ([5 mm, 8 mm)), and L (≥8 mm ). The pie chart and table
reveal the percentage and number of S-, M-, and L-size bins, respectively.

ERA5 reanalysis data are employed to calculate the environmental parameters (see
Table 1). ERA5 is the fifth generation of the European Centre for Medium-Range Weather
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Forecasts (ECMWF) atmospheric reanalysis designed to replace ERA-Interim [71]. The
ERA5 is run by ECMWF’s Integrated Forecasting System (IFS cycle 41r2) with new and re-
processed observation datasets at a much higher resolution (31 km) and provides an hourly
analysis cycle. The involved physical variables in calculating environmental parameters
are listed in Table 2. The environmental parameters are calculated with vertical profiles of
these quantities.

Table 1. List of environmental parameters.

Parameters Abbreviations Units References

Convective available
potential energy CAPE J kg−1 Moncrieff and Miller 1976 [72]

Convective inhibition CIN J kg−1 Colby 1984 [73]
Precipitable water PW cm Li et al. 2018 [57]

K index KI ◦C George 1960 [74]
Total totals TT ◦C Miller 1972 [75]

Showalter index SI ◦C Showalter 1953 [76]
Lifted index LI ◦C Galway 1956 [77]

Boyden index BI unitless Boyden 1963 [78]
Height of 0 ◦C H0◦C km Dessens et al. 2015; Prein and Holland 2018 [56,79]

Height of −20 ◦C H−20◦C km Witt et al. 1998 [24]

Wet-bulb zero height WBZ km Johns and Doswell 1992; Fawbush and Miller 1953; Miller 1972
[75,80,81]

Hail growth zone
(−10~−30 ◦C) thickness HGZ km Knight and Knight 2001; Johnson and Sugden 2014; Li et al. 2018

[52,57,82]

0–6 km vertical wind shear VWS0–6 m s−1
Weisman and Klemp 1982, 1984, 1986; Ziegler et al. 1983; Xie et al.
2010; Tuovinen et al. 2015; Allen et al. 2015; Allen 2017; Punge and

Kunz 2016 [4,5,17,83–88]0–3 km vertical wind shear VWS0–3 m s−1

Storm-relative helicity SRH m2 s−2 Davies-Jones 1990;
Maddox 1976 [89,90]

Bulk Richardson number BRN unitless Weisman and Klemp 1982 [83]
Mean high-level

(400~200 hpa) potential
vorticity

PVH K m2

kg−1 s−1

Rossby 1940;
Ertel 1942;

Hoskins et al. 1985 [91–93]

Table 2. ERA5 physical variables that are used to calculate environmental parameters.

Name Units Horizontal Resolution Pressure Levels Temporal
Resolution

Geopotential m2 s−2

0.25◦ × 0.25◦

37 pressure levels: 1000,
975, 950, 925, 900, 875, 850,
825, 800, 775, 750, 700, 650,
600, 550, 500, 450, 400, 350,
300, 250, 225, 200, 175, 150,
125, 100, 70, 50, 30, 20, 10, 7,

5, 3, 2, 1 hPa

Hourly

Relative humidity %
Specific humidity kg kg−1

Temperature K
U-component of wind m s−1

V-component of wind m s−1

Potential vorticity K m2 kg−1 s−1

FY-4A satellite image data are adopted to calculate hailstorms’ cloud-top parameters
(see Table 3). FY-4A is a new generation of Chinese geostationary meteorological satellite
launched on 11 December 2016, and positioned at 99.5◦E (it drifted to 104.7◦E on 25 May
2017) above the equator. The advanced geosynchronous radiation imager (AGRI) of FY-4A
has 14 channels, containing 6 visible/near-infrared, 2 mid-infrared, and 6 infrared channels.
However, only six infrared channels centered at 6.25, 7.10, 8.50, 10.8, 12.0, and 13.5 µm are
accepted the data for consistency between day and night. The spatial resolution of these
channels is 4 km at the sub-satellite point. Therefore, the China regional image data are
adopted because they have a higher temporal resolution (~5 min) than the full-disk images
(~15 min).
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Table 3. List of cloud-top parameters.

Parameters Abbreviations Units Descriptions References

BT of 6.25 µm channel BT6.25

◦C

Upper-level water vapor channel
Schmetz et al. 2002;

Schmit et al. 2017; Yang
et al. 2017; Zhuge and

Zou 2018 [94–97]

BT of 7.10 µm channel BT7.10 Midlevel water vapor channel
BT of 8.50 µm channel BT8.50 “Cloud phase” channel
BT of 10.8 µm channel BT10.8 “Clean” window channel
BT of 12.0 µm channel BT12.0 “Dirty” window channel
BT of 13.5 µm channel BT13.5 “Carbon dioxide” channel

BTD between 6.25 and
10.8 µm channel BTD6.25−10.8

Cloud-top height relative to
upper-troposphere

Mecikalski et al. 2008;
Zhuge and Zou 2018;

Ackerman 1996; Schmetz
et al. 1997; Matthee and

Mecikalski, 2013 [97–101]

BTD between 7.10 and
10.8 µm channel BTD7.10−10.8

Cloud-top height relative to
middle-troposphere

BTD between 6.25 and
7.10 µm channel BTD6.25−7.10

Cloud thickness/cloud-top
height/water vapor distribution

BTD between 8.50 and
10.8 µm channel BTD8.50−10.8 Cloud-top phase/effective radius Strabala et al. 1994 [102]

BTD between 12.0 and
10.8 µm channel BTD12.0−10.8

Cloud thickness/cirrus/low-level
moisture/moistening

Strabala et al. 1994;
Ellrod 2004; Inoue 1987;
Mecikalski and Bedka

2006 [102–105]

BTD between 13.5 and
10.8 µm channel BTD13.5−10.8 Cloud-top height/early cumulus

Mecikalski and Bedka
2006; Mecikalski et al.

2008 [98,104]

2.2. Method

Three steps from satellite and ERA5 data establish the machine learning model for
MHDs estimation (see Figure 2):
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Figure 2. The flow chart of building MHD estimation model: (1) Step 1: sample preparation; Xm×n

is the sample matrix with all features, where m = 29 and n = 150 are the number of features
and samples, respectively. (2) Step 2: feature selection; X̃m×n is Xm×n centered and standardized,
Pm×n is the principal component matrix, and Cm×m is the coefficient matrix; cij is the Cm×m element
representing the coefficient of jth feature on ith PC. (3) Step 3: model establishment; Xm′×n is the
sample matrix with selected features and is divided into training (70%, ntr = 105), validation (15%,
nv = 23), and test (15%, nts = 22) sets for model training and evaluation; a two-layer BPNN regression
model with 35 hidden and 1 output units is optimized.
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1. Sample preparation: This step calculates hailstorms’ environmental and cloud-top
parameters to serve as sample features. First, we identify storms on the satellite
images with an approach introduced by Liu et al. [106]. Their method can effectively
reduce the impact of the anvil clouds. Second, the closest storm to an observed hail
event in time and space is marked as a hailstorm. Moreover, the time interval between
the storm and hail event should be less than 5 min (satellite time resolution), and
the storm should be within 20 km (~5 satellite pixels) from the hail event location.
The MHD of the hail event will be assigned to the matched hailstorm. The largest
MHD will be accepted if more than one hail event matches the same storm. Third,
each pixel or grid’s environmental and cloud-top parameters within the hailstorm
boundary are calculated with FY-4A satellite or ERA5 reanalysis data. The final
parameters of the hailstorm are the average of all grid or pixel values. Figure 3
demonstrates a hailstorm sample at 09:53 (UTC) on June 6th, 2018. After this step,
we obtain 150 hailstorm samples, each of which has 29 features. The original sample

set is recorded as Xm×n =


x1
x2
...

xm

, where m = 29 and n = 150 represent the number

of features and samples, respectively. xi, i = 1, ...m is a row vector composed of ith
feature values of all samples.
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Figure 3. The satellite images showed a hailstorm sample at 09:53 (UTC) on 6 June 2018. The left
image is the 10.8 µm channel image, and the cyan polygon draws the identified boundary of the
hailstorm. The right image is the 0.65 µm channel image which is enhanced to display the texture of
the cloud top. The yellow texts in both images record the 29 features of this hailstorm sample.

2. Feature selection: This step employed a PCA technique [107,108] to select appropri-
ate features to train the machine learning model. The input to PCA is the matrix

X̃m×n =


x̃1
x̃2
...

x̃m

, where x̃i = (xi −mean(xi))/var(xi), i = 1, ..., m, mean(xi) and
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var(xi), representing the mean and variance of xi. After PCA calculation, the output
is the principal component matrix:

Pm×n =


p1
p2
...

pm

 = Cm×m × X̃m×n =


∑m

j=1 c1jx̃j

∑m
j=1 c2jx̃j

...
∑m

j=1 cmjx̃j

, (1)

where Cm×m is the coefficient matrix and cij, i, j = 1, ..., m is the (i, j) element. The
percentage of total variance explained by each principal component (PC) descends
from p1 to pm. The first two PCs explain more than half of the variance, so only pi, i ≤ 2
is used to select features. As shown in Equation (1), a PC is a linear combination of
feature vectors, and the coefficient of each feature vector represents its contribution to
the PC. The larger magnitude of the coefficient is, the more significant contribution
of the feature vector could make. Thus, we can select features that differ among hail
samples by checking whether they have a larger magnitude of coefficients or not.∣∣cij
∣∣ ≥ 0.2, i ≤ 2, j = 1, ..., m is the applicable criteria of this study, where

∣∣cij
∣∣ is the

absolute value of cij, 0.2 is about two-thirds of the coefficients’ magnitude range. Since
the hail samples have different MHDs, it inferred that the relations of hail sizes with
the selected features are closer than those of the unselected ones.

3. Model establishment: This step trains a regression BPNN model with selected features
of hail samples and their corresponding MHDs. At first, the sample set (Xm′×n, where
m′ = 18 is the number of selected features) is randomly divided into three subsets:
training, validation, and test by ratios of 0.7, 0.15, and 0.15. The sample sizes of
training (ntr), validation (nv), and test (nts) sets are 105, 23, and 22, individually. Then,
the training and validation sets are utilized for training a two-layer BPNN model (see
Figure 2). The training set X18×105 is input to the BPNN, and the associated target
outputs are the corresponding MHDs. Levenberg–Marquardt optimization [109]
updates the weight and bias values. The active functions of the hidden and output
layer are sigmoid and linear, respectively. The mean square error function measures
the loss. We try the hidden layer size from 20 to 50 with an interval of 5, and it
proves that the size of 35 has the best performance on the validation set X18×23. The
validation set also makes the training stop early if the network performance fails to
improve for 42 epochs. After the BPNN model optimization, the test set X18×22 is
utilized to evaluate the performance of the obtained model on new data. In Section 4.1,
the linear fitting contrasts the targeted MHDs and predicted MHDs.

3. Results of PCA-Based Feature Selection
3.1. The Selected Features

Table 4 lists the coefficients of features on the first two PCs. The bolded features are
selected (18 in total). Most of them in the c1j (c2j) column are cloud-top (environmental)
parameters. Noticeably, this reveals that the first and the second PCs focus on two distinct
aspects of hailstorm characteristics. Figure 4 illustrates these results by a biplot [108] whose
x-axis (y-axis) represents the coefficient values of the first (second) PC. Each line segment
from the origin depicts one feature. The x- (y-) axis projection corresponds to the feature’s
coefficient on the first (second) PC. In Figure 4, the line segments of selected features extend
outside the dashed box, while the unselected features do not.
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Table 4. Feature coefficients for the first (c1j ) and second (c2j ) principal components (PCs). The bold
fonts mark out the features and coefficients whose magnitudes are greater than 0.2.

Features c1j c2j

BT6.25 −0.28 0.13
BT7.10 −0.29 0.16
BT8.50 −0.29 0.17
BT10.8 −0.29 0.17
BT12.0 −0.29 0.17
BT13.5 −0.24 0.14

BTD6.25−10.8 0.23 −0.23
BTD6.25−7.10 0.22 −0.21
BTD13.5−10.8 0.21 −0.14
BTD7.10−10.8 0.16 −0.16
BTD8.50−10.8 0.06 −0.02
BTD12.0−10.8 −0.12 −0.03

TT 0.09 0.02
SI −0.19 −0.17
LI −0.18 −0.17
BI 0.07 0.02

BRN 0.04 0.09
CIN −0.02 0.15

CAPE 0.20 0.20
KI 0.21 0.22
PW 0.20 0.26

WBZ 0.20 0.30
H0◦C 0.19 0.30

H−20◦C 0.16 0.29
SRH −0.01 −0.21

VWS0–6 −0.04 −0.22
VWS0–3 −0.03 −0.23

HGZ 0.02 0.17
PVH −0.14 −0.16

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

CIN −0.02 0.15 
CAPE 0.20 0.20 

KI 0.21 0.22 
PW 0.20 0.26 

WBZ 0.20 0.30 
H0°C 0.19 0.30 

H−-20°C 0.16 0.29 
SRH −0.01 −0.21 

VWS0–6 −0.04 −0.22 
VWS0–3 −0.03 −0.23 

HGZ 0.02 0.17 
PVH −0.14 −0.16 

 
Figure 4. Biplot graph whose c1-axis and c2-axis represent the first and second PC coefficients. The 
projection on the c1-axis (c2-axis) reflects the magnitude and sign of each feature’s first (second) PC 
coefficient. The dotted box divides the selected and unselected features into two areas, where the 
vectors of selected (unselected) features are outside (inside) the box. Four yellow circular patches 
present four groups of selected features: G1 (BT group), G2 (BTD group), G3 (thermodynamic 
group), and G4 (dynamic group). 

Moreover, the features with adjacent orientation form the natural groups in Figure 4. 
Therefore, there are four groups within the selected features: (1) BT group (denoted as G1) 
including features groups BT8.50, BT10.8, BT12.0, BT6.25, BT7.10, and BT13.5; (2) BTD group (de-
noted as G2) including BTD6.25−10.8, BTD6.25−7.10, and BTD13.5−10.8; (3) thermodynamic group 
(denoted as G3) containing CAPE, KI, PW, H0°C, H-20°C, and WBZ; (4) dynamic group (de-
noted as G4) containing VWS0–3, VWS0–6, and SRH. Next, we demonstrate the feature 
changes in the four groups with hail sizes and discuss their relations. 

  

Figure 4. Biplot graph whose c1-axis and c2-axis represent the first and second PC coefficients. The
projection on the c1-axis (c2-axis) reflects the magnitude and sign of each feature’s first (second) PC
coefficient. The dotted box divides the selected and unselected features into two areas, where the
vectors of selected (unselected) features are outside (inside) the box. Four yellow circular patches
present four groups of selected features: G1 (BT group), G2 (BTD group), G3 (thermodynamic group),
and G4 (dynamic group).
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Moreover, the features with adjacent orientation form the natural groups in Figure 4.
Therefore, there are four groups within the selected features: (1) BT group (denoted as G1)
including features groups BT8.50, BT10.8, BT12.0, BT6.25, BT7.10, and BT13.5; (2) BTD group
(denoted as G2) including BTD6.25−10.8, BTD6.25−7.10, and BTD13.5−10.8; (3) thermodynamic
group (denoted as G3) containing CAPE, KI, PW, H0◦C, H−20◦C, and WBZ; (4) dynamic
group (denoted as G4) containing VWS0–3, VWS0–6, and SRH. Next, we demonstrate the
feature changes in the four groups with hail sizes and discuss their relations.

3.2. Feature Change with Hail Sizes

Figure 5 is the box plots of selected features in different hail-sized bins (S, M, and L).
Figure 5a–d display the results of G1–G4 separately.
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Figure 5. Box and whisker plots of the selected features for S- (red), M- (blue), and L- (green) size bins:
(a) brightness temperature (BT), (b) the difference in BT (BTD), (c) thermodynamic, and (d) dynamic
features. Each box’s bottom and top edge represent the 25th and 75th percentile, while the central
line shows the median value (50th percentile). Plus signs mark the outliers whose values are more
than 1.5 times the distance between the bottom and top edge. The upper (lower) whisker extends to
the highest (lowest) datum without considering outliers. The digits in the bottom, middle, and top of
each box denote the 25th, 50th, and 75th percentile values of the data set in each size bin, respectively.

In Figure 5a, BT features decrease from the S- to L-size bin, suggesting denser and
higher clouds produce larger hailstones. In Figure 5b, the BTD6.25−10.8 and BTD6.25−7.10 of
the L-size bin are much larger than the S- and M-size bins, implying that they are helpful
for large hail recognition. However, for BTD13.5−10.8, the difference between the S- and
M-size bins is more prominent, suggesting this BTD is beneficial for distinguishing small
hail from other forms of hail. This is because the peak of the weighting function of the
13.5 µm channel is near the Earth’s surface, which allows the 13.5 µm channel to detect
radiation from the lower troposphere. At the same time, the upper water vapor will absorb
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the low-level radiation in the 6.25 and 7.10 µm channels. Thus, BT6.25 and BT7.10 remain
unchanged unless the cloud top reaches peak weighting function levels (~350 and 490 hPa).

In Figure 5c, CAPE and KI are not linearly correlated to hail size, and the L-size
bin does not have the maximum CAPE and KI. The residence time of embryos in the
growth region of storms should be sufficiently extended to produce large hailstones. Thus,
a balance between hailstone fall speed and updraft speed is necessary [110–113]. If the
updraft is too strong, the particles are lofted too quickly to grow to full size and are ejected
into the anvil; however, the particles may fall out of the growing region if it is too weak.
This may be a partial reason for the L-size bin not having an enormous CAPE and KI.
In addition to unstable energy, freezing and melting processes also influence hail size.
The L-size bin has the lowest H0◦C, H−20◦C, and WBZ. The low melting level prevents
the hailstones from losing a substantial mass before reaching the ground. On the other
hand, the low H−20◦C facilitates big drops freezing. Abundant water vapor is necessary for
severe convective weather, so the medians of PW for S-, M-, and L-size bins all exceed 3 cm.
However, they do not increase with hail size, suggesting that water vapor is not limited to
larger hailstones [57].

In Figure 5d, dynamic group features (i.e., shear features VWS0–3, VWS0–6, and SRH)
show the most apparent differences between L-size and smaller sized bins compared with
other groups in Figure 5a–c. The 25th percentiles of VWS0–3, VWS0–6, and SRH of the L-size
bin are larger than or equal to the median values of S- and M-size bins. This suggests that a
robust vertical shear environment is necessary for large hail occurrences. As Brooks [45]
mentions, given their occurrence, the intensity of tornadoes and hail is entirely a function
of shear and only weakly depends on thermodynamic features. The increased VWS can
elongate a storm’s updraft, so hail process volumes and hailstone residence times increase
and create a vast embryo source region [114].

We also compared the box plots of the unselected features with Figure 5. Their medians
fluctuate more gently, and boxes overlap more between S-, M-, and L-size bins. This reflects
a stronger correlation of features selected with hail size. However, this relationship is
somewhat complicated. For example, hail size positively correlates with cloud-top height,
but overlapping BTs generating hailstones are unknown. Although the BTD6.25−10.8 and
BTD6.25−7.10 are useful for identifying large hailstones, their ability to distinguish between
middle and small hail is weak for lack of low-level information. The dynamic features
show better differentiation than thermodynamic features in hail size, especially in relation
to larger hail occurrences. Nevertheless, for more acceptable discrimination, it is essential
to couple dynamic features with thermodynamic features, which will not be an easy job in
terms of the results presented thus far. As a result, we trained a BPNN regression model to
predict MHDs by its powerful fitting ability with selected features, and the next section
exhibits our results.

4. Model Evaluation
4.1. Comparison between the Observed and Predicted MHD

After building the BPNN model, the predicted MHD is represented as a function of the
observed MHD on the test set; we then perform linear fitting (Figure 6). R2 = 0.52 signifies
that our model performs well compared with other hail size estimation models. Table 5
compares data, methods, and results between those models at length. Because a linear
active function is employed on the output layer of BPNN (see Figure 2), four cases are
estimated negative hail size by our model, as seen in Figure 6. The BPNN architecture
can be updated to suppress those unphysical results by changing the active function to a
positive linear one in future work.
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Figure 6. Linear fitting of predicted vs. observed MHDs on the test set. The sample size is 22
(nts = 22). The text box at the top left displays the R-squared, the intercept (Intercept) and slope
(Slope) values, and the P-value that indicates the confidence interval is 95%.

Table 5. Comparisons of data, methods, and R-squared on the test set between different maximum
hail diameter (MHD) estimation models.

Data Methods R2 (Test Set) Study Regions References

Radar-derived parameters,
environment parameters

(sounding/numerical
model)

Bayesian neural network 0.40 United States
Marzban

andWitt 2001
[61]

Physical variables
(sounding)

Linear regression (8 principle
components + difference in
surface pressure between 00

and 12 UTC)

0.1074 for MHD > 10 mm Italy Palencia et al.
2010 [46]0.6899 for MHD > 15 mm

Meteorological variables
(WRF simulation) Linear regression 0.49 Spain Marcos et al.

2021 [115]

Satellite-derived cloud-top
parameters, environmental

parameters (ERA5)
PCA + BPNN 0.52 China Present study

Then, four plots [115] serve to analyze the residuals for a complete diagnosis of the
fit. Figure 7a plots “residuals vs. fitted” and shows whether the linear fitting model is
reasonable. According to the points distributed along the zero line (gray horizontal dashed
line), the trend of the smoothed curve (red line) is flat and close to the zero line, suggesting
that there is no distinguished pattern. Figure 7b is a typical Q-Q plot of the residuals
utilized to evaluate whether the errors are distributed normally. If the residuals show
accurate normal distribution, they will lie precisely on the 45◦ line (dashed line). It can be
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seen that the points lie close to the dashed line, demonstrating a slight deviation and an
acceptable fit. Figure 7c is a scale–location plot employed to check whether the data are
homoscedastic. Its x-axis is identical to Figure 7a, and its y-axis is the standardized residuals’
square root; thus, this plot eliminates the sign of residuals, with a larger magnitude of
residuals (positive or negative) plotting the top and small plotting the bottom. We can see
that the smoothed curve (red line) is also flat, which means the data are homoscedastic.
Figure 7d is an influence plot to show data points that heavily influence the regression
line. The influence is measured with Cook’s distance (size of points), which is increased by
the leverage (x-axis) and the larger magnitude of residuals (y-axis). The highly influential
points are those with Cook’s distance larger than five times the mean Cook’s distance.
There is only one in Figure 7d, the data point “21”. This outlier does not have extreme
residual but has very large leverage. The leverage measures the influence on the regression
due to the location in the variable space. The points that lie far from the centroid or isolate
have high leverage. The results reflect a few samples with MHD > 10 mm in Figure 6, and
we will add more large MHD samples in future work.
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Figure 7. Diagnosis of linear fitting in Figure 6: (a) the residuals (the vertical distance from a point to
the fitted line) vs. fitted values (y-value on the line corresponding to each x-value); (b) normal Q-Q
plot of the residuals; if residuals are normally distributed, data points will lie close to the 45◦ line
(red line); (c) square root of the standardized residuals vs. fitted values; (d) studentized residuals
vs. leverage; the point size reflects the Cook’s distance which measures how much each data point
influences the regression and increases with leverage and large residuals; the numbered points (the
digit is the sequence number starting from 0 in the test set; the larger the MHD is, the bigger the
digit is) are those that have a significant influence on the fit. The red lines in (a) and (c) are smoothed
curves that pass through the actual residuals.
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4.2. Case Studies

This section applies the model to all three hail cases from 2019 to 2021 in Shanghai,
China. Figures 8–10 demonstrate the 500 hPa weather map, SkewT plot, radar reflectivity
image, and 10.8 µm satellite image of hail events (marked by the red cross) that occurred
in Chongming (2021-4-30 13:14 UTC), Fengxian (2021-5-14 12:30 UTC), and Songjiang
(2019-8-18 06:57 UTC) Districts. The observed diameters of hailstones are ~11, 20–30, and
5–10 mm, respectively.
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Figure 8. Hail event (red cross) occurred at about 13:14 (UTC) on 30 April 2021, in Chongming
District, Shanghai, China: (a) 500 hPa weather map; (b) SkewT near hail event; (c) radar reflectivity;
(d) FY-4A 10.8 µm image, the inset image shows the hailstorm sample (Figure 3a) that was to calculate
MHD. The yellow rectangles in (a,d) represent the same geographic range.

The Chongming hail event is mainly affected by a short-wave trough at the southern
periphery of an upper-level cold vortex (Figure 8a). The strong cold advection and the posi-
tive vorticity advection at 500 hPa result in the lifting of low-level air and high convective
instability in this region. The sounding near the hail event has a relatively dry midlevel
layer over a warm and moist low-level layer (Figure 8b), which is conducive to large
hailstones reaching the surface and severe and convective local weather [25]. The sounding
is characterized by strong VWS, with northerly to northwesterly winds below 850 hPa and
westerly winds within the layers above. For the Fengxian hail event, convective cells initiate
in front of the 500 hPa short-wave trough and the edge of the 588 line of a subtropical
high (Figure 9a), accompanied by a low-level shear line (not shown) that enhances the low-
level convergence. The southwesterly low-level jets provide favorable dynamic conditions
for this event by transporting warm and moist air to destabilize the environment. The
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sounding in Figure 9b indicates a conducive environment for this hail event with a strong
VWS and a large CAPE. As the convective instability began to increase, the convective cells
developed into a long-lasting, heavy storm under the effect of strong VWS. The synoptic
patterns associated with the Songjiang hail event are shown in Figure 10a. For this event,
the eastern coastal regions of China were beneath a deep upper-level trough. Shanghai
is located ahead of the trough and at the southern periphery of the low-level shear line
at 850 hPa (not shown), where favorable positive vorticity advection from the trough and
low-level convergence near the shear line work together to destabilize the environment.
The whole sounding near the hail event is relatively moist (Figure 10b), coupled with an
enormous CAPE, conducive to developing organized, deep convection.
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Figure 9. Hail event (red cross) occurred at about 12:30 (UTC) on 14 May 2021, in Fengxian District,
Shanghai, China: (a) 500 hPa weather map; (b) SkewT near hail event; (c) radar reflectivity; (d) FY-4A
10.8 µm image, the inset image shows the hailstorm sample (Figure 3a) that was to calculate MHD.
The yellow rectangles in (a,d) represent the same geographic range.
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Figure 10. Hail event (red cross) occurred at about 06:57 (UTC) on 18 August 2019, in Songjiang
District, Shanghai, China: (a) 500 hPa weather map; (b) SkewT near hail event; (c) radar reflectivity;
(d) FY-4A 10.8 µm image, the inset image shows the hailstorm sample (Figure 3a) that was to calculate
MHD. The yellow rectangles in (a,d) represent the same geographic range.

The bottoms of Figures 8c, 9c and 10c illustrate the cross-sections of radar echo from
which vertical reflectivity distributions are exhibited. The 50 dBz echo tops are about 7,
12, and 10 km in the Chongming, Fengxian, and Songjiang cases, while the ≥ 60 dBz echo
region in the Songjiang case is the most extensive. We calculated the MEHS from radar
reflectivity with the method used in Witt et al. [24]. Being different from the machine
learning method, MEHS are obtained from an empirical equation that weights radar
reflectivity from 0 ◦C level through −20 ◦C level to echo top:

SHI = 0.1
∫ HT

H0
WT(H)

.
EdH

MEHS = 2.54(SHI)0.5 (2)

where
.
E is flux value of hail kinetic energy that is transformed from reflectivity data, H is

the height above radar level (ARL), WT(H) is the temperature-based weighting function
that suggests hail growth which only occurs below 0 ◦C and mainly occurs at temperatures
near −20 ◦C or colder, H0 is the height ARL of melting level, and HT is the height of
storm top. Please refer to Witt et al. [24] for more details. The calculated MEHS are about
30, 53, and 61 mm for the Chongming, Fengxian, and Songjiang cases, which are much
larger than the observed diameters (~11, 20–30, and 5–10 mm) and not quite reasonable
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according to the statistics of hail size in China where severe hail events (MHD ≥ 30 mm)
are rare [57]. These indicate that MEHS estimation cannot be directly adopted outside the
region developed before localization.

Figures 8d, 9d and 10d demonstrate the large-scale clouds corresponding to weather
systems and atmospheric physical processes displayed in Figures 8a, 9a and 10a. A vortex
cloud system in the upper section of Figure 8d and a leafy cloud system at the bottom left of
Figure 10d are associated with the northeastern cold vortex and trough in Figures 8a and 9a,
respectively. Figure 9d shows a shear-line cloud band composed of convective clouds
located at the periphery of the subtropical high. The inset images of Figures 8d, 9d and 10d
illustrate hailstorms in detail and list the input features of the BPNN model. Eventually,
the estimated MHDs by the BPNN model are about 12, 25, and 9 mm in the Chongming,
Fengxian, and Songjiang cases, which are all close to the observations (~11, 20–30, and
5–10 mm). We also compare environmental and cloud-top features of hailstorms among
three cases and find their change with hail size follows the rules obtained in Section 3.2.
With the largest hail size, the Fengxian case has the highest cloud top and maximum VWS.
The Chongming case has a similar VWS to the Fengxian case, but it has a lower cloud top
than the latter, and its hail size is smaller. The Songjiang case has the smallest VWS and
the lowest cloud top, and its hailstone size is the smallest. Additionally, the CAPE of the
Songjiang case is the largest, the Fengxian case is the second largest, and the Chongming
case is the smallest. These results suggest that the cloud-top and dynamic features have a
stronger positive correlation with hail size. In contrast, thermodynamic features are not
limited to hail size as long as the energy is sufficient for hail occurrence. In any event, hail
size results from multiple factors and is difficult to judge by only one.

5. Discussions

Some hailstorms produce giant hailstones while others produce smaller hailstones;
however, the reasons for these discrepancies are not yet fully understood [16]. Conse-
quently, it is helpful to indirectly evaluate hailstone sizes from satellites that provide
continuous, extensive, and early storm observations coupled with sounding data to add
vertical atmospheric information to cloud-top characteristics. The objective selection of
environmental and cloud-top features based on PCA is implemented in China and can
be immediately extended to other regions conveniently. Furthermore, this method is also
available when selecting new variables, such as new satellite channels or new weather
phenomena recognition, e.g., heavy rainfall, strong wind.

One difficulty in hail size diagnoses is that relations in one region may not quickly
transfer to another area. However, the data-driven machine learning method without
necessary equation assumptions in advance proves a promising solution. Another difficulty
is a lack of accurate, dense, and full hail observations. Clearly, more hail samples with
a wide size distribution for training, validation, and testing can improve BPNN model
robustness. Additionally, more case studies in different geographical areas and seasons are
helpful before its usage. Nevertheless, with more and better meteorological observations
planned for the future, the machine learning model will prove an adequate approach for
predicting hailstone size.

6. Conclusions

This study established a hail size estimation model from satellite images based on two
algorithms, PCA and BPNN.

The PCA-based technique selects features closely related to hail sizes from 29 can-
didate parameters. These parameters contain wind shear, temperature layer, instability
energy, water vapor, cloud-top height, cloud thickness, cloud-top phase, etc. As a result,
a total of 18 features were strictly and carefully selected according to PC contribution
and parameter coefficients. Those features naturally congregated into four groups: BT
(BT6.25, BT7.10, BT8.50, BT10.8, BT12.0, BT13.5), BTD (BTD6.25−10.8, BTD6.25−7.10, BTD13.5−10.8),
thermodynamic (CAPE, KI, PW, H0◦C, H−20◦C, WBZ), and dynamic (VWS0–3, VWS0–6, SRH)
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groups. The statistics of the four group features for different hail-sized bins demonstrate
that hailstorms with a higher cloud-top height and denser clouds produce larger hailstones.
The largest hailstones occur in an environment with strong vertical wind shear and a
low melting/freezing level height. Abundant moisture supply and instability energy are
required for hail occurrence but are not limiting factors for the largest hailstones. Although
the selected features vary more apparently with hail sizes than the unselected ones, the
relations between these features and hail size are complicated and nonlinear. As a result,
the machine learning model BPNN, with powerful fitting ability, is adopted to estimate
hailstone size.

Next, to establish the BPNN regression model, the hail samples were segregated into
training (70%), validation (15%), and test (15%) sets. The training set trains the BPNN
model; the validation set checks the model during training and decides when to stop
training early; the test set estimates model accuracy in new data. The BPNN regression
model has a two-layer architecture with 35 hidden layer neurons and a mean squared error
loss function. The linear fitting R2 between predicted and observed MHDs on the test set is
0.52. In the Shanghai case studies, the prediction of MHD is close to the observed value
and is more reasonable than the MEHS results, which overestimate hail size. All of the
results suggest that this model can be applied in practice.
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