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Abstract: Most 3D CityGML building models in street-view maps (e.g., Google, Baidu) lack texture
information, which is generally used to reconstruct real-scene 3D models by photogrammetric
techniques, such as unmanned aerial vehicle (UAV) mapping. However, due to its simplified building
model and inaccurate location information, the commonly used photogrammetric method using a
single data source cannot satisfy the requirement of texture mapping for the CityGML building model.
Furthermore, a single data source usually suffers from several problems, such as object occlusion.
We proposed a novel approach to achieve CityGML building model texture mapping by multiview
coplanar extraction from UAV remotely sensed or terrestrial images to alleviate these problems.
We utilized a deep convolutional neural network to filter out object occlusion (e.g., pedestrians,
vehicles, and trees) and obtain building-texture distribution. Point-line-based features are extracted
to characterize multiview coplanar textures in 2D space under the constraint of a homography
matrix, and geometric topology is subsequently conducted to optimize the boundary of textures by
using a strategy combining Hough-transform and iterative least-squares methods. Experimental
results show that the proposed approach enables texture mapping for building façades to use 2D
terrestrial images without the requirement of exterior orientation information; that is, different
from the photogrammetric method, a collinear equation is not an essential part to capture texture
information. In addition, the proposed approach can significantly eliminate blurred and distorted
textures of building models, so it is suitable for automatic and rapid texture updates.

Keywords: texture mapping; coplanar extraction; deep convolutional neural network; geometric
topology; homography matrix

1. Introduction
1.1. Background

The development of smart city highly depends on the quality of geospatial data
infrastructure, and 3D visualization is a core technology of a digital city [1]. A representative
city geography markup language (CityGML) is developed by Open Geospatial Consortium
for defining and describing 3D building attributes, such as geometric, topological, semantic,
and appearance characteristics, which are very valuable for many applications, such as
simulation modeling, urban planning, and map navigation [2]. Texture mapping of building
models has always been a hot and significant research topic in the fields of computer vision,
photogrammetry, and remote sensing. Nevertheless, due to problems such as ground-object
occlusion, texture mapping of CityGML building models is still challenging.

Generally, CityGML can be divided into five levels of detail (LOD), including LOD0
(e.g., regional, landscape), LOD1 (e.g., city, region), LOD2 (e.g., city neighborhoods,
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projects), LOD3 (e.g., architectural models (exterior), landmarks), and LOD4 (e.g., ar-
chitectural models (interior)) [3–6]. However, popular map providers, such as Google and
Baidu, are currently limited to LOD0-2 as a result of extremely large and complex data
processing, as well as high costs and time consumption of data acquisition. In addition,
researchers are attempting to build 3D city models using multisource geospatial data
(e.g., airborne LiDAR point cloud and photogrammetric mapping) to generate LOD2- and
LOD3-level city models [7]. Although these techniques can obtain desirable 3D building
models, they still require high potential costs for frequent updates of the texture of building
models. However, a single data source usually suffers from several problems, such as
object occlusion.

1.2. Related Work

In the previous decades, building large-scale urban models has been broadly studied,
including manual, automatic, and human–computer-interaction methods. Evidently, the
manual method is not desirable, given its long production cycle and high cost. From the
perspective of data sources used for building-texture mapping, many studies mainly focus
on photogrammetric data, LiDAR point cloud data, and crowd-sourced data.

1.2.1. Texture Mapping Based on Photogrammetric Data and LiDAR Point Cloud Data

In recent years, the popularization of unmanned aerial vehicles (UAV), oblique cam-
eras, and LiDAR, coupled with the increasing maturity of high-resolution stereo imaging,
not only realizes rapid production of large-scale urban models but also gradually shortens
the modeling cycle and continuously reduces the cost. Consequently, photogrammetric
data and LiDAR point cloud data are also widely used in 3D modeling and texture map-
ping. Li et al. [8] proposed an optimized combination of graph-based 3D visualization and
image-based 3D visualization to realize geographic information system (GIS) 3D visual-
ization. Yalcin et al. [9] suggested creating a 3D city model from aerial images based on
oblique photogrammetry. Abayowa et al. [10] presented 3D city modeling based on the
fusion of LiDAR data and aerial image data. Through the efforts of the researchers, these
data sources can provide users with a multidimensional, multiperspective, and omnidirec-
tional environment to browse, measure, and analyze ground objects, which are suitable
for spatial decision-making applications. However, these methods have many problems,
such as the large amount of data acquisition, complex processing algorithms, fuzzy texture
information, high production cost, and long update cycle. Strong theoretical and techni-
cal support is also provided for urban modeling and its application due to the vigorous
development of remote sensing, photogrammetry, computer graphics, stereo vision, and
machine learning, while research on the continuous expansion of the breadth and depth
of the urban model is promoted. Among them, Heo et al. [11] proposed a semi-automatic
method for high-complexity 3D city modeling using point clouds collected by ground
LiDAR. Wang et al. [12] suggested a method for urban modeling based on oblique pho-
togrammetry and 3DMax plug-in development technology. These methods aim to combine
the advantages of multisource data to provide practical, efficient, and semi-automatic urban
modeling methods. Zhang et al. [13] presented a rapid-reconstruction method of 3D city
model texture based on the principle of oblique photogrammetry, which can automatically
extract the texture and uniform color of building façades and perform texture mapping,
considering multiple building occlusions. These methods have achieved certain results
in response to these problems. However, other problems, such as object occlusion and
incomplete texture, are still challenging for fine texture mapping of building models.

1.2.2. Texture Mapping Based on Crowd-Sourced Data

In recent years, crowd-sourced data (such as public images) have been broadly used
as alternative or supplementary data sources for many GIS modeling applications. These
public images can provide structured map description by tags and attributes, and existing
2D images can be converted into 3D models in batches in terms of related attributes.
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Therefore, this type of crowd-sourced data has also become an important data source for
3D city refined texture mapping. Many 3D city modeling methods based on crowd-sourced
data have also been proposed. For example, Lari et al. [14] introduced a new method for
3D reconstruction of flat surfaces; it aims to improve the interpretability of planes extracted
from laser-scanning data by using the spectral information of the overlapping images
collected by low-cost aerial surveying and mapping systems. Khairnar et al. [15] used the
structural and geographic information retrieved from OpenStreetMap (OSM) to reconstruct
the shape of the building. They also used the images obtained from the street view of
Google Maps to extract information about the appearance of the building to map textures to
building boundaries. Girindran et al. [16] proposed a method to generate low-cost 3D city
models from public 2D building data by combining satellite-elevation datasets, confirming
a potential solution for the lack of free, high-resolution 3D city models. In addition, the
use of other data, combined with public images, has made great breakthroughs in texture
mapping. Gong et al. [17] used vehicle-mounted mobile measurement data to supplement
and refine building façades by using an enhanced method. Li et al. [18] proposed a seamless
reconstruction method for texture optimization based on low-altitude, multi-lens, oblique
photography in the production of 3D urban models. Hensel et al. [7] improved the quality
of textures on the façades of LOD2 CityGML building models based on deep learning
and mixed-integer linear programming. Although these studies have achieved good
performance in texture optimization, update cycle, modeling cost, quality and scalability of
building models decline in the process of urban modeling because the textures of building
models are still not updated promptly.

Generally, most traditional 3D models have been built in the form of pure graphics
or geometry, ignoring the semantic and topological relationship between graphics and
geometry. These models are limited to 3D visualization and cannot satisfy the requirement
of in-depth applications, such as thematic query, spatial analysis, and spatial data mining.
CityGML defines the classification of most geographic objects in the city and the relationship
between them. It fully considers the geometry, topology, semantics, appearance, and other
attributes of the regional model, thereby making up for the traditional 3D models in
terms of data sharing and interoperability. In addition, the city’s 3D model has become
reusable, greatly reducing the cost of the city’s 3D modeling [2]. Many studies have
been conducted using CityGML building modeling. Deng et al. [19] proposed a relatively
complete and high-precision mapping framework between IFC and CityGML in different
LOD CityGML models, including the transformation of geometric shapes, coordinate
systems, and semantic frameworks. Fan et al. [20] introduced a method to derive LOD2
buildings from the LOD3 model, which separated the different semantic components of the
building, with the goal of preserving the features of the floor plan, roof, and wall structure as
much as possible. Hensel et al. [7] described the workflow of generating an LOD3 CityGML
model (i.e., a semantic building model with a structured appearance) by adding window
and door objects to texture LOD2 CityGML building models. Kang et al. [21] developed
an automatic multiprocessing LOD geometric mapping method based on screen-buffer
scanning, including semantic mapping rules, to improve the efficiency of the mapping
task. However, these studies using the CityGML model rarely involved improvement of
visualization and interpretability through texture mapping. In addition, most existing
texture-mapping methods for remotely sensed imagery and terrestrial images heavily
depend on exterior orientation information and normally require a collinear equation to
associate the 3D models and image texture. Nevertheless, due to the simplification of the
building model and the inaccurate location information of LOD CityGML building models,
the commonly used photogrammetric methods cannot satisfy the requirement of texture
mapping for the CityGML building model. In addition, textured buildings derived from
aerial photogrammetry are often occluded by ground objects, e.g., pedestrians, vehicles,
and trees, as shown in Figure 1, resulting in object occlusion and texture distortion.
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Figure 1. Objection occlusion and texture distortion in building models. (a) Example of CityGML
building models; (b) building models of a local area; (c) object occlusion, e.g., tree, pedestrian, and
vehicle. Yellow boxes with solid line indicate texture distortion of local areas caused by object
occlusion in aerial photogrammetry. Yellow boxes with dotted line indicate object occlusion, e.g., tree,
pedestrian, and vehicle.

1.3. Research Objectives

The above-introduced photogrammetric methods seek to perform texture mapping
from UAV, LiDAR, and crowd-sourced data through rigorous geometric transformation
(e.g., aerial triangulation), which is not suitable for texture mapping of simplified CityGML
building models. Additionally, a single data source usually suffers from several problems,
such as object occlusion. In this study, we propose a novel approach of texture mapping
for 3D building models from multisource data, such UAV remotely sensed imagery and
terrestrial images, to alleviate these problems of texture mapping for CityGML building
models. This approach does not perform aerial triangulation; instead, only multiview
coplanar extraction was explored for texture mapping, without the requirement of exterior
orientation information. Inspired by the superiority of deep learning, an object-occlusion
detection method combining deep convolutional neural networks and vegetation removal
is exploited to filter out pedestrians, vehicles, and trees under complex image background,
such as uneven illumination and geometric deformation. Point-feature-based matching un-
der the constraint of building boundaries is conducted to compute the homography matrix
of the overlapped image, in which multiview 2D planes are extracted as the candidate tex-
tures. Then, geometric topology is derived to accurately delineate the façade boundaries of
building models using Hough-transform and iterative least-squares methods. Subsequently,
based on the registration of the map and the street view, the untextured or textured building
models of CityGML can be mapped or updated using texture information of terrestrial
images. Therefore, texture mapping of CityGML building models can be achieved by air-
ground integrated data acquisition (e.g., aerial oblique images, ground street-scene images)
and processing technologies. Furthermore, the texture of CityGML building models can be
automatically and rapidly updated to significantly eliminate blurred and distorted textures
caused by object occlusion in aerial photogrammetry.

The main contribution of this work is to propose an approach for texture mapping
that is suitable for CityGML building models using 2D remotely sensed and terrestrial
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images. In this study, deep convolutional neural networks enable high-quality texture to be
extracted from complex image backgrounds. Multiview coplanar extraction is defined to
extract building façades by perspective transformation without the requirement of exterior
orientation information. In addition, geometric topology is used to optimize the façade
boundaries of building models for denoising.

The remainder of the paper is organized as follows. Section 2 describes the details of
the proposed approach for building façade texture mapping. Sections 3 and 4 present the
comparative experimental results in combination with a detailed analysis and discussion.
Section 5 concludes this paper and discusses possible future work.

2. Methods
2.1. Overview of the Proposed Approach

Generally, texture mapping on top of the building model using UAV remote imagery is
simpler than that on the building façade with terrestrial images because no object occlusion
exists. The workflow of the proposed approach focuses on the façade of the building for
texture mapping by terrestrial images, as shown in Figure 2; it consists of three stages. In
the preprocessing stage, the relevant terrestrial images of the building are gathered from
public images through some basic attributes, e.g., GPS position and annotation, and the
texture is preferred by excluding object occlusion, e.g., pedestrians, vehicles, and trees,
using deep convolutional networks (e.g., NanoDet [22]). In the multiview planar extraction
stage, point-based image matching is utilized to compute the homography matrix, which
is used to extract texture information in 2D multiview planes under the constraint of
building boundaries. In the texture-plane optimization stage, the quadrilateral shape of
building façades is defined based on the geometric topology of point and line features
and optimized using Hough-transform and iterative least-squares methods. Finally, in the
texture-mapping operation, the building façade is mapped from the extracted texture by
perspective transformation, including projection, mapping, and resampling.

Figure 2. Workflow of the proposed approach.

2.2. Relevant Terrestrial Image Collection Based on Attributes

Although a large number of public images offer an opportunity for texture mapping
of building façades easily with low cost, determining which images correspond to which
buildings is difficult and time-consuming. Fortunately, many public images are captured by
mobile phones with some attributes, e.g., global navigation satellite system (GNSS) position
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and image annotation, which can be used to filter images that are unrelated to a building.
In particular, the image annotation is usually provided with a building name, which can
correspond to the building through the online map, and the orientation of an image to the
center of the building can be derived in combination with the GPS position. Therefore, we
developed an approach of relevant terrestrial image collection based on attributes.

As shown in Figure 3, the related regions, R and R’, of Buildings 1 and 2 are defined by
a given radius, r. Then, the subregions, Region1–4 and Region1′–4′, corresponding to each
façade of Buildings 1 and 2, respectively, are split by the lines (l1,l2) and (l1′,l2′), which are
defined based on the diagonal of the buildings. Evidently, the candidate terrestrial images
corresponding to a building can be obtained on the basis of GPS position and annotation.
However, a terrestrial image is usually annotated by only one place name, which may
be related to multiple buildings, i.e., the public image P may be related to Buildings 1

and 2. Then, we explore the dot-product [23] operation of two vectors,
⇀

PC1 and
⇀

PC2, to
determine whether a public image can provide the potential texture for multiple buildings.

In addition, two vectors,
⇀

PC1 and
⇀

PC2, can be defined based on the GPS position of the

public image, P, and the centers, C1 and C2, of Buildings 1 and 2. The dot-product of
⇀

PC1

and
⇀

PC2 is computed as follows:

val
(

⇀
PC1,

⇀
PC2

)
=

⇀
PC1·

⇀
PC2 =

∣∣∣∣ ⇀
PC1

∣∣∣∣∣∣∣∣ ⇀
PC2

∣∣∣∣cosθ, (1)

where θ is the angle between two vectors,
⇀

PC1 and
⇀

PC2. Through many experiments and
statistical analysis, we conclude that when θ > 90 degrees, a satisfactory texture is difficult

to capture due to severe deformation. Hence, when val
(

⇀
PC1,

⇀
PC2

)
< 0, if either building

is not annotated, then the public image, P, cannot be considered a candidate texture for the
annotated building.

Figure 3. Relevant public-image collection. C1 and C2 are the centers of Buildings 1 and 2, respectively.
R and R’ are the regions corresponding to Buildings 1 and 2, respectively. (l1,l2) and (l1′,l2′) are the
splitting lines of R and R’, respectively. Region1-4 and Region1′-4′ are the subregions split by (l1,l2)
and (l1′,l2′), respectively. Green and blue dots denote the terrestrial images that may be related to
Buildings 1 and 2 within the radius, r, respectively. Red dots denote the public images that may
be related to buildings (i.e., Building 1 and 2), and gray dots denote the terrestrial images that are

unrelated to either Building 1 or 2. θ is the angle between two vectors,
⇀

PC1 and
⇀

PC2.

2.3. Object-Occlusion Detection Based on Deep Learning

Although a large number of public images enables the CityGML building model to
perform texture mapping from terrestrial images without extra data acquisition, some
problems cannot be ignored, such as texture redundancy and object occlusion. Unfortu-
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nately, because public images are acquired from different viewpoints, times, conditions,
and cameras, complex nonlinear transformation, such as uneven illumination, deformation,
and object mixture often exist. Then, automatically detecting object occlusion and selecting
high-quality texture using the conventional feature-based methods is difficult [24–26].

Compared with these methods based on manually-designed features, deep learning
can perform better in image classification, pattern recognition, image processing, and other
fields [27–29]. Inspired by the progresses and outstanding nonlinear feature extraction
achieved in deep learning in recent years, convolutional neural networks can not only
extract multiscale and nonlinear features from images but are also insensitive to image
translation, scale, viewpoint, and deformation [30,31]. Therefore, we utilized a deep
convolutional neural network to detect object occlusion and gather high-quality terrestrial
images for texture mapping.

In recent years, many convolutional neural networks, e.g., VGG [32] and GoogleNet [33],
have been proposed and perform well for some applications, such as object recognition
and classification [34,35]. However, these networks are very deep and large-scale, with
tens of millions of parameters. Thus, deep neural networks, such as VGG and GoogleNet,
cannot satisfy the requirement of fast object recognition involved in CityGML building-
texture mapping. Recently, a project named NanoDet [22] appeared on GitHub; it is
an open-sourced and real-time anchor-free detection model, which can provide good
performance—as much as that of the YOLO network [36–38]; it is also easy for training
and porting. NanoDet is a detection model considering accuracy, efficiency, and model
scale; it is achieved by combining some tricks that refer to deep learning literature to obtain
a detection model considering accuracy, efficiency, and model scale. Generalized focal
loss and box regression are used in NanoDet to reduce a large number of convolutional
operations and significantly improve efficiency. Although NanoDet is a lightweight model,
its performance is similar to that of the state-of-the-art networks [22]. Therefore, to avoid
complex training from scratch, we explore a transfer-learning strategy based on NanoDet
to evaluate object occlusion and determine high-quality public images for texture mapping,
considering the performance and efficiency of the deep neural network. In addition, typical
objects, such as pedestrians and vehicles, can be easily detected. Other types of object
occlusion (e.g., trees) are not easily inferred by most convolutional neural networks, such as
DanoDet, because of uncertainty and irregular distribution. Furthermore, as illustrated in
Figure 4, we introduce a gamma-transform green leaf index, named GGLI [39], to detect tree
occlusion. Then, an approach combining DanoDet and GGLI is proposed to evaluate object
occlusion, and the area of object occlusion can be calculated. Subsequently, low-quality
public images with high occlusion ratios can be excluded without being performed for
texture mapping.

Figure 4. Object-occlusion detection combined with NanoDet and vegetation removal. γ denotes a
gamma value, and R, G, and B are the three components of RGB color.

2.4. Multiview Coplanar Extraction

The actual textured 3D building model derived from photogrammetric technologies
(including oblique photogrammetry and laser scanning) can finely characterize the geo-
metric building structure. However, limited by the error of building-model reconstruction,
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especially for simplified CityGML building models, such as the LOD2 CityGML models,
it cannot perform automatic texture mapping using photogrammetric technologies from
the terrestrial images without the support of exterior orientation information. Unfortu-
nately, in most cases, the camera parameters and pose of public images are unknown; thus,
texture mapping from public images becomes more difficult. In general, the façades of
most buildings are composed of several approximate planes. In particular, homography
transformation is usually used to describe the relationship between two images of some
points on the common plane and broadly used for photogrammetry and computer vision,
such as image correction, image mosaic, camera-pose estimation, and visual simultaneous
localization and mapping (SLAM) [40,41]. Therefore, based on these characteristics of
CityGML building façades and homography transformation, we developed a multiview
coplanar extraction approach from the candidate terrestrial images by homography matrix.

As opposed to the commonly used photogrammetric methods, some parameters,
such as interior parameters and exterior orientation elements, are not the prerequisites
for deriving spatial correspondence between public images and the CityGML building
model in this study; that is, the collinear equation is not an essential condition for texture
mapping. In other words, compared with the commonly used photogrammetric methods,
the proposed multiview coplanar extraction based on homography matrix is more available
and is an alternative method for texture mapping of CityGML building models. A single
homography matrix, i.e., global homography matrix, cannot be simply applied to define the
transformation of two views for extraction of textures of multiple building façades because
a public image may cover multiple planes of a building. Therefore, we exploit multiple
local homography matrices, named L_H, to model the multiple façades of a building, as
shown in Figure 5. The mathematical formula can be expressed as follows:

L_H(I1, I2, . . . , In) =
{{

Hp
∣∣p ∈ (I1, I2, . . . , In)

}}
, (2)

Hp =

 h00 h01 h02
h10 h11 h12
h20 h21 1

, (3)

where I1, I2, . . . , In are the candidate public images, 1 ∼ n, for texture mapping; Hp
denotes a homography matrix of a local plane in (I1, I2, . . . , In); and h00 ∼ h21 are the
matrix elements of Hp. Therefore, L_H may involve more than one homography matrix.

Figure 5. Multiview local homography transformation. I1, I2, I3 denote three multiview candidate
public images corresponding to the same building; p is a building façade. L_H(I1, I2), L_H(I2, I3),
and L_H(I1, I3) are the multiple local homography matrices of image pairs (I1, I2), (I2, I3), and
(I1, I3), respectively.

Generally, the homography matrix of two views can be obtained by image matching.
Based on previous studies [42], feature extraction and matching are performed using a
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sub-Harris operator coupled with the scale-invariant feature-transform algorithm, which
can find evenly distributed corresponding points to compute the homography matrix. In
homogeneous coordinates, the homography transformation between a point, X(xi, yi, 1),
of a public image, I, and the corresponding point, X′

(
x′i , y′i, 1

)
, of the matched image, I′,

can be described by a mathematical formula, X′ = HpX, which is also the perspective
transformation. The homography matrix, Hp, has 8 degrees of freedom; thus, at least four
matching pairs are required to solve this matrix. Then, the homography transformation, in
terms of matches, can be expressed as follows: x′i

y′i
1

 ∼= L_Hp
(

I, I′
) xi

yi
1

,
{
(xi, yi) ∈ FI,

(
x′i , y′i

)
∈ FI′

}
, (4)

where FI and FI′ denote the set of features in images I and I′, respectively.
For the case of n matches in a plane, p, of images I and I′, using the least-squares

method, Equation (4) can be expressed using an alternative formula, A f = 0. Then, the
coefficients, h00–h21, are calculated by a nonlinear optimization of min||A f ||2. Here, A and
f are expressed as follows:

A =


x1, y1, 1, 0, 0, 0,−x1x′1,−y1x′1,−x′1
0, 0, 0, x1, y1, 1,−x1y′1,−y1y′1,−y′1

...
xn, yn, 1, 0, 0, 0,−xnx′n,−ynx′n,−x′n
0, 0, 0, xn, yn, 1,−xny′n,−yny′n,−y′n

, (5)

f = [h00, h01, h02, h10, h11, h12, h20, h21, 1]T. (6)

Note that only one global homography matrix can be obtained based on the previous
studies; therefore, we propose a strategy to define multiple planes that may exist in two
paired views by extracting coplanar features. Although the mathematical transformation
of each plane in a terrestrial image can be derived by L_H, the sub-Harris corners are
insufficient to form the geometric shape of the façades of a building. Extracting the textures
on each plane is still a problem because so far, no accurate boundary of the polygon on
building façades is delineated. Generally, a large number of line features is distributed
on the building façades. In addition, due to the advantages of easy extraction and strong
anti-noise ability, line features are extracted to obtain abundant geometric description
of the façades, and the corresponding points on the lines between two paired views are
determined by the calculated L_H. To further determine the coplanar features on the same
building, based on the similarity of geometry and texture on the same façade, we use the
feature descriptors, namely RGB-SIFT descriptors [43], to exclude features not on the same
façade or outliers by clustering.

2.5. Texture-Plane Quadrilateral Definition Based on Geometric Topology

The geometric boundary of a façade is assumed to be consistent with the quadrilateral,
which is warped due to perspective transformation. On the basis of the spatial distribution
of the coplanar features, we subsequently perform texture-plane extraction based on
geometric topology. Specifically, as shown in Figure 6, the two farthest points, Xa,Xb, are
initially determined as the two initial diagonal corners of the quadrilateral façade from
the coplanar point set S(X). Then, the line equation, lab, between points Xa and Xb can be
expressed as follows:

αx + βy + δ = 0, (7)

where the coefficients, α, β, δ, can be calculated by the coordinates of points Xa,Xb; (x, y)
is the coordinate of a coplanar point. The two other corners, Xc,Xd, of the façade can be
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defined based on the condition, i.e., Equation (8), that the farthest vertical distance from
the point set, S(X), on both sides of line lab.{

dXc→lab
= max(d|(x, y) ∈ S(X) ∩ {αx + βy + δ > 0})

dXd→lab
= max(d|(x, y) ∈ S(X) ∩ {αx + βy + δ < 0}) , (8)

where d is the distance between a coplanar point (x, y) and line lab, and the calculation
formula is as follows.

d =

∣∣∣∣(αx + βy + δ)/
√

α2 + β2
∣∣∣∣. (9)

Figure 6. Initial quadrilateral definition of a plane. The red and green dots denote the corresponding
points obtained from point features and line features, respectively. Blue lines represent the ground
truth of the boundary of a façade, and the black line is the initial quadrilateral boundary.

Although the initial boundary of a façade can be defined based on the four anchor
points, i.e., Xa,Xb, Xc,Xd, a clear error is found on the boundary because the contribution of
coplanar points on the edge of the façade is not considered. Then, we use Hough-transform
and iterative least-squares methods together to optimize the initial boundary obtained by
the four anchor points. This optimization consists of the following steps:

(1) Along the straight lines, lab, lad, lbc, and lbd, point sets SX
lab

, SX
lad

, SX
lbc

, and SX
lbd

with the
closest vertical distance to the corresponding straight lines are found.

(2) Hough-transform algorithm is conducted to derive the mathematical formulas (i.e.,
y = kx + ε, where k, ε denote slope and intercept of lines lab, lad, lbc, and lbd from
SX

lab
, SX

lad
, SX

lbc
, and SX

lbd
, respectively.

(3) Iterative weighted least-squares method [44] is explored to optimize each mathe-
matical formula of lines lab, lad, lbc, and lbd, and the error correction, x̂, is expressed
as follows:

x̂ =
(

ATPA
)−1

ATPL, (10)

P = diag(P1, P2, . . . , Pn), (11)

where x̂ =

[
δk
δε

]
; A =

 x1 1
...

...
xn 1

; B =

 y1
...

yn

; n is the number of points in SX
lab

, SX
lad

, SX
lbc

,

and SX
lbd

; P is the diagonal weight matrix; and Pi ∝ 1/d, which is updated after each line-
formula optimization.
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2.6. Sub-Image Mosaic for Object-Occlusion Filling

This study aims at texture mapping for low-quality textured and untextured CityGML
building models and attempts to solve the problem of texture occlusion through multiview
images. Although the multiview texture of a façade can be captured based on this method,
object occlusion caused by pedestrians, trees, and vehicles may lead to missing partial
texture in a single image. Fortunately, multiview public images obtained from different
perspectives may capture textures at different angles. Thus, the missing local texture of
a façade may be filled by the unobstructed area; that is, the unobstructed sub-images
obtained from multiview textures can be mosaicked to solve missing texture in the masked
area introduced in Section 2.3.

The details of the Algorithm 1 for texture extraction are shown in the following section.

Algorithm 1: Texture extraction based on sub-image mosaic

Input: S(I) is the set of candidate terrestrial images for one façade, num is the size of S(I), (x, y)
is the coplanar point, and S(T) is the texture set.
Parameters: Gamma-transform green leaf index, GGLI, multiple local homography matrices,
L_H. k, ε are the coefficients of a line.
Output: Texture, T, of the façade
1: for i = 1 to num do
2: Perform object detection using NanoDet
3: Compute GGLI
4: Remove area Ro(i) of object occlusion
5: end for
6: for i = 1 to num− 1 do
7: for j = i + 1 to num do
8: Perform feature extraction and matching based on sub-Harris operator
9: Compute L_H
10: Define initial quadrilateral Rq ← (Xa, Xb, Xc, Xd)
11: Compute k, ε based on Hough transform

12: Compute x̂ ←
[

δk
δε

]
based on least square method

13: Update k, ε← x̂
14: Refine (lab, lad, lbc, lbd) and Rq

15: Repeat steps from 12 to 14 until error convergence or the maximum iteration number
is reached
16: Add Rq into S(T)
17: end for
18: end for
19: Merge S(T) into T

3. Experiment Results and Analysis

A set of CityGML building models is used to perform the experiments. The datasets
mainly include two categories, as follows: (1) the untextured building models downloaded
from the commercial map providers, such as Baidu, and (2) the textured building models
derived from the photogrammetric method. Initially, three building models are selected to
evaluate the method quantitatively and qualitatively. To further evaluate the performance
of texture update, five textured building models are selected to evaluate the proposed
approach by replacing low-quality texture. In addition, the public images are collected
to capture texture from street-view images managed by the commercial map providers.
Only relatively regular and simplified building models, such as LOD2 CityGML building
models, are selected to evaluate the proposed approach because this study mainly focuses
on the texture mapping of nondetailed building models.
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3.1. Data Description

To validate the effect of the proposed texture-mapping method, the three typical
untextured building models and the corresponding multiview texture images, including
UAV remotely sensed and terrestrial images, as shown in the subfigures of the first and
second columns in Figure 7, are selected. These building models are characterized by
simplified geometric structure, different styles, different heights, and different façades.
The candidate texture images with multiple perspectives include object occlusion, such as
pedestrians, trees, vehicles, and other nonbuilding objects.

Figure 7. Typical untextured building models and the multiview texture images. (a–c) are three
untextured building models; (d–f) are examples of texture images with different viewpoints corre-
sponding to (a–c), respectively. (g–i) are the object occlusions, marked by white regions, detected by
combining NanoDet and GGLI corresponding to (a–c), respectively. (j–l) are three textured building
models by texture mapping using the proposed approach corresponding to (a–c), respectively.
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In addition, the three textured building models derived by photogrammetric mapping
and the corresponding multiview texture images, as shown in the subfigures of the first and
second columns in Figure 8, are selected. Different from the untextured building models in
Figure 7, the textured building models are characterized by detailed geometric structure.
In the experiments, texture mapping of these textured building models has low-quality,
which is probably caused by photogrammetric error, noneliminated object occlusion, or
imaging quality. These models are specially selected to validate the performance of the
proposed approach for improving texture quality.

1 
 

 

Figure 8. Typical textured building models and multiview texture images. (a–e) are five textured
building models, and (f–o) are examples of texture images with different viewpoints and LOD
CityGML building models corresponding to (a–e). (p–t) are object occlusions, marked by white
regions, detected by combining NanoDet and GGLI corresponding to (a–e). (u–y) are five textured
building models by texture mapping using the proposed approach corresponding to (a–e).
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3.2. Qualitative Performance Evaluation

In the experiments, as shown in Figures 7 and 8, object occlusions, such as pedestrians,
vehicles, trees, and other objects, can be effectively removed by jointly using NanoDet
and GGLI. The façades of the simplified building models, such as LOD CityGML building
models, e.g., Figure 7a–c, can be textured by the multiview coplanar extraction from
multiple public images (e.g., Figure 7d,e,f) obtained from different viewpoints. The texture
on the top façade is captured from UAV orthophoto based on the previous studies [39].
The façades surrounding these buildings can be textured from public images in which
the texture hidden by object occlusion (e.g., Figure 7g–i) can be uncovered, given that the
textures may appear in multiview images because of the different depths of objects and
buildings. Therefore, object occlusion can be effectively removed by merging multiple
texture planes, which are then defined based on quadrilateral geometric topology to
delineate the boundary of textures for mapping, as illustrated in Figure 7j–l.

Although actual textured 3D building models are derived by UAV mapping, such as
oblique photogrammetry in some places, as shown in Figure 8a–e, low-quality textures
characterized by low-resolution and warped surfaces are inevitably mapped to the building
façades because of object occlusion, low precise building geometric models, and missing
texture information. Generally, low-quality building models should be improved and
updated by manual processing and mapping operations, which is a tedious and time-
consuming task. Fortunately, the LOD CityGML building models corresponding to these
actual textured 3D building models are provided by the commercial map providers, such as
Baidu. Then, a simplified LOD CityGML building model can be considered an alternative
for the low-quality textured 3D building, as shown in Figure 8f–g. Similar to Figure 7, object-
occlusion removal shown in Figure 8p–t and multiview coplanar extraction from public
images (e.g., Figure 8k–o) are conducted for texture mapping. On the contrary, although
the alternative building models, such as the simplified LOD CityGML building models,
cannot provide the detailed geometric structure of buildings, they significantly improve
the geometric shape and texture-mapping quality of building façades. For examples, in
Figure 8a,c, the warped façades are replaced by regular planes, and the texture quality
of the building is also optimized by terrestrial images with higher resolution and more
abundant detail.

Compared with the visualization of the textured building models, the proposed
approach is suitable for performing texture mapping on regular building models, such
as LOD CityGML building models. In addition, in some cases, the low-quality geometric
structure of building façades can be optimized by regular planes. Not all façades of
building models perform texture mapping when relevant terrestrial images, such as B3–B6,
are limited.

3.3. Performance Evaluation of Object-Occlusion Detection

One advantage of the proposed approach is that it has outstanding performance in
object-occlusion detection. To evaluate the performance of combining NanoDet and GGLI
to detect object occlusion, state-of-the-art deep neural networks, including R-CNN [45],
Faster-R-CNN [46], YOLO [37], and NanoDet [35], are selected for comparison and analysis.
A metric, namely overall accuracy (OA), is used to quantitatively assess performance, and
OA is computed as follows:

OA = (TP + TN)/(TP + FN + TN + FP), (12)

where TP, FN, TN, and FP are defined as accurately detected object-occluded regions,
inaccurately detected non-object-occluded regions, accurately detected non-object-occluded
regions, and inaccurately detected object-occluded regions, respectively. The texture im-
ages, namely Datasets 1–8, corresponding to the building models in Figures 7 and 8 are
collected to compare the performance of object occlusion with the state-of-the-art networks.
Table 1 presents the comparative results of OA values using R-CNN, Faster-R-CNN, YOLO,
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NanoDet, and our method (i.e., the combination of NanoDet and GGLI). The combination
of NanoDet and GGLI achieves a better performance than the five other deep learning
networks in terms of OA values. Compared with the four other methods, our method sig-
nificantly improves the accuracy of object-occlusion detection by vegetation removal based
on previous studies, such as GGLI. However, the other deep learning networks do not have
the ability to detect vegetation, such as trees. As shown in Figure 8k,o corresponding to
Datasets 4 and 8, the tree occlusion is less than in other datasets. Thus, the accuracy of
object-occlusion detection, represented by OA values, is close to our proposed method.

Table 1. Comparisons of OA values using Faster-R-CNN, YOLO, NanoDet, and our method.

Dataset R-CNN Faster-R-CNN YOLO NanoDet NanoDet + GGLI

Dataset1 66.0 66.9 71.6 71.2 92.9
Dataset2 53.3 56.9 70.4 67.2 88.3
Dataset3 61.6 68.3 74.1 64.7 85.9
Dataset4 86.1 95.9 96.0 98.9 99.6
Dataset5 50.4 57.9 68.4 59.6 87.6
Dataset6 57.7 59.1 63.6 74.9 92.6
Dataset7 43.3 48.9 50.1 78.7 87.8
Dataset8 73.7 81.1 83.2 87.9 92.8

3.4. Performance Evaluation of Multiview Coplanar Extraction

The results of multiview coplanar extraction using the proposed approach are evalu-
ated by the quantitative metrics, i.e., recall, precision, and intersection over union (IoU),
which can be computed as [47]

Recall = (RGT ∩Rq )/RGT , (13)

Precision = (RGT ∩Rq )/Rq, (14)

IoU = (RGT ∩Rq )/ (RGT ∪Rq ), (15)

where RGT and Rq are the ground truth delineated by manual operation and the quadrilat-
eral region extracted by multiview coplanar extraction, respectively.

Point-feature-based matching is a popular method used to compute the geometric
transformation between images. However, building facades often have weak textures. Thus,
point features may be insufficient to reconstruct the boundary of the texture quadrilateral
region. Line features are extracted to obtain coplanar features to evaluate the performance
of combining point and line features to detect the boundary of the texture quadrilateral
region. We compare the results obtained by point-based and point-line-based methods.
Figure 9 depicts the comparative results of Recall, Precision, and IoU values calculated from
the public images, corresponding to the eight building models, including three untextured
and five textured models. The point-line-based method for quadrilateral-region detection
achieves a better performance than the point-based method in terms of the Recall, Precision,
and IoU values; that is, the texture boundaries obtained from the point-line-based method
are closer to the ground-truth texture regions. The point-line-based method is suitable for
achieving this goal due to the following reason: linear objects, such as building edges and
window edges, are abundant and easy to extract from building façades and can be used to
support boundary detection.
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Figure 9. Comparisons of Recall, Precision, and IoU values calculated from the public images corre-
sponding to the three untextured and five textured models shown in Figures 7 and 8. (a–c) are
the Recall, Precision, and IoU values obtained by point-based quadrilateral-region detection.
(d–f) are the Recall, Precision, and IoU values obtained by point-line-based quadrilateral-region
detection. B1–B8 indicate the number of building models, and F1–F4 indicate the façades of
building models.

3.5. Quality Evaluation of Updated Texture

Visual comparison of Figure 8a–e,u–y shows that some geometric details and textures on
the façades of building models are seriously blurred and distorted in Figure 8a–e. They are
optimized and substituted using patches obtained from the high-resolution terrestrial images
by the proposed approach in Figure 8u–y. In addition, to further evaluate the superiority of
the proposed approach, a metric, namely a Tenengrad function based on gradient without
reference image [48], is used to quantitatively compare the texture quality before and after
optimization. The Tenengrad value, Ten, of an image, I, is computed as follows:

Ten = ∑
y

∑
x
|G(x, y)|(G(x, y) > T), (16)

G(x, y) =
√

G2
x(x, y) + G2

y(x, y), (17)

in which G(x, y) is the gradient of a pixel I(x, y), and Gx(x, y) and Gy(x, y) are gradients in
the horizontal and vertical directions, respectively. T is a given threshold. The comparative
results of five building models in Figure 8a–e are shown in Figure 10, which indicates
that the texture after optimization has higher quality and clearer details than that prior
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to optimization in terms of Ten values, and it can also significantly eliminate blurred and
distorted textures.

Figure 10. Comparisons of Ten values calculated from the textures on the façades of five building
models in Figure 8a–e. Dark blue and orange columns denote the textures before and after optimiza-
tion, respectively. B4–B8 indicate the number of building models, and F1–F4 indicate the façades of
building models.

4. Discussion

On the basis of experimental results of texture mapping, the proposed approach
can be considered an alternative for performing texture mapping for regular building
models, such as simplified LOD CityGML building models. In particular, as opposed to the
commonly used photogrammetric method for texture mapping, reconstructing high-quality
textures for the façades of building models using exterior orientation information is not
imperative. The effectiveness of the proposed texture-mapping approach can be explained
by a number of reasons. First, high-resolution terrestrial images gathered based on spatial
relevancy derived from spatial location and attributes, such as GPS position and image
annotation, can provide multidata for texture mapping. As shown in Figures 7d–f and 8k–o,
the higher-resolution terrestrial images compared with aerial photography can be used
to reconstruct the textures for the façades of building models. Second, as illustrated
in Figures 7g–i and 8k–t, the abundant terrestrial images offer the opportunity to collect
higher-quality textures by effectively filtering out object occlusions, such as pedestrians,
vehicles, and trees by deep learning and vegetation removal. Third, multiview coplanar
extraction based on multiple local homography matrices enables texture mapping for
simplified or regular building models, such as LOD CityGML building models, in multiple
2D spaces without the support of interior parameters and exterior orientation elements. It
even allows nonprofessional practitioners to perform texture mapping with high-resolution
terrestrial images. Finally, the point-line-based method for quadrilateral-region detection is
available to capture the optimal building façade boundaries of patches for texture mapping.

The essence of texture mapping is the two-dimensional parameterization of 3D build-
ing models; that is, a one-to-one correspondence between 2D texture space and 3D building
façades should be established. In this study, multiview coplanar extraction is definitely
proposed to establish this correspondence. However, this study concentrates on texture
mapping for simplified or regular building models, such as LOD2 CityGML building
models, which are popular in street view maps (e.g., Google, Baidu). Therefore, it may
not be suitable to perform texture mapping for some complex buildings with abundant
building details or complex geometric structure.

5. Conclusions

We present a framework to effectively perform texture mapping for LOD CityGML
building models by extracting high-quality textures from terrestrial images. First, terrestrial
images corresponding to the target building are collected from public images based on
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spatial relevancy. Second, integration of deep learning and GGLI is used to filter out
object occlusions (e.g., pedestrians, vehicles, and trees) and obtain non-occluded building
candidate texture distributions. Third, point-line-based coplanar features are extracted to
characterize multiple planes in 2D space under the constraint of multiple local homography
matrices, and the initial boundaries of the building models are obtained from four anchor
points. Fourth, geometric topology is conducted to optimize the initial boundaries of
texture patches based on a strategy combining Hough-transform and iterative least-squares
methods. Finally, abundant candidate texture patches are mosaicked to obtain high-quality
object-occlusion filling. The statistical and visualization results indicate that the proposed
methods can effectively perform texture mapping of CityGML building models. The frame-
work also shows higher-quality textures for all experimental building models, including
untextured and textured models, according to quantitative and qualitative comparisons
and analyses. The results prove the high capability of the proposed approach in texture
mapping for CityGML building models from 2D terrestrial images.

The proposed texture-mapping approach relies greatly on the regular geometric shape
of building models, in which the façades are composed of multiple rectangles. At present,
the proposed approach focuses on texture mapping of simplified or regular building
models, such as LOD2 CityGML building models. It does not optimize the geometric
structure of the façades of building models. However, it cannot satisfy the requirement
of texture mapping for some building models with high levels of detail, such as LOD3
CityGML building models.

In future studies, we will attempt to improve the proposed approach by optimizing
the geometric structure on the façades of building models using multiscale and multiview
coplanar extraction and improve the performance of texture mapping for complex building
models, such as LOD3 CityGML building models.
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