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Abstract: Forest fire is a ubiquitous disaster which has a long-term impact on the local climate
as well as the ecological balance and fire products based on remote sensing satellite data have
developed rapidly. However, the early forest fire smoke in remote sensing images is small in area
and easily confused by clouds and fog, which makes it difficult to be identified. Too many redundant
frequency bands and remote sensing index for remote sensing satellite data will have an interference
on wildfire smoke detection, resulting in a decline in detection accuracy and detection efficiency
for wildfire smoke. To solve these problems, this study analyzed the sensitivity of remote sensing
satellite data and remote sensing index used for wildfire detection. First, a high-resolution remote
sensing multispectral image dataset of forest fire smoke, containing different years, seasons, regions
and land cover, was established. Then Smoke-Unet, a smoke segmentation network model based
on an improved Unet combined with the attention mechanism and residual block, was proposed.
Furthermore, in order to reduce data redundancy and improve the recognition accuracy of the
algorithm, the conclusion was made by experiments that the RGB, SWIR2 and AOD bands are
sensitive to smoke recognition in Landsat-8 images. The experimental results show that the smoke
pixel accuracy rate using the proposed Smoke-Unet is 3.1% higher than that of Unet, which could
effectively segment the smoke pixels in remote sensing images. This proposed method under the
RGB, SWIR2 and AOD bands can help to segment smoke by using high-sensitivity band and remote
sensing index and makes an early alarm of forest fire smoke.

Keywords: forest fire; remote sensing; smoke segmentation; Smoke-Unet; attention mechanism;

residual block; Landsat-8; band sensibility

1. Introduction

The forest system, which occupied almost one third of the total land area, provides a
variety of critical ecological services such as natural habitat, water conservation, timber
products and maintaining biodiversity [1]. It also plays a central role in global carbon circle
and energy balance [2,3]. However, the areas of global forests sharply declined at a rate
of roughly 10 million hectares per year [4]. Wildfire is the principal threat in terrestrial
ecosystems, and many evidences have proved that recent global warming and precipitation
anomalies have made forests more susceptible to burning [5,6]. In the period of 2019-2020,
the Amazon and South Australia faced the most severe wildfires, and these events have
caused wide public concerns because of their considerable ecological and socioeconomic
consequences such as consuming generous quantities of tropical rainforest, emitting great
volumes of greenhouse gas and aerosols and altering the composition of the atmosphere.

Because smoke appeared at the earliest phase in wildfires, earlier detection and rapid
identification of initial wildfire smoke are crucial for wildfire suppression and management
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to avoid the damages and negative impacts of wildfires [7]. Wildfire smoke is usually
identified by means of manual observation, patrol of forest rangers, infrared and optical
sensors of fire lookout towers and aviation monitoring. However, these techniques have
shown ineffective, unsystematic, and geographical limit. Wildfires, caused by natural
events (e.g., lightening and spontaneous combustion) or human-forcing activities, occurred
in the remote regions, making it difficult and cost-consuming for accessibility and sup-
pression. However, data from remote sensing satellites can provide continuous, frequent,
and numerous systematic information with various spatial and temporal resolution at
global scales, which may overcome several limitations of the conventional wildfire smoke
observation methods [8].

Currently, the widely used remote sensing monitoring algorithms are mostly based
on satellite remote sensing data of low and medium resolution (>250 m) [9,10], such as
Advanced Very High Resolution Radiometer (AVHRR) [11-13], Moderate Resolution Imag-
ing Spectroradiometer (MODIS) [14-16], etc., which has become an important business
method to detect wildfire smoke for daily wildfire disaster monitoring in many countries
around the world. However, the satellites with lower spatial resolution are unable to
capture relevant information effectively at the early stage of forest fires due to too small
initial burning area, and thus would cause the detection of early fire spots to be missed.
Therefore, high-resolution satellite data are urgently needed to improve the accuracy of fire
detection. Landsat-8 data can be publicly obtained and the resolution has increased by an
order of magnitude, reaching 30 m, compared with Suomi National Polar-orbiting Partner-
ship (S-NPP) and Visible Infrared Imaging Radiometer Suite (VIIRS) [17-20]. In addition,
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) mounted on Landsat-8
can provide a new data source and capability allowing as small as 1 m? active fire to
be observed [21]. Therefore, Landsat-8 data were used for wildfire smoke detection in
this paper.

The satellite can carry many multispectral sensors and provide large amounts of multi-
spectral data with more valuable information than RGB. Wildfire smoke presents different
characteristics in different spectral ranges of remote sensing data and the choice of bands is
crucial to smoke recognition. The wildfire smoke detection algorithms [22,23] of AVHRR
mainly derived from band 3 (centered at 3.7 um), band 4 (centered at 10.8pm) and band 5
(centered at 12 um). The family of products [24,25] based on MODIS sensors primarily used
two MIR bands (band 21 and band 22, centered at 3.96 um) and TIR band 31 (centered at
11 um). Data from band 4 (centered at 3.55~3.93 um) and band 5 (centered at 10.5~12.4 um)
of VIIRS are used for tracking active fires [26-28]. Nevertheless the Landsat-8 wildfire
smoke detection algorithm was based on the reflectance of band 7 (SWIR, centered at
2.2 um), that is sensitive to thermal abnormality [29]. Therefore, the selection of the spectral
range of remote sensing data is very important for smoke identification based on different
spectral properties.

Due to the development of machine learning and data mining, several studies focused
on the automatic retrieving smoke pixels. Li et al. [30] facilitated a neural network algo-
rithm using AVHRR data to search smoke plumes but it failed when smoke pervades in the
downwind area. As a powerful and popular machine learning approach, Support Vector
Machine (SVM) is widely used in remote sensing task. The SVM classifiers can take advan-
tage of combination of texture, color and other features of the remote sensing scene, and
successfully distinguish the pixels contained smoke from non-smoke pixels [31-33]. Other
machine learning techniques, such as K-means clustering, fisher linear classification [34]
and BPNN algorithm [35], were used to discriminate smoke pixels. Nevertheless, it is
still a challenge to extract smoke areas because of the wide range of shapes, color, texture,
luminance and heterogeneous component of aerosol as well as diversity of cover types.
In addition, with the development of remote sensing technology, a dramatically increasing
satellites archive makes it no longer suitable for hand-crafted features of remote sensing
data, and it is urgent to develop more automatic detection algorithms.
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Deep learning, in the specific area of Convolutional Neural Networks (CNNs), is
inspired by the working way of the human brain and recently has acquired many impressive
achievements in many scientific fields such as image classification, object detection, and
image segmentation. CNN can automatically extract features from data using a structure of
multilayers. They are iteratively learning by forward propagation and backward derivation
and updating parameters of kernels through complex nonlinear functions. The accuracies
can be further improved by providing great amounts of input data, so it would be the best
candidate for remote automated detection tasks. CNINs have successfully been employed
in variety remote sensing fields such as road detection [36], cloud detection [37] and
smoke classification [38]. Recent Unet-based methods [39] have also made good progress
in the field of remote sensing [40,41]. However, remote sensing satellite data have many
redundant bands so that too much information causes the wildfire smoke detection accuracy
drop after the first rise and the detection efficiency decrease. How to reduce the interference
of redundant information and make full use of the correlation of feature channels is a key
problem on wildfire smoke detection based on remote sensing data.

The objective of this study was to propose a wildfire smoke detection algorithm of
Landsat-8 satellite remote sensing imagery at the scene of a wildfire using multispectral
data. First, a multispectral smoke dataset of Landsat-8 satellite at global scale, including
the information from visible to TIRS1 infrared bands, was built in this paper. Second, a
deep learning model, Smoke-Unet, based on Unet architecture incorporating with residual
block [42] and attention mechanism [43], was proposed. Then, the performance of this
algorithm on different region and various scale of wildfire smoke was evaluated by the
experiments based on the abovementioned multispectral smoke dataset. Finally, to better
extract the features of remote sensing smoke and reduce the redundancy of remote sensing
data, the sensitivity of multiple bands was analyzed.

The main parts of this paper are structured as follows. Section 2 introduces the
establishment of a multispectral smoke dataset of Landsat-8 satellite at a global scale, and a
proposed deep learning model, Smoke-Unet, based on the Unet architecture incorporating
with Attention mechanism and residual block, is presented in Section 3. To reduce the
disturbance of the redundant information, the influence of different band combinations
of multispectral data and remote sensing parameters on the accuracy of the algorithm are
analyzed and the band sensitivity are evaluated in Section 4, and the conclusion is made
in Section 5.

2. Data
2.1. Landsat-8 Multispectral Data

Landsat-8, carrying the OLI and the TIRS, was launched in 2013, and is operated by the
US Geological Survey (USGS). As seen in Table 1, OLI is a nine-spectral-band push-broom
sensor with spatial resolution of 30 m and 15 m for the panchromatic band, including near-
infrared band (NIR) and Panchromatic (Pan). Standard terrain-corrected data (Level 1T)
from OLI were used in this study.

2.2. Study Area

As shown in Figure 1, the various fire-prone ecosystems all over the world were
selected as the study areas in this research, containing: (i) needleleaf trees of boreal forests
in high latitude regions, such as Canada and Siberia; (ii) subtropical evergreen hard-leaved
forest mixed conifer-broadleaf forests in Western America; (iii) dry sclerophyll woodland
and open forest in Eastern Australia; (iv) tropical rainforest in the Amazon and Southeastern
Asia; (v) tropical grasslands and savannas in Africa.
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Table 1. Landsat-8 Satellite Parameters.

Payload Name  Band Number Band Name Spectral Range(nm)  Resolution(m)

1 Coastal 433~453 30

2 Blue 450~515 30

3 Green 525~600 30

4 Red 630~680 30

OLI 5 NIR 845~885 30
6 SWIR1 560~660 30

7 SWIR2 100~300 30

8 Panchromatic 500~680 15

9 Cirrus 1360~1390 30

10 TIRS1 1060~1119 60

TIRS 11 TIRS2 1150~1251 60

0
low

Figure 1. Spatial distribution of study regions in the datasets.

As seen in Figure 2, the study areas are located in Asia, North America, South America,
Africa, etc. Considering that the frequent occurrence of wildfires in these areas is represen-
tative, the fire-prone regions in the USA, Canada, Brazil and Australia were selected as the
primary research areas.
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Figure 2. Different intercontinental data distribution.
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As seen in Figure 3, the land cover data have 4 types, including ocean, city, bare soil
and different kinds of vegetation (agricultural land, grassland, forest.)

Figure 3. Different land cover types of datasets. (a) Ocean; (b) City; (c) Bare soil; (d) Agricultural
land; (e) Grassland; (f) Forest. Different intercontinental data distribution.

2.3. Fire Seasons

Forest fires usually occur in the early stages of springs, autumns and winters due to
the influence of climate. As a result of human activity, the wildfire occurrence in summers is
dramatically increasing in North America and the Amazon [44,45]. In this study, the period
of fire occurrence covered from 2013 to 2019, including different fire seasons, as shown
in Figure 4.

2.4. Proportion of Smoke Pixel

Smoke concentration and the proportion of smoke pixels in one image are different
with forest fire stage. At the beginning of fire, thin scattered smoke pixels account for a
small amount in the image; however, in the middle stage of fire, the entire image is nearly
occupied by densely spread smoke. The proportion distribution of smoke pixels is shown
in Figure 5.
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Figure 4. Period of fire occurrence.
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Figure 5. The proportion of smoke pixels of different images.

2.5. Training and Validation Dataset

To reduce overfitting, data augmentation was performed, including random cropping,
vertical and horizontal mirroring operations on the images. As a result, the dataset in this
study contains a total of 47 multispectral forest fire smoke images, composed of RGB, NIR,
SWIR and mid-infrared bands. Thirty-four images are randomly selected as training data,
5 images are used as verification data, and 8 images are used as test data.
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3. Methods

As a dense prediction problem, the task of smoke classification in satellite image is to
make a prediction at each pixel. Based on the Unet network structure, Smoke-Unet, fused
into residual blocks and attention model, was put forward to segment smoke in satellite
images in this paper.

As seen in Figure 6, Smoke-Unet consists of a contraction path on the left side and an
expansive path on the right side. The contracting path follows the typical architecture of a
convolutional network. It consists of the repeated application of two 3 x 3 convolutions
(padded convolutions), each followed by a linear unit (ELU) and a 2 x 2 max pooling
operation with stride 1 for downsampling. At each downsampling step, we double the
number of feature channels. Every step in the expansive path consists of an upsampling of
the feature map followed by a 2 x 2 convolution (“up-convolution”) that halves the number
of feature channels, a concatenation with the correspondingly cropped feature map from
the contracting path, and two 3 x 3 convolutions, each followed by a ELU. The cropping
is necessary due to the loss of border pixels in every convolution. Because the resolution
of the remote sensing image is smaller (one pixel for Landsat with a resolution of 30 m),
downsampling will have a catastrophic effect on these local small target features, resulting
in the problem of vanishing gradients for many network layers. Therefore, Smoke-Unet is
designed to only downsample three times. The steps of convolution and downsampling
are alternately performed three times to obtain a high-dimensional feature map and then
the spatial resolution is restored through the three-time symmetrical convolution and
upsampling operations. The feature map with the same resolution was fused through a
skip connection to compensate for the loss of detail caused by downsampling.

16 16 32 16 16

—»v

32 32 64 32

—

i

Resconv 3 =3, ELU

64 128 64
copy and crop
L

i

Figure 6. Smoke-Unet.

max pool 2x2

Seblock+up-conv2 x2

{-»4-1,',

convl x1

In order to improve the feature learning ability of the network, ResBlock, a residual
block is added to the convolution block to enhance the feature extraction ability. The
residual block with skip connection structure can enhance the robustness of the network
and improve the performance of the network. The skips structure between layers can fuse
coarse semantic and local appearance information. This skip feature is learned end-to-end
to improve the semantics and spatial precision for the output. Remote sensors onboard
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satellite have so many spectral channels that too much irrelevant information leads to
difficulty in extracting feature. In order to emphasize effective information and reduce
the interference of invalid band information, the SEBlock module based on the attention
mechanism is added to the Smoke-Unet network structure. In the attention model, the focus
process can be imitated by setting the weight coefficient. The key attention areas can be set
with larger weight coefficients, which represent the importance of the information in these
areas, while other areas can be set with smaller coefficients to filter invalid information.
Through considering different degree of importance for information, the efficiency and
accuracy of information processing can be greatly improved. At the final layer,a 1 x 1
convolution is used to map each 16-component feature vector to final smoke class. In total,
the network has 15 convolutional layers.

4. Results and Discussion

In this section, three kinds of semantic segmentation experiments were made on our
dataset. By comparing the experimental results, the performance of Smoke-Unet was
evaluated and the sensitivity of band and remote sensing parameters was analyzed.

4.1. Experimental Environment

The network structure uses the Keras architecture and several related image processing
libraries, the programming language uses Python 3.5. The specific configuration is shown
in Table 2.

Table 2. Deep learning environment configuration.

Programming Environment Auxiliary Library Hardware Configuration Other Software
Python3.5 Shapely CPU:InterE5-2620v3@2.4 GHz
Tensorflow1.9 Opencv2.2 GPU:NVDIA TITAN X ENVI5.3
CUDAS.0 Tifffile0.12 RAM:16 GB ArcGIS10.3
cuDNN10.0 Rasteriol.1.2 Numba0.26.0 Scikit_image0.12.3
Keras2.2.0 h5py2.6.0

4.2. Implementation Details

The input of the Smoke-Unet network is the multichannel remote sensing image and
the index of the multi-remote sensing feature. The data have 13 channels, as shown in
Table 3. The schematic diagram of the network is shown in Figure 6.

Table 3. Bands and remote index.

Number Data Type Item Band
1 Band Data Multispectral Band 1-7,10
2 Band Data Panchromatic Band 8
3 Remote Sensing Index EVI /
4 Remote Sensing Index NBR /
5 Remote Sensing Index AOD /
6 Remote Sensing Index BT /

During the model training, the back-propagation optimization algorithm uses the
stochastic gradient descent (SGD) algorithm, the learning rate is 1 x 1073, the momentum
is 0.9, the learning rate attenuation is 0.1, the loss function is the joint loss function, and
the evaluation function is Jaccard similarity function. The batch size is 128. Considering
the computing resources, there are 25 iterations in total, and shuffle is used to disrupt the
order of training samples in each epoch. After each round of iteration is completed, the
Jaccard coefficient, Accuracy, F1 and other indicators of the training set and the validation
set are calculated.
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4.3. Implementation Details

In the field of deep learning image segmentation, the similarity coefficient is an
important indicator to measure the accuracy of image segmentation. Jaccard similarity
coefficient is used in this paper to evaluate the similarity and difference between image
targets. The larger the value of Jaccard, the more similar the two targets. For two sets
A and B, the Jaccard coefficient is the ratio of the intersection and the union of the two,
defined as:

_1AnBl_ 1AnB
JUAB) =14 0B| = TAT+ B8] - 1A B’ @
0< ](A,B) <1, 2)

4.4. Ablation and Comparative Analysis

In order to verify the role of residual block and attention mechanism of Smoke-Unet,
the ablation experiments were made in wildfire smoke segmentation based on remote
sensing satellite images. As shown in Table 4, Res-Unet means the network combined Unet
with the residual module. Atten-Res-Unet means the network integrated the attention
mechanism module with Res-Unet. The results of semantic segmentation were evaluated
by metrics such as Jaccard, Accuracy, Recall and F1. In order to validate the effectivity more
extensively, other common semantic segmentation networks such as FCN [46], Segnet [47]
and PSPnet [48] have been compared. The results are compared in Table 4 and Figure 7.

Table 4. Ablation and comparative analysis of different models.

Network Dataset Loss Jaccard Accuracy Recall F1
Train 0.844 0.657 0.801 0.753 0.773
Unet Validation 1.889 0.699 0.694 0.781 0.735
Train 0.851 0.690 0.805 0.829 0.813
Res-Unet Validation  1.636 0.59 0.701 0.944 0.805
Train 1514 0.703 0.835 0.816 0.823
Atten-Res-Unet v nqahion  1.926 0.654 0.696 0.894 0.782
Train 1.479 0.735 0.845 0.852 0.844
FCN Validation ~ 1.974 0.58 0.711 0.811 0.758
Segnet Train 1.532 0.712 0.831 0.835 0.828
Validation ~ 1.708 0.665 0.761 0.841 0.799
Train 1.406 0.748 0.845 0.871 0.851
PSPret Validation ~ 1.901 0.581 0.751 0.812 0.765
Train 0.759 0.752 0.923 0.917 0918
Smoke-Unet vy lidation  1.134 0.644 0.725 0.838 0.775

It can be seen from Table 4 that Jaccard coefficient, accuracy, recall rate, F1 and other
indicators of Smoke-Unet have been improved to varying degrees. Compared with the
original Unet network architecture, the Jaccard coefficient on the training set is increased by
14.46% and the Jaccard coefficient on the verification set is reduced to a certain extent. The
accuracy on the training set is increased by 15.23% and the accuracy on the validation set
is increased by 4.47%. The recall rate on the training set was increased by 21.78% and the
recall rate on the verification set was increased by 7.30%. F1 on the training set is increased
by 18.76% and F1 on the validation set is increased by 5.44%. It can be concluded that the
proposed network performs better than the original Unet network, and it can be seen from
Table 4 that Smoke-Unet is better than other common semantic segmentation networks.
The specific segmentation image is shown in Figure 7.
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FCN Atten-Res-Unet Res-Unet Unet

Segnet

PSPnet

Smoke-Unet

(b) (d)

Figure 7. The results of segmentation of different networks. (a) Image acquired over British Columbia,
Canada, on 4 August 2017, the smoke is depicted in red line area; (b) The segmentation results of
smoke over British Columbia, the smoke pixels are depicted in aqua color; (¢) Image acquired over
New Zealand area, on 7 Feb 2019, the smoke is depicted in red line area; (d) The segmentation results
of smoke over New Zealand area, the smoke pixels are depicted in aqua color.
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In Figure 7a, the smoke contains a wide range of dense smoke and scattered diffuse
thin smoke, and the land cover includes vegetation, bare soil, and some cirrus clouds.
In Figure 7c, the smoke, located near the fire point, is thin and has a relatively small range,
and the land cover includes sea water, seashore, bare land, vegetation and so on.

It can be seen from Figure 7b,d that the Unet network can roughly segment the smoke
pixels in different images. In Figure 7b, Res-Unet can effectively segment the smoke pixels,
because the number of smoke pixels in the diffusion area at the upper left of Figure 7b has
increased, while in Figure 7d there is an over-segmentation by Res-Unet, and some pixels
are incorrectly segmented as the smoke pixel. In Figure 7b, Atten-Res-Unet can effectively
segment the smoke pixels, as the number of smoke pixels in the diffusion area at the upper
left of Figure 7b has increased, while the under-segmentation exists in Figure 7d, resulting
that some pixels are not identified. The segmentation effects using FCN, SegNet and PSPnet
are worse than Unet-based methods. It can be seen from Figure 7b,d that the Smoke-Unet
network has a better recognition performance than the other networks when segmenting a
wide range of dense smoke and a small area of thin smoke.

4.5. Sensitivity Analysis

With the increasing number of high-resolution images and dimensional channels of
data, the information redundancy generated by high-dimensionality makes it difficult
to effectively utilize the rich information of remote sensing images. Based on the above-
mentioned forest fire smoke detection algorithm, this section will analyze and discuss
the influence of different band combinations of multispectral data and remote sensing
parameters on the accuracy of the algorithm.

4.5.1. Sensitivity of Bands

In order to evaluate the band sensitivity, the segmentation experiments based on dif-
ferent band combination were made on our dataset. The data source distribution is shown
in Table 5. The test images contain a large proportion of smoke, small proportion of smoke,
the land cover includes bare land, vegetation, seashores and highly reflective ground.

Table 5. Details of different bands combination.

Number Data Type Data Dimension Band
1 RGB 3 Band 2~4
2 RGB + NIR 4 Band 2~5
3 RGB + TIRS1 4 Band 2~4,10
4 RGB + SWIR2 4 Band 2~4,7
5 RGB + SWIR1 + SWIR2 5 Band 2~4,6,7
6 RGB + SWIR1 + NIR 5 Band 2~6
7 RGB + TIRS1 + SWIR2 5 Band 2~4,7,10
8 TIRS1 1 Band 10
9 NIR + SWIR1/2 + TIRS1 4 Band 5~7,10
10 SWIR1 + NIR + Blue 3 Band 2,5,6
11 Multiple 8 Band 1~7, Band 10
12 Multiple + Pan 9 Band 1~7, Band 10~11
13 All data 11 Band 1~11

From Table 6, Figures 8 and 9, it can be found that the segmentation result of smoke
is the best when the input band is RGB and SWIR2. Compared to all the data bands as
the input, Jaccard with the input of RGB and SWIR?2 increases by 6.5%. When the input
is all data source, it can effectively segment a wide range of smoke. However, compared
with the segmentation result of the RGB data source, the smoke pixel with the input of all
band data has the problem of under-segmentation for a small area of smoke, especially in
the downwind diffusion area. It shows that too much data will interfere with the network
parameter learning and degrade the performance of the network.
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SWIRI+NIR+ NIR+SWIR1/2+
Blue TIRS1 TIRSI

Multiple
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All data
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Figure 8. The first line shows true-color composition RGB images of smoke plumes. (al-a14) Siberia
area, Russia, on 17 March 2018; (b1-b14) British Columbia, Canada, on 4 August 2017; (c1-c14)
Amazon region, Brazil, on 9 August 2019; (d1-d14) New Zealand area, on 7 Feb 2019; (el-e14)
Zambia, on 26 June 2017; (f1-f14) Liangshan region, China, on 21 May 2019. All rows except the
first are segmentation results of smoke with different input data, the smoke pixels are depicted in

aqua color.
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Figure 9. The segmentation results of smoke with variety bands combination. (a) The result of Jaccard
and Accuracy; (b) The result of recall and F1.

Table 6. The segmentation results of different bands combination.

Number Data Type Jaccard Accuracy Recall F1
1 RGB 0.692 0.701 0.980 0.818
2 RGB + NIR 0.623 0.809 0.730 0.767
3 RGB + TIRS1 0.535 0.653 0.747 0.697
4 RGB + SWIR2 0.748 0.759 0.982 0.856
5 RGB + SWIR1 + SWIR2 0.701 0.707 0.988 0.824
6 RGB + SWIRT + NIR 0.737 0.753 0.970 0.848
7 RGB + TIRS1 + SWIR2 0.700 0.709 0.981 0.823
8 TIRS1 0.294 0.585 0.371 0.455
9 NIR + SWIR1/2 + TIRS1 0.479 0.852 0.522 0.648
10 SWIR1 + NIR + Blue 0.305 0.322 0.855 0.468
11 Multiple 0.646 0.658 0.814 0.784
12 Multiple + Pan 0.673 0.701 0.844 0.804
13 All data 0.683 0.801 0.825 0.809

In order to better distinguish smoke from clouds, the spectral characteristics of smoke
and cloud in different bands were compared. As shown in Figure 10, the image contains
smoke (heavy smoke numbered 2; smoke near the fire point numbered 5; thin smoke in the
diffusion area numbered 3 and 4) and clouds (numbered 1). To highlight the features, the
logarithmic transformation was made to the image. The spectral characteristics of different
objects in each band of the multispectrum are shown in Figure 11.

It can be seen from Figure 11a,b that clouds and dense smoke have very similar
spectral characteristics in the RGB band (Band 3~5); therefore, it is difficult to distinguish
dense smoke with clouds by the naked eye. However, the pixel values of the two are quite
different in the SWIR2 band (Band 8), which may be the reason why the smoke pixels can
be better distinguished by using RGB and SWIR2. From Figure 11b,c, it shows that the
spectral characteristics of heavy smoke and thin smoke are greatly different, which makes
the task of smoke recognition challenging.

4.5.2. Sensitivity of Remote Sensing Parameters

In order to evaluate the sensitivity of different remote sensing feature indexes to forest
fire smoke, EVI, NBR, BT and AOD were respectively combined with RGB and SWIR2 as
shown in Table 7 to evaluate the impact on the smoke segmentation.
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(a) (b)

Figure 10. The image of smoke acquired over British Columbia, Canada, on 4 August 2017. (a) The
true-color composition image. (b) The image of smoke after logarithmic transformed. Different
targets are marked with numbers 1 through 8. (1) The cloud; (2) The heavy smoke; (3) The thin smoke
over area 3; (4) The thin smoke over area 4; (5) The smoke over the hot spot; (6) The soil; (7) The
water; (8) The vegetation.
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(d) (e)

Figure 11. The spectral profile of different objects. (a) The profile of cloud on area 1; (b) The profile of
heavy smoke on area 2; (c) The profile of thin smoke over the area 3; (d) The profile of thin smoke
over the area 4; (e) The profile of smoke over the hot spot (the fire point) on area 5.
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RGB+ RGB+
SWIR2+

SWIR2+

RGB+
SWIR2+
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BT

AOD
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(a3)
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Table 7. Fusion of different remote sensing features.

Number Data Type Data Dimension
1 RGB + SWIR2 + EVI 5
2 RGB + SWIR2 + NBR 5
3 RGB + SWIR2 + BT 5
4 RGB + SWIR2 + AOD 5

As shown in Figure 12, both EVI and NBR do not contribute to forest fire smoke
segmentation and BT help to identify high temperature abnormal points, resulting in
under-segmentation of smoke pixels.

(b2) (c2) (d2) (c2) (f2)
(b3) (c3) (d3) (e3) (f3)
(b4) (c4) (d4) (c4) (f4)
(b5) (c5) (d5) (e5) (f5)

Figure 12. The first line is true-color composition RGB images of smoke plumes. (al-a5) Siberia
area, Russia on 17 Mar 2018; (b1-b5) British Columbia, Canada, on 4 August 2017; (c1-¢5) Amazon
region, Brazil, on 9 August 2019; (d1-d5) New Zealand area, on 7 February 2019; (el-e5) Zambia,
on 26 June 2017; (f1-£5) Liangshan region, China, on 21 May 2019. All rows except the first are
segmentation results of smoke with multiple bands and remote sensing indexes, the smoke pixels are
depicted in aqua color.
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In Figure 12(c5), the upper left area is the smoke plume diffusion area, and a large
number of smoke pixels that could not be identified by visual interpretation were seg-
mented. This may be a result from the increasing aerosol concentration in this area due
to the large amount of carbon oxides and nitrogen oxides contained in forest fire smoke.
In Figure 12(f5), some mis-segmentation was made because much smaller smoke area
and fewer smoke pixels are prone to be mis-recognized by image noise. Therefore, it can
be concluded that the segmented smoke pixels significantly increase, especially for the
thin smoke in the downwind diffusion zone, when AOD is added as the input of RGB
and SWIR2.

5. Conclusions

In order to solve the difficulty of detecting forest fire smoke in remote sensing images,
this study proposed the Smoke-Unet network to segment forest fire smoke and analyzed
the sensitivity of remote sensing satellite data and remote sensing index used for wildfire
detection. This paper first constructed a multispectral remote sensing smoke dataset
containing different years, seasons, regions and land cover. Second, Smoke-Unet, which
combined an improved Unet network with attention mechanism and residual block, was
put forward in this paper and verified by comparing with other methods on the experiments.
Third, the sensitivity of different spectral band combinations of multispectral data and the
remote sensing index to the wildfire smoke segmentation were analyzed by the experiments.
The results show that the smoke pixel accuracy rate using the proposed Smoke-Unet is
3.1% higher than that of Unet and RGB, SWIR2 and AOD bands are verified as the sensitive
band combination and the remote sensing index for wildfire smoke segmentation, which
could effectively segment the smoke pixels in remote sensing images. This proposed
method under the RGB, SWIR2 and AOD bands can help to segment smoke by using
high-sensitivity band and remote sensing index and makes an early alarm of forest fire
smoke. However, some problems need to be further solved in subsequent studies. A large
amount of mixed spectrum phenomenon in the diffusion area makes it much difficult to
label thin smoke plume in the downwind direction by visual interpretation. How to exploit
the feature-extraction advantages of deep learning methods to better interpret remote
sensing images requires a lot of exploration.
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