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Abstract: The rapid change and expansion of human settlements raise the need for precise remote-
sensing monitoring tools. While some Land Cover (LC) maps are publicly available, the knowledge
of the up-to-date urban extent for a specific instance in time is often missing. The lack of a relevant
urban mask, especially in developing countries, increases the burden on Earth Observation (EO)
data users or requires them to rely on time-consuming manual classification. This paper explores
fast and effective exploitation of Sentinel-1 (S1) and Sentinel-2 (S2) data for the generation of urban
LC, which can be frequently updated. The method is based on an Object-Based Image Analysis
(OBIA), where one Multi-Spectral (MS) image is used to define clusters of similar pixels through
super-pixel segmentation. A short stack (<2 months) of Synthetic Aperture Radar (SAR) data is then
employed to classify the clusters, exploiting the unique characteristics of the radio backscatter from
human-made targets. The repeated illumination and acquisition geometry allows defining robust
features based on amplitude, coherence, and polarimetry. Data from ascending and descending orbits
are combined to overcome distortions and decrease sensitivity to the orientation of structures. Finally,
an unsupervised Machine Learning (ML) model is used to separate the signature of urban targets in a
mixed environment. The method was validated in two sites in Portugal, with diverse types of LC and
complex topography. Comparative analysis was performed with two state-of-the-art high-resolution
solutions, which require long sensing periods, indicating significant agreement between the methods
(averaged accuracy of around 90%).

Keywords: synthetic aperture radar; multi-spectral; urban classification; machine-learning; data fusion

1. Introduction

In recent decades, mapping urban areas and growth has been a vital tool in facing
many environmental challenges. The task is usually well performed by high-resolution
MS remote sensing instruments [1]. However, such data resources are often costly and
unavailable to common users. The recent increase in the availability of open-access satellite
data has given rise to the need for algorithms that can exploit moderate-resolution images.

The ability to track the evolution of urban fabrics in real-time is another crucial consid-
eration due to the fast urbanization processes experienced worldwide. MS-based solutions
usually require multi-temporal stacks due to the wide heterogeneity of anthropic structures
and variations in illumination conditions [2–4]. Obtaining a stack of MS images may be
challenging in parts of the world due to weather limitations; thus, the alternative usage of
SAR for the recognition of urban areas is widely studied [5–9]. SAR sensors operate in the
radio frequency range, which penetrates clouds, and allow regular sampling worldwide.

The backscatter characteristics of radio waves are known to be suitable for detecting
urban targets [10]. In recent years, much work has been undertaken to develop robust
tools for human settlement mapping employing SAR images [11]. Nevertheless, most
techniques provide coarse resolution due to the intrinsic pixel size, speckle noise, and the
need for averaging over large spatial windows. The resolution limitation might be reduced
by substituting spatial averaging with a temporal one. With a sufficiently long stack, one
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may suppress the effect of speckle, and pixel-wise classification can be made feasible [6].
The approach is effective, but it requires the scene to remain stable during an extended
period and limits the possibility of continuous monitoring.

A possible solution to the resolution issue inherits from the Object-Based Image
Analysis (OBIA) class of techniques [12]. The classification procedure involves identifying
clusters of homogenous pixels, over which one can compute some features of interest.
While the usage of objects limits the smallest detectable target size, it allows the precise
tracking of the surface’s perimeters. It was shown to significantly improve the classification
accuracy for SAR data [9]. The similarity of pixels in a cluster also increases feature
estimation accuracy compared to a standard boxcar window [13]. If available, external data
can drive the division of a scene into clusters [14]. Otherwise, a data-driven approach must
be followed, i.e., segmentation [15–17].

The combination of SAR and optical data has proven advantageous by using the
complementary nature of data acquired by different sensors [18,19]. In particular, various
studies apply fusion techniques for urban land-cover mapping [20,21]. The fusion process
is classically performed by first geocoding the SAR images [22–25].

In this work, we propose a simple yet effective OBIA processing chain aimed to detect
human-made targets in a heterogeneous scene. The procedure is based on a fusion of
S1 and S2 for Urban Mapping (S1S2UM). The sensing period was kept to a minimum
(42 days) to facilitate the applicability in regions where land cover changes rapidly. It is
important to note that only one S2 image is needed, reducing the limitation of weather
conditions. The use of Sentinel data has been prioritized since the constellation provides
global monitoring, frequent revisit, and free and open access to the data. Moreover, in
the S1 case, the same acquisition geometry is repeated within a very tight orbital tube,
beneficial for robust monitoring.

SAR and optical data are exploited differently: we use the MS image to define the
surface’s geometry, identifying segments of pixels with similar land covers. Unsuper-
vised fuzzy classification is then applied to SAR features based on intensity, temporal
stability, and polarimetric context. The estimation of the features is performed in the na-
tive SAR resolution without any prior multi-looking, allowing to exploit all the available
independent looks.

While the building block of the method (superpixel segmentation, coherent and
amplitude SAR features, and fuzzy classification) have been well explored in literature,
the scheme proposed in the article is simple and straightforward and may provide an
appealing solution for updating urban land cover maps.

The paper is organized as follows: Section 2 presents the different SAR features used
in this study and provides a detailed account of the S1S2UM processing chain. Section 3
demonstrates the effectiveness of the method over different sites in Italy and Portugal.
Section 4 discusses the results, and highlighting the strengths and weaknesses of the
method. Section 5 draws final conclusions.

2. Materials and Methods
2.1. SAR Processing

Urban areas are generally complex in terms of scattering patterns, due to the high va-
riety of structures and materials; however, they can be generalized by a high concentration
of Permanent Scatterers (PS) [8]. Provided here are three measures that capture different
aspects of human-made targets, as observed by a SAR sensor over a short stack.

2.1.1. Temporal Stability

The level of repeatibility of the backscatter signal over time was widely explored for
the classification of urban targets [26,27]. A measure of stability of each pixel P of the
imaging product is provided by the complex coherence:
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γ(P) =
E(xn(P)x∗m(P))√

E
(
|xn(P)|2

)
E
(
|xm(P)|2

) , (1)

where * denotes the complex conjugate, xn, xm are the backscatter signals of two repeat-pass
images. The absolute value of the coherence |γ(P)| varies in [0, 1], where γ(P) = 1 indicates
no change at all, as in the case of human-made targets. Conversely, for target changing
with time, like vegetation, exponential temporal decorrelation can be modelled [28–30]:

γ(t) = e−
t
τ , (2)

where τ is the temporal decorrelation constant, which controls how fast the target loses
stability over time.

In areas covered by vegetation τ is usually in the order of days, since plant movement
and growth cause rapid change in the coherent combination of scatterers. Direct estimation
of τ was suggested as a method to quantify temporal stability [31]. The model in (2) is
a simplification, which does not take into account more complex mechanisms such as
long-term coherence [29], and short-term decorrelation [32]. Thus, the precise estimation
of τ requires a fine-tunned model, and might be strongly affected by noise. The average
coherence between successive pairs of images is also commonly used [6]; however, it may
lack in discriminative power, as shown in the example below.

Two types of targets are simulated in Figure 1a PS, and a target exhibiting temporal
decorrelation. A Monte Carlo simulation with 100 independent looks was performed to
obtain the empirical matrix. Observing only the coherence values between consecutive
images (the first off-diagonal) show high coherence values in both cases, potentially biasing
the classification. The example highlights the importance of using a measure capable of
capturing the structure of the entire coherence matrix.

Figure 1. Estimated coherence matrix: (a) Exponential decorrelation characterized by a decay time of
24 days. (b) PS with constant coherence of 0.8.

Multi-temporal analysis is often advantageous for increasing the robustness of charac-
terization, reducing sensitivity to abnormal disturbances [33]. We suggest using differential
entropy to quantify the temporal stability of a target. Entropy is an information theory quan-
tity associated with random variables. It is a measure of the uncertainty of the variable’s
possible outcomes. For a continuous random variable x with density f (x), the differential
entropy is defined by:

H(x) = −
∫

f (x) ln f (x)dx (3)
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The definition can be extended to a set of random variables. Let the vector of complex
random variable x = [x1, x1 . . . xN ]

T have a multivariate circular normal distribution with
covariance matrix Γ. The differential entropy has a closed-form solution in this case:

H(x) =
1
2

ln(|(2πe)Γ|). (4)

where |·| denotes the determinant operation. In the subsequent analysis, the covariance Γ
is normalized to obtain the coherence matrix C where the powers on the main diagonal are
forced to be unitary. The covariance matrix elements are correlation coefficients with an
absolute value between 0 and 1, allowing us to observe the structure of the temporal series
independently from power imbalances between images.

Assuming the model expressed in (2), it is easy to show that the determinant of C is
given by:

|C| =
(

1− e−
2∆t

τ

)N−1
. (5)

where ∆t is the temporal distance between two consecutive images, N is the total number
of images. Thus, the relation between the differential entropy and τ is given by:

H(x) =
1
2

ln
[
(2πe)N

]
+ ln

[(
1− e−

2∆t
τ

)N−1
]

(6)

Figure 2 shows the estimated differential entropy, computed over a stack of 8 real SAR
images in a mixed environment around Lainate, Italy. In order to estimate the distribution
functions for different land covers type, the publicly available regional database DUSAF-6
was used as ground truth. The database was obtained by interpretation of areal and high-
resolution satellite images and is updated to 2018 with 5 m resolution. As expected, the
pixels labeled as not-urban in the ground-truth show high entropy. The highest value is
determined by the first term in Equation (6), related to the degree of the matrix, i.e., the
number of images.

Figure 2. Differential entropy probability density estimation. Computed for a stack of 8 SAR images
with 6 days temporal baseline over Lainate, Italy. A spatial window of 25 × 5 samples was used.

To conclude, the differential entropy was chosen as an appropriate feature for clas-
sification due to its ability to highlight stable targets and the low computational burden
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(requires only an inversion of an N × N matrix, where N = 8 in this work). Even in the
presence of additional decorrelation mechanisms, which are not captured by the simplified
model in (2), differential entropy is still informative: when a target is stable, i.e., the images
are correlated, the entropy is expected to be low, since the knowledge of one outcome,
infers on the others.

2.1.2. Backscatter Intensity

Built-up areas are characterized by high intensity, mainly due to the double bounce
effects and speculate reflections from tilted roofs. The radar brightness β0 depends on
the angle between the ground normal and the sensor. Some of this dependency can be
rectified by performing normalization with respect to the local incidence angle θi, resulting
in sigma-nought σ0 [34]. A robust estimate can be obtained by the following processing [31]:

• Compute the intensity of each image n, by assuming local spatial stationarity over a
window ΩP:

Ĩn(P) =
1
M ∑

i∈ΩP

|x|2n(i) , (7)

where M is the number of pixels in ΩP.
• Compensate for the averaged local incidence angle:

σ̃0
n(P) = Ĩn(P) sin θi . (8)

The underline assumption is that the angle is locally constant. A calibration factor is
needed to get the absolute σ̃0

n, but is omitted here since the scaling is not crucial for
the classification.

• Average the series over time, to get a unique measure over the entire stack σ̃0(P).

The estimated distribution of σ̃0 is shown in Figure 3, where a clear difference is
noticeable between the two classes. As expected, the urban class is characterized by higher
backscatter coefficients.

Figure 3. Sigma nought probability density estimation for Lainate, Italy.
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2.1.3. Polarimetric Coherence

The expression in (1) can be used with two different polarization channels acquired
simultaneously, to obtain the polarimetric coherence [35]:

γVV−VH(P) =
E
(
xVV(P)x∗VH(P)

)√
E
(
|xVV(P)|2

)
E
(
|xVH(P)|2

) . (9)

VV and VH polarization are considered here, as S1 is a dual-pol mission. To increase
the robustness, an average in the direction of time is further computed.

Urban areas experience strong coherence between the co-pol and cross-pol polariza-
tions [36], since dihedral and trihedral scattering mechanisms generate a unique phase
pattern [37]. Theoretically, the phase between the two polarization channels can take two
unique values: 0 or π, leading to a polarimetric coherence of 1 or −1. The effect is some-
what attenuated by the rotation of the targets but is still significant compared to natural
surfaces, which are dominated by Distributed Targets (DS) targets and show a uniform
phase distribution. Figure 4 demonstrates the difference in the distribution of polarimetric
coherence (in absolute value) for the two classes. The distributions confirm that non-urban
targets tend to lower polarimetric coherence values.

Figure 4. Cross-pol coherence probability density estimation for Lainate, Italy.

2.2. S1S2UM Classifier

SAR backscatter signal is significantly different for human-made targets and natural
ones, as was shown in Section 2.1. However, the need to suppress speckle results in
averaging that prevents high resolution, especially considering the 5 m× 20 m S1 resolution.
Without prior knowledge of the scene, a boxcar filter is often adopted.

We propose replacing rectangle filters with a data-driven windowing scheme using
optical data. While producing a reliable LC map from MS data requires a stack of cloudless
images, which might be challenging to achieve, one image is sufficient for extracting a
precise map of the borders between different types of targets without the actual label.

The complete processing chain for the S1–S2 Urban Map (S1S2UM) production is
depicted in Figure 5. Combining the two sensor types in this work is complementary: one
S2 image is used to identify clusters of similar pixels. For each window, we extract a set of
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SAR features from an S1 stack. Finally, urban mapping is achieved in the framework of an
unsupervised classifier.

Figure 5. Flow chart of the proposed algorithm for urban mapping.

2.2.1. Superpixels Segmentation

Superpixels segmentation [38] divides pixels into small, homogeneous, compact, and
similarly sized groups. They capture redundancy in the image, up to a certain level of
detail. As opposed to other segmentation methods, superpixels do not try to capture the
entire object; rather, they almost always result in an over-segmentation.

Simple Linear Iterative Clustering (SLIC) [39] is a popular algorithm out of the super-
pixels family. It is based on a gradient descent approach, starting from a poor segmentation
(usually square), and iteratively relabels the pixels to optimize the objective function. Clus-
ters are generated based on their color similarity and proximity in the image plane. In this
work, the MATLAB implementation of the SLIC algorithm was used, which takes as input
three color channels.

We applied SLIC superpixels to an S2 optical image, exploiting the algorithm’s ability
to generate segments that follow shapes in the image, yet are relatively homogeneous in
size. The latter guarantees that a similar number of pixels are used to compute SAR-based
features, which is important for handling noise and bias in coherence estimation.

Three parameters can tune the performance: Initial spatial interval between segments
(S), compactness (m), and the choice of S2 bands. The first two control the shape of the
segment, while the latter relates to the ability to distinguish between objects. Calibration of
the parameters was performed to analyze the maximal achievable accuracy using a test site
around Lainate, Italy. For each tested configuration, we determine the label of a segment by
the mode label of its pixels, according to the ground truth data (DUSAF-6). The resulting
accuracy simulates the performance of an ideal classifier. An evaluation of the accuracy for
different values of the spatial interval and the compactness is shown in Figure 6. Values of
S = 70 m and m = 20 were chosen as a trade-off between segment size and accuracy. The
choice of S2 bands is based on empirical experiments, which showed superior performance
using the Green-Blue-NIR high-resolution channels.

Finally, an example of the segmentation results is shown in Figure 7. It is noticeable
how detailed features, such as roads, are preserved, while coarse segments are sufficient to
describe continues surfaces, such as fields.
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Figure 6. Segmentation accuracy as function of the two parameters to be tuned: compactness (m)
and spatial interval (S).

Figure 7. Superpixels segmentation, demonstrated in a 4 km × 3 km site in Lainate, Italy. (a) S2 RGB
reference (b) Average RGB values for the segmented image.

2.2.2. Projection to Range-Azimuth

The joint exploitation of the optical segment map and the SAR stack requires moving
to a common coordinate system.

Geocoding is the transformation between coordinates of the imaging system (range-
azimuth) and orthonormal map coordinates [40]. The inverse operation, transforming map
coordinates into SAR coordinates, is known as forward-geocoding. For each pixel in the
range-azimuth domain, a corresponding position in the map projection is computed.

After performing the optical image segmentation, a map of indexes defines the rela-
tion between pixels and segments. We project the map into the range-azimuth domain
(defined by the master image of the SAR stack). One can achieve the projection by forward-
geocoding or by interpolation of the geocoding indexes.

We performed the segmentation in the S2 native resolution (10 m) and only then
projected the segment map to the grid defined by the SAR acquisition (2.3 m × 14.1 m).
The result is a Look-Up Table (LUT), mapping between segment index in the geocoded
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domain and a set of indices in the SAR geometry. The operation allows achieving maximal
segmentation accuracy while performing SAR feature estimation without prior multi-
looking and resampling. Since both ascending and descending acquisitions are utilized,
the process is repeated for each geometry.

Notice that once the segments in the range-azimuth domain are classified, no further
geocoding is required. The transformation to latitude–longitude is easily achieved by
inverting the LUT.

2.2.3. SAR Features Extraction

Three SAR-based features were discussed in Section 2.1: differential entropy, sigma-
nought, and polarimetric coherence. Instead of using a boxcar window, the features are
computed for each cluster of pixels identified in the segmentation process.

The advantage of an OBIA approach is in the preservation of the scene’s details
since the averaging window is determined by an optical image that is not affected by
speckle. The result is demonstrated in Figure 8, where the shapes of buildings and roads
are well distinguishable.

Figure 8. SAR features example, using the segmentation scheme. (a) S2 reference image (b) Differen-
tial entropy (c) Sigma naught (d) Polarimetric Coherence.

SAR data contain inherent geometric distortions, i.e., layover and shadow effects,
which can impact the ability to capture a given LC accurately. Additionally, human-made
targets tend to be oriented and distributed randomely, affecting the double bounce effect
detection. Having two stacks, taken from different orbit directions (i.e., ascending and
descending), provides two lines of sight and can help mitigate the problem.

2.2.4. Classifier

Fuzzy C-Mean (FCM) [41] is an unsupervised process for grouping a dataset in c
clusters in a way that maximizes the similarity between data within a cluster, accounting
for the fact that boundaries between natural classes may be overlapping. The algorithm
randomly initializes a set of c centroids and iteratively updates a membership matrix,
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describing the degree of association of the ith sample to the jth cluster. The procedure
minimizes the following objective function:

J =
c

∑
j=1

N

∑
i=1

µijdij , (10)

where N is the total number of samples, dij is the euclidian distance between a sample and
the centroid. The membership function is computed according to:

µij =
1

∑c
k=1

( dij
dik

) 2
m−1

, (11)

being m a scalar (m > 1), which controls the fuzziness of the resulting clusters. m = 2 was
suggested as an optimal value [42] when no prior knowledge is available and was adopted
in this work.

FCM is widely used for geospatial problems [43,44] due to the overlapping nature
of remote-sensing data. A soft classification approach allows to perform further post-
processing and to highlight different aspects in the final result. The fact that no training
data are required is of great interest for land cover applications, as reliable ground truth
data are usually unavailable.

In the context of this work, a fuzzy approach was selected as appropriate due to the
limits of resolution of both S1 and S2 sensors. The segmentation of the optical image
was tuned to obtain segments that are large enough to facilitate robust estimation of SAR
features. While the majority of pixels in a segment are expected to belong to the same land
cover type, some mixture is inevitable. Fuzzy logic allows postponing the hard thresholding
to a later stage, which might be application dependant.

FCM with two clusters was used (c = 2). Since the eucleadian distance is computed
as a measure of similarity, the features must be provided at a common scale. We used all
features to have a zero median and interquartile range of one.

Minimal ground truth is needed for class identification, i.e., correctly relating the
membership score to the urban/non-urban class. We used as before that the urban class is
the minority label in the sites we tested.

3. Case Studies

This section demonstrates the generation of urban LC maps using the S1S2UM work-
flow. Preliminary results are provided for a site around Lainate, Italy, showing the effec-
tiveness of S1S2UM to accurately delineate the boundaries between land covers. Further
assessment of performance was performed over two sites in Portugal, comparing the results
with published datasets.

3.1. Lainate, Italy

The generation of the urban extent for a 13 km × 11 km site around Lainate (north
Italy) is shown in this section (see Figure 9). Two stacks of 8 Sentinel-1 IW images were
retrieved from ascending and descending orbits (see Table 1). Each stack is coregistered
to its unique master. Furthermore, a cloudless optical image is needed for segmentation
purposes. We used an S2 level 2A image with low reported cloud coverage (<2%), and no
further cloud masking was performed.

The fuzzy classification results are shown in Figure 9, where buildings are clearly
marked by high membership values. As expected, forests and agriculture areas are denoted
by low levels of membership values. The unsupervised classifier results in moderate to low
values for some roads and concrete surfaces, which will be discussed in Section 4. Detailed
examples of the classification are provided in Figure 10. The outlines of building clusters
are well portraited by S1S2UM as a consequence of the superpixels segmentation.
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Figure 9. Lainate (north Italy) 13 km × 11 km test site. (a) Sentinel-2 RGB image. (b) FCM classifica-
tion results. The color scale quantifies the level of membership to the urban class. Note that the value
is continoues in the range (0,1) where red: urban, yellow: non-urban.

Table 1. Remote sensing data used for the Lainate test site.

Site Sentinel-1 Ascending Sentinel-1 Descending Sentinel-2

Lainate

11-04-2018 30-04-2018 22-04-2018
17-04-2018 06-05-2018
23-04-2018 12-05-2018
29-04-2018 18-05-2018
05-05-2018 24-05-2018
11-05-2018 30-05-2018
17-05-2018 05-06-2018
23-05-2018 11-06-2018

3.2. Braga and Coimbra, Portugal

Two sites in Portugal are used for performance evaluation. The areas are located
around the cities of Braga and Coimbra (see Figure 11) and were chosen since they exhibit
diverse types of land covers, such as cities, sparse villages, agriculture fields, and bare
soil. The presence of complex topography causes distortions in geometry and amplitude of
the acquired image, which need to be treated carefully to obtain correct results. The two
datasets are reported Table 2.

Figure 12 shows the results of the Fuzzy classification of urban areas using the pro-
posed fusion of SAR and optical data. The color denotes the degree of membership of each
pixel to the urban class.

In the absence of a reliable ground truth layer, the results are compared with two
state-of-the-art single-source approaches that exclusively use one type of sensor: Sentinel-2
Global Land Cover (S2GLC) and Global Urban Footprint (GUF).

S2GLC is a 10 m LC map for the year 2017 over Europe, generated using S2 data
only [45]. It is published on the CREODIAS platform, and the relevant tile was downloaded
for the sake of the analysis presented here. The method is based on pixel-wise random
forest classification and requires nineteen cloudless images for a given area, collected over
an entire year. In some cases, it is reported that weather conditions are too harsh, and the
selection criteria could not be met. The published map contains thirteen land cover types
made possible by the multi-spectral capabilities of S2. The authors used existing datasets
with lower resolutions (20 m) for training and testing and achieved 86.1% Overall Accuracy
(OA) on a continental scale.
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Figure 10. Lainate classification results, demonstrated for 2 km × 2 km sections. (a,c,e): S2 reference.
(b,d,f): S1S2UM fuzzy classification result, where red: urban pixels, yellow: non-urban pixels.

Figure 11. Portugal test sites. (a) Used polygons around the cities of Braga (top rectangle) and
Coimbra (bottom rectangle) with a Google Earth background. (b) S2 image of the Braga site. (c) S2
image of the Coimbra site.
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Table 2. Remote sensing data used for Portugal test sites.

Site Sentinel-1 Ascending Sentinel-1 Descending Sentinel-2

Braga

02-05-2017 01-05-2017 28-04-2017
08-05-2017 07-05-2017
14-05-2017 13-05-2017
20-05-2017 19-05-2017
26-05-2017 25-05-2017
01-06-2017 31-05-2017
07-06-2017 06-06-2017
13-06-2017 12-06-2017

Coimbra

27-03-2017 20-04-2017 04-06-2017
02-04-2017 26-03-2017
08-04-2017 01-04-2017
14-04-2017 07-04-2017
20-04-2017 13-04-2017
26-04-2017 19-04-2017
02-05-2017 25-04-2017
08-05-2017 01-05-2017

1 
 

  
(a) (b) 

 
 
 
 
 

 

  
(c) (d) 

 

1 
 

  
(a) (b) 

 
 
 
 
 

 

  
(c) (d) 

 
Figure 12. FCM classification results for Braga (a) and Coimbra (c). Color scale quantifies the
membership level of each segment to the urban class, where red: urban pixels, yellow: non-urban
pixels. (b,d): S2GLC reference binary map where white: urban pixels, black: non-urban pixels.

GUF is a binary settlement map derived from high-resolution SAR missions [46].
It is globally available by request from the German Aerospace Center (DLR). A stack of
TanDEM-X and TerraSAR-X X-band images (3 m resolution) from 2011 to 2012 was utilized
to classify amplitude and speckle divergence, where pixels exhibiting high values for both
features were denoted as urban. Post-processing was performed with reference layers for
false alarm removal and threshold tunning, with a reported OA of around 85%. The final
result was published in a 12 m resolution, and we resampled it to match the 10 m grid of S2.
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In order to obtain a binary urban map, the fuzzy membership values were thresholded,
with an empirical threshold of 0.6. However, the value might be application dependant
and can be tuned using existing low-resolution ground truth. A statistical comparison
between S1S2UM and the two reference works is provided in the form of a confusion
matrix (Table 3), reporting the agreements between the methods on a pixel level. A visual
demonstration of the differences between the approaches is given in Figure 13.

Table 3. Portugal classification confusion matrix and quantitative analysis.

Predicted S2GLC GUF

urban non-urban urban non-urban
Coimbra urban 431759 249052 521543 159268

non-urban 307615 10049594 524730 9832479
OA 94.96% 93.80%

K-coefficient 58.11% 57.20%

Braga urban 954600 428575 1060100 323075
non-urban 510838 7541182 851409 7200611

OA 90.04% 87.5%
K-coefficient 61.16% 57.05%

Figure 13. Comparison with state-of-the-art techniques for Coimbra (a,b) and Braga (c,d). Green:
pixels detected as urban by S1S2UM and the reference methods, S2GLC (a,c) and GUF (b,d). Blue:
pixels detected only by S1S2UM. Red: pixels detected only by the reference method.

3.3. Updating Urban LC Maps

Many techniques were developed to generate accurate urban land cover maps; how-
ever, they usually require a long sensing period and complex processing. Thus, published
maps are usually available at a given time instance. Many areas of the world exhibit rapid
growth, raising the need to generate frequent updates to LC maps.

An additional dataset was collected for the Braga test site from the spring of 2020
to illustrate the applicability of S1S2UM for the delineation of new urban targets. The
qualitative changes between the periods can be appreciated in Figure 14.
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Figure 14. Examples of urban areas borders for two different periods (left: 2017, right: 2020).

4. Discussion

Looking at Figure 12, it is visible that the urban centers are well highlighted by high
membership values. Due to the fuzzy nature of the classification, it is noticeable that areas
covered by bare soil exhibit moderate membership levels, due to their high coherence (see
right side of Figure 12c). Nevertheless, the values are well distinguished from those of real
urban targets, and thus a threshold can be applied to exclude them.

The comparison between S1S2UM and S2GLC suggests a significant statistical corre-
lation (average K-coefficient of around 60%) between the two methods. However, some
differences are noticeable and can be appreciated from Figure 13a,c. S2GLC was generated
in a pixel-wise fashion and so is theoretically able to detect very small targets (10 m). On
the contrary, S1S2UM is an object-based approach that limits the size of the smallest detail.
Since SAR data are used for the thematic interpretation, object size was kept relatively large
to avoid coherent estimation over a small number of looks, which is prone to bias.

The SAR features of S1S2UM are tuned to detect high concentrations of permanent
scatterers and stable targets. Roads are narrow surfaces without any double-bounce
scattering mechanisms (usually) and are surrounded by decorrelating targets, causing
difficulties in their classification. S2GLC uses spectral signatures and is superior in terms
of road identification.

A sizable discrepancy is visible in the left side of Figure 13c, where a large red area
suggests a missed detection. However, a visual check was performed, and agriculture fields
cover the zone, so S1S2UM is correct as labeling the site as non-urban. In general, manual
inspection suggests that the two maps provide complementary information in many cases,
and the actual precision/recall might be higher than reported. Thanks to the object-based
approach, the coarser resolution of the SAR sensor (20 m × 5 m) is sufficient to provide a
result comparable to the S2 LC, which is processed with a 10 m resolution. The result is
especially impressive considering the long sensing period required by S2GLC (around a
year), compared to less than two months for the method suggested here.

Regarding the comparison with GUF, both methods are SAR-based, thus suffering
from similar problems related to the need of spatial/temporal averaging. However, lower
accuracies and K-coefficients were noted with respect to the comparison with S2GLC.
Observing Figure 13b,d it appears that GUF tends to overfit urban areas, extending their
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edges further than needed. Perhaps the effect is the result of the texture analysis or the
post-processing steps. In this work, we used data from 2017, while GUF is updated to 2012.
Thus, it is reasonable that some new targets are recognized only by S1S2UM (clusters of
blue pixels), decreasing the actual precision.

The qualitative examples in Figure 14 demonstrate the ability to generate up-to-date
urban maps. The border between the urban and non-urban land covers is clearly extended
in 2020 to include the new buildings. Many changes are not easily interpretable due to the
limited pixel size of S2 and should be investigated with high-resolution data. The task is
left to be performed in further work.

5. Conclusions

In this paper, we exploit the potential of combining SAR and MS data in the context
of an OBIA classification for urban map generation. A simple processing chain was
established, gaining from the difference in the nature of the two data sources. The geometric
segment definition is obtained from an optical image with the help of superpixels which
are robust, effective, and easy to employ. The physical characteristics of targets are deduced
from a set of SAR features selected for their efficiency over short stacks. Three features
were found that were enough to obtain promising results: differential entropy, sigma
nought, and polarimetric coherence. An unsupervised FCM classifier is then employed
to translate the features into urban membership level. The result is thresholded to obtain
binary classification.

Efficiency is gained by exploiting superpixels to reduce the number of samples from
pixels to segments. Additionally, the selected set of features are very simple for computation;
innovative utilization of the differential entropy allows a robust quantification of the level
of stability, with the low cost of calculating a determinant of an N × N matrix (being N
the number of SAR images used for the processing). The simple implementation and the
short sensing period can allow users to produce urban maps regularly, tracking changes in
developing regions.

S1S2UM requires only one MS image over the entire period, which strongly minimizes
limitations related to cloud coverage and unfavorable weather. Illumination conditions
are also not a significant concern of this technique, as the MS bands are used for segmenta-
tion only.

Obtaining suitable high-resolution labeled data is unfeasible in most parts of the world.
The unsupervised classification fashion chosen for this work means no training dataset is
used, making the proposed solution applicable worldwide.

The methodology was tested with S1 and S2 data over two sites in Portugal. Two
reference works were compared, one based on S2 pixels-wise classification, and the other
exploits high-resolution SAR sensors and texture analysis. An overall accuracy between
88% and 95% was achieved, also in the presence of irregular topography. The comparison
showed significant statistical similarity between the result, especially encouraging due to
the much shorter sensing period used in this work. Less than two months of data, with a
regular sampling period of six days, are sufficient for the results presented here.

Following this work, further investigation should be performed on the possibility
of increasing the number of observed labels. Additionally, improving segmentation by
introducing optical images with finer resolution should be better explored. Finally, the
processing of large-scale terrains can be established.
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