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Abstract: With the rapid modernization, many remote-sensing sensors were developed for classifying
urban land and environmental monitoring. Multispectral LiDAR, which serves as a new technology,
has exhibited potential in remote-sensing monitoring due to the synchronous acquisition of three-
dimension point cloud and spectral information. This study confirmed the potential of multispectral
LiDAR for complex urban land cover classification through three comparative methods. Firstly,
the Optech Titan LiDAR point cloud was pre-processed and ground filtered. Then, three methods
were analyzed: (1) Channel 1, based on Titan data to simulate the classification of a single-band
LiDAR; (2) three-channel information and the digital surface model (DSM); and (3) three-channel
information and DSM combined with the calculated three normalized difference vegetation indices
(NDVIs) for urban land classification. A decision tree was subsequently used in classification based
on the combination of intensity information, elevation information, and spectral information. The
overall classification accuracies of the point cloud using the single-channel classification and the
multispectral LiDAR were 64.66% and 93.82%, respectively. The results show that multispectral
LiDAR has excellent potential for classifying land use in complex urban areas due to the availability
of spectral information and that the addition of elevation information to the classification process
could boost classification accuracy.

Keywords: multispectral LiDAR; point cloud classification; land use classification; Optech Titan;
NDVI; decision tree

1. Introduction

Urban land use classification is an essential component of land planning and national
monitoring. Remote sensing has the characteristics of timeliness, periodicity, and a wide
range, which makes it an essential tool for classifying urban land use types. In general, hy-
perspectral resolution images are utilized in land-use classification. Although the results are
satisfactory [1,2], the lack of three-dimensional (3D) information in hyperspectral images
makes 3D urban land use classification difficult. Consequently, the 3D point cloud-based
LiDAR classification method is widely used in urban land-use classification due to its
high accuracy and convenience advantages. Similar to the development of passive optical
remote sensing, the development of LiDAR has also gone through a single wavelength–
multispectral–hyperspectral development phase [3]. Among them, multispectral LiDAR is
the most widely used and shows excellent potential for the application of complex urban
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land monitoring. Compared to single-band LiDAR for urban land-use classification, Multi-
spectral LiDAR systems can acquire high-density multispectral point clouds by emitting
laser pulses of different wavelengths. It has become a commonly used source of data for
3D land-use classification [4]. Airborne LiDAR is an aircraft-mounted laser detection and
ranging system that measures the 3D coordinates of objects on the ground [5]. LiDAR offers
easy access to high-resolution data; therefore, it is widely used in resource exploration [6–8],
urban planning [9,10], agricultural development [11,12], land use [13,14], and environ-
mental monitoring [15–18], etc. LiDAR land-use classification methods can be divided
into two-dimensional (2D) based image classifications and 3D point cloud classifications.
The 2D image-based methods tend to take the intensity information and echo information
from the LiDAR and to rasterize them into a 2D image for classification. This method is
often suitable for using in large-scale land-use classification. Li et al. [19] proposed an
object-oriented land-cover classification method based on SVM with multiple data fusion,
which uses aerial images and LiDAR data to link the raster and vector analysis domains.
The LiDAR-derived digital surface model (DSM) information can be obtained with higher
accuracy. In particular, object-oriented SVM classification has been shown to be correct in
effectively identifying various shadows. Wang et al. [20] used an object-oriented classifi-
cation approach, using multispectral images as the primary data source and LiDAR DSM
as auxiliary data for urban land-use classification. With an overall accuracy of 90.7%, the
study pointed out that the combination of LiDAR height and intensity data could accurately
map urban land cover. This 2D image-based method is usually accurate and less costly for
image classification. However, this method is more expensive for large areas of LiDAR and
loses accuracy when the data is downscaled [21]. The 3D spatially based classification is
similar to pixel-based classification for individual 3D point clouds; this method refines the
spatial information. Dai et al. [22] used a mean drift segmentation method to classify tree
species in different feature spaces. Ten sample plots from a dense coniferous forest area in
Tobermory, Ontario, Canada, were selected as experimental data. The results demonstrated
that the accuracy is 88% and 82% with and without multispectral information, respectively.
Compared to segmentation using geometric spatial information alone, clustered tree seg-
mentation has significant multispectral characteristics. Ekhtari et al. [23] used the Titan
multispectral LiDAR dataset to classify point clouds into ten different land-cover classes by
using the laser return intensity and a spatial metric calculated from the 3D position of the
laser returns. A rule-based classifier was used to classify the multiple return points with an
overall accuracy of 79.7%. The results showed that this algorithm outperforms the usual
point cloud rasterization method. However, this 3D point cloud-based classification comes
at the cost of increased complexity and computational burden.

Initially, for airborne LiDAR classification, many classification methods are based
on the single-band intensity data combined with digital surface model (DSM) [24,25].
Charaniya et al. [26] used the Gaussian mixture model algorithm for classification. LiDAR
data combined with DSM data were classified into roads, grass, buildings, and trees.
However, there existed outliers in the classification due to the LiDAR receiver noise. Thus,
the accuracy of classification ranged from 66% to 84%. Lodha et al. [27] used the support
vector machine (SVM) algorithm to classify the study area into buildings, trees, roads, and
grassland through five features: height, height variation, normal vector variation, LiDAR
return intensity, and image intensity. This method achieved an accuracy of better than
90%. In this way, it was demonstrated that elevation information is essential in LiDAR
point cloud classification. However, previous classification methods relied on elevation
information without spectral information, which resulted in the dissatisfactory results for
the classification between roads and grasslands due to the features of similar elevation.
Antonarakis et al. [28] used intensity and elevation information in the classification by
interpolating a triangulated irregular network (TIN) from point cloud data. This method
achieved an accuracy of 86.8% for the woodland classification. But these classification
methods are essentially still processing 2D image data, which often loses the advantages of
LiDAR when compared to classification using hyperspectral imagery. Such point cloud-
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based methods of interpolating intensity and elevation information into 2D images often
result in biased land-use classification in complex landscapes because of mixed image
elements in the rasters. Despite the desirable accuracy of these classification methods, the
classification techniques become complex and confounding as the dimensionality of the
LiDAR waveform data features increase [5].

In later 3D-based point cloud classifications, the intensity information from LiDAR
point clouds was primarily used with elevation information for classification. LiDAR
data were applied by Bretar et al. to classify desert terrain into bare soil, roads, rock,
and vegetation with an accuracy of about 80%. This study also introduced image-based
radiation combined with LiDAR features in the classification to improve the accuracy of the
classification. However, this classification method still lacks spectral information, which
resulted in difficulty with accurately classifying vegetation-covered areas. To compensate
for the lack of elevation information from single-band LiDAR, hyperspectral remote-sensing
imagery combined with LiDAR for classification was proposed. Singh et al. [29] used the
combination of LiDAR data with Landsat Thematic Mapper (TM) imagery for target
classification. LiDAR-TM merged data was used to classify land use in urban areas. The
results displayed a 32% increase in total classification accuracy using 1 m LiDAR -TM fused
data, compared with LiDAR alone. This fused spectral information improved classification
recognition between forests and farmlands. Onojeghuo et al. [30] fused QuickBird image
data with LiDAR data and assembled an object-based machine learning classifier for
applying in habitat land-use classification. The method achieved a classification accuracy
of 92.6% for the fused data. However, these studies have converted 3D LiDAR data into
2D images for classification. This processing method is essentially a data downscaling
and will lead to information loss. Moreover, because of the complexity of point cloud
and image alignment, it can be more challenging to carry out land-use work in complex
urban areas. Both elevation and spectral information are vital for target classification.
Thus, multispectral LiDAR sensors, which acquire data among different wavelengths, have
emerged. This advance allows for the recording of the diversity of spectral reflectance from
objects [21].

Multispectral LiDAR avoids errors arising from the alignment of laser point clouds
with hyperspectral images. Many researchers have designed different multispectral LiDAR
sensors in the past. Gong et al. [31] developed a multispectral LiDAR system for vegetation
remote-sensing classification monitoring based on four wavelengths: 556 nm, 670 nm,
700 nm, and 780 nm. The system uses four different laser light wavelengths to induce
changes of the optical properties and spectral reflectance in rice leaves in response to
nitrogen stress. This multispectral lidar system improves the classification accuracy of
similarly structured vegetation canopies. The potential of using multi-wavelength lidar
in the spectral analysis is demonstrated. Using a multispectral lidar system containing
556 nm, 670 nm, 700 nm, and 780 nm, Sun et al. [32] obtained reflectance and normal
vectors at four wavelengths to classify different targets. The overall accuracy was 85.5%.
The classification resulting from the support vector machine demonstrated great potential
for land-use classification and vegetation monitoring. Hakala et al. [33] developed an
eight-channel (542 nm, 606 nm, 672 nm, 707 nm, 740 nm, 775 nm, 878 nm, and 981 nm)
full-waveform LiDAR system and used it to measure multispectral point cloud data of
Norway spruce. The LiDAR system can be used to visualize and automatically classify
point clouds. It can be used to effectively study the 3D distribution of the chlorophyll
or water concentration in vegetation. There is potential to improve the classification
and interpretation efficiency compared to conventional monochrome LiDAR data. The
Optech Titan has produced a multispectral airborne LiDAR sensor with three separate
bands, 1550 nm, 1064 nm, and 532 nm, and has the capability to acquire multispectral
LiDAR point clouds all time. The dataset is used for a wide range of applications, such as
urban land-use classification [4,21,34], water/land shoreline extraction [35], and forest tree
species identification [36]. In this context, we aim to assess the potential of multispectral
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LiDAR for land-use classification within complex urban areas by using a supervised
classification approach.

The main contributions of this research are as follows: (1) A comparison based on
multispectral LiDAR in the classification of complex urban areas is made to illustrate the
advantages of multispectral LiDAR. (2) An analysis of the calculation of three normalized
difference vegetation index (NDVIs) based on Titan multispectral LiDAR data in terms of
the classification of land-use types with the similar spatial characteristics.

2. Materials
2.1. Multispectral LiDAR Data Acquisition

The airborne three-wavelength LiDAR, Optech Titan, provides multispectral informa-
tion and has been successfully used in land classification and change detection, forestry
biochemical parameters, bathymetry, and historical monument measurements. Titan is a
single sensor with three active lasers of 532 nm (green), 1064 nm (NIR) and 1550 nm (MIR).
Each beam is sampled at 300 kHz. However, it is to be noted that the Titan is not strictly
a multispectral LiDAR, as the laser beams of its three channels are dispersed rather than
being a single laser beam. Its specific parameters are shown in Table 1.

Table 1. Optech Titan performance specifications.

Parameters Channel 1 Channel 2 Channel 3

Wavelength 1550 nm MIR 1064 nm NIR 532 nm Green
Beam divergence 0.35 mrad(1/e) 0.35 mrad(1/e) 0.70 mrad(1/e)

Look angle 3.5◦ forward nadir 7.0◦ forward
Effective PRF 50–300 kHZ 50–300 kHZ 50–300 kHZ

Operating altitudes Topographic: 300–2000 m AGL, all channels
Bathymetric: 300–600 m AGL, 532 nm

Scan angle (FOV) Programmable; 0–60◦ maxium

Intensity capture Up to 4 range measurements for each pulse, including last 12 bit
dynamic measurement and date range

The study area is located on the University of Houston campus and its surrounding
areas in the USA. The Optech Titan MW (14SEN/CON340) LiDAR sensor was used to
acquire data during a flight mission on 16 February 2017. The flight plan parameters for
Optech Titan are flying height: 500 m AGL, swath width: 445 m, overlap: 50%, and line
spacing: 225 m. The equipment parameters are PRF: 175 kHz per channel (525 kHz total),
scan frequency: 25 Hz, scan angle: ±26◦, ±2◦ cut-off at processing. The acquired data are
presented in LASer file format (LAS). The study area was rasterized from the Titan data,
and the airborne image of the study area is shown in Figure 1.

The study area has an area size of 520 m × 520 m and has 4,436,481 point clouds,
which are a subset of the acquired LiDAR dataset. The main land-use features in the study
area are buildings, roads, paved parking lots, unpaved parking lots, shrubs, grass, vehicle,
power lines, and impermeable surface. In this study, we focus on classifying roads, grass,
buildings, trees, cars, and power lines from a complex urban environment. The number of
multispectral point clouds corresponding to these features is shown in Table 2.

Table 2. Reference points for the six classes.

Class Road Grass Building Tree Car Power Line Total

Number of Points 1,276,608 1,608,238 604,086 789,220 95,109 63,220 4,436,481
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Figure 1. Airborne image of the study area.

2.2. Multispectral LiDAR Data Processing

As the laser beams of channels C1 and C3 were tilted +3.5 and +7 degrees towards
the nadir during the Titan data acquisition [37], not every point cloud in the Titan dataset
has three channels of intensity data. In order to ensure the accuracy of the point cloud
data, missing values without intensity information in the point cloud were removed. The
point cloud intensity information from three separate channels is merged into one point
cloud. Wichmann et al. [37] proposed a method for geometrically merging each point
using its nearest neighbor intensity values in the channel point cloud, searching for the
maximum distance between that point and the neighboring points and processing the data
according to a distance threshold. This method allows three channels of intensity data for
each point cloud in the processed point cloud. However, it may result in incorrect matches
between points.

Another data-processing method is to, firstly, retain all point clouds from the three
channels, and then to allocate the intensity information from the other channels to a single
wavelength point cloud based on the hypothesis that there is a correlation between the
spectral intensities of neighboring points [38]. For the point cloud data in one channel,
five-point clouds in another channel are searched in a nearest-neighbor search, and then
the spectral information of the point cloud in that channel is allocated using an inverse
distance-weighted interpolation method. Finally, multispectral point cloud data with three-
channel values would be obtained. Similarly, the method described above was refined in
this study due to the different number of point clouds for the three channels of Titan data in
the study area. Using the point cloud of channel 1 as a reference, the five-point clouds of the
two nearest neighboring channels of each point cloud were searched to remove neighboring
points at a distance greater than 1 m. The inverse distance-weighted interpolation method
was then used to assign the point cloud of channel 1 based on the spectral intensity of the
point clouds of channels 2 and 3 and to remove point clouds with no adjacent points within
1 m. This results in data containing three-channel values per point cloud and ensures
the invariant number of point clouds in channel 1 before and after data processing. The
processed reference multispectral data is shown in Figure 2.
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3. Methods

The flow chart of classification is shown in Figure 3. The experiment classified the land
cover of the study area into six classes: roads, grass, buildings, trees, cars, and power lines.
A 3D point cloud-based feature method is used for the classification. The method involves
filtering the point cloud after data pre-processing to split the point cloud in the study area
into the ground and non-ground points. The land-use classes for the ground points include
roads (impervious surfaces, such as car parks and concrete, are also classified as roads)
and grass, while the land-use classes for the non-ground points contain buildings, trees
(plants, such as shrubs, are classified as trees), cars, and power lines. Feature vectors, such
as DSM and NDVI values for the study area, are obtained from the point clouds’ elevation
information and intensity information. These feature vectors are classified using a decision
tree supervised classification method. Three types of classification strategies are discussed
in this study: Channel 1 of the multispectral LiDAR Titan is used to simulate single-band
LiDAR data; Titan 3-channel data with DSM data from the study area; and Titan 3-channel
data with DSM and NDVI data from the study area. Three different types of data are used
to illustrate the potential of multispectral LiDAR for classification in complex urban areas.
Finally, the classification results are evaluated based on the validation set. A confusion
matrix is taken to measure the accuracy of the classification, and the overall accuracy and
Kappa coefficient [39] are used to evaluate the accuracy of the classification. The detailed
methodology is described in the following section.

3.1. Point Cloud Filtering

Point cloud filtering aims to divide the data into ground and non-ground points.
There are several point cloud filtering algorithms, including slope-based methods [40],
mathematical morphological filtering-based methods [41], and progressive encrypted
triangular network TIN-based methods [42]. However, most of these algorithms are
complex in parameter settings, and also too redundant for the flatter urban study area. In
this experiment, the complex urban point cloud is divided into ground and non-ground
points using a cloth simulation filter (CSF) algorithm [43] based on the cloth simulation of
physical processes. While most traditional filtering algorithms take into account differences
in slope or elevation changes to distinguish between ground and non-ground points, the
‘cloth’ filtering algorithm takes a relatively innovative approach to filtering by first flipping
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the point cloud and then assuming that a piece of cloth falls from above by gravity; the
final cloth that falls is representative of the current digital surface model.
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3.2. Produce DSM

DSM is a ground elevation model that demonstrates buildings, bridges, and trees
on the land surface. DSM generation for our study area is interpolated using the in-
verse distance-weighting algorithm and the natural neighborhood algorithm. The inverse
distance-weighting algorithm is used for the image element assignment method. This
method is centered on the point to be interpolated for point cloud data. Discrete points are
selected in appropriate local areas, and the elevation of the point p to be interpolated is
settled using a weighted average [44]. The distance factor assigns weights to the discrete
observations adjacent to the interpolated points according to their distance and the direc-
tion in the case of anisotropy. This is advantageous for generating DSMs by interpolating
elevations from point clouds over large areas in complex urban areas [45].

Natural neighbor interpolation [46] is used to fill in the no data values for vacant val-
ues on the interpolated surface. This method interpolates by finding the nearest incoming
sample set of the points interpolated and applying weights to these samples in proportion
to the region’s size. Natural neighborhood interpolation is an interpolation method that
limits the calculation of weights to the nearest range. The fundamental property of this
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interpolation algorithm is that it is local using only a subset of samples around the query
point and ensuring that the interpolation height does not exceed the maximum height
within the sample subset, providing good inheritance performance for local data character-
istics, but making it difficult to take into account global data. Therefore, the method is used
in experiments to perform interpolation operations on local vacancy values.

3.3. NDVI Calculation

The two feature classes, vegetation and buildings, differ in NIR and green; other
differences in reflected energy in the NIR and green bands are distinguishable. Therefore, it
is possible to distinguish between the different features based on the spectral characteristics
of the Titan multispectral LiDAR data. The features can be classified according to their
spectral characteristics in the Titan multispectral LiDAR data. Then, NDVI quantifies
vegetation by measuring the difference between near-infrared (strong vegetation reflection)
and red light (vegetation absorption). As Titan data are available in 1550 nm, 1064 nm, and
532 nm, NDVI values based on these three bands were calculated for classification [21,47].

NDVINIR−MIR =
NIR − MIR
NIR + MIR

(1)

NDVINIR−G =
NIR − G
NIR + G

(2)

NDVIMIR−G =
MIR − G
MIR + G

(3)

where MIR, NIR, and G represent the intensity values for Titan data channel 1, channel 2,
and channel 3, respectively. The point cloud data is pre-processed so that each point cloud
has a corresponding three NDVI values.

3.4. Feature Combination

After pre-processing the generated point cloud data, generating DSM, and calculating
NDVI, the processing flow turns into merging point cloud feature vectors. The 1550 nm,
1064 nm, and 532 nm bands are acquired by Titan data. The reflectance of vegetation is
stronger in the 1064 nm NIR band and lower in the green band at 532 nm, 1550 nm, and
1064 nm bands can be easily distinguished from the road to vegetation. The three-channel
values of the Titan data are therefore used as intensity information—the generated DSM as
the elevation information and the three calculated NDVIs as the spectral information are
combined into a feature vector for classification. The combined eigenvectors for the three
methods are shown below:

[
Channel 1

DSM

]
Channel 1
Channel 2
Channel 3

DSM





Channel 1
Channel 2
Channel 3

DSM
NDVIMIR−G
NDVINIR−G

NDVINIR−MIR


(4)

3.5. Decision Tree Construction

Decision tree [48] is a classic and widely used classifier. When a decision tree is
constructed from training data, it can be used to efficiently classify untrained data. It
has two main advantages: (1) it is readable and descriptive, which facilitates manual
analysis; (2) it is efficient, as they only need to be constructed once and repeatedly used,
with the maximum number of calculations per prediction not exceeding the depth of the
decision tree.

The construction of the decision tree is a recursive process. Therefore, it is necessary to
define conditions for recursion termination. Otherwise, the process will not be completed.
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A more intuitive approach is to stop when there is only one data type in each child node, but
this usually makes the tree too large and leads to too many matching problems. Another
possible approach is to make the number of records in the current node fall below a
minimum threshold, in which case the construction of the decision tree stops and the
corresponding classification is used as the classification of the current leaf node [49]. The
decision trees generated by the above algorithm often lead to overfitting problems. In
other words, the decision trees produce a low error rate for training data, but a high error
rate when applied to test data. Therefore, several metrics were used in the experiments to
evaluate the generated decision trees for the overfitting phenomena.

The Gini [50] measures whether a node is overfitted or not, which is different from the
Gini coefficient in logistic regression. The smaller the Gini is, the better the decision tree
will be when the nodes have more samples. The formula for its calculation is as follows:

Gini
(
Aj
)
= 1 −

n

∑
i=1

p(i)2(j = 1, 2) (5)

where p(i) is the proportion of each category = number of category i/total number. n is the
category into which it is divided.

In information theory in probability statistics, entropy [51] is a measure that represents
the uncertainty of a random variable, which is one of the criteria that reflect whether a
decision tree is overfitted. When the entropy is higher, it means that the uncertainty of the
random variable is more immense. The formula for its calculation is as follows:

Entropy = −
n

∑
i=1

P(i) × logP(i)
2 (6)

Similarly, P(i) represents the ratio of each category to the total, and n represents the
category into which it is divided.

A fine decision tree is used to classify land use in the study area. A total of 100,000 × 6
data for the six categories in the study area were used to train the decision tree. The node
thresholds of the decision tree are adjusted by means of expert experience and manual
intervention to obtain the optimal decision tree.

4. Results

In order to confirm the potential of multispectral LiDAR for the classification of
complex urban areas, three comparable methods are set up. Method (a) represents a
classification using the Channel 1 band of Titan data plus DSM data to simulate the situation
of the single-band LiDAR in classification. Method (b) represents a classification using
Titan three-channel intensity data plus DSM data from the study area to illustrate the role
of intensity information and elevation information in this landscape. Method (c) represents
a classification using Titan three-channel data plus DSM data from the study area and
calculated three NDVI data. A focused analysis of this method was carried out to show
the advantages and potential of multispectral LiDAR in the classification of complex cities.
The specific classification strategies are shown in Table 3.

Table 3. Three method settings.

Method Data Classification Features

Method (a) DSM
Channel 1

Intensity
Elevation

Method (b) DSM
Titan Tri-band

Elevation
Intensity

Method (c)
DSM

Titan Tri-band
Three NDVIs

Elevation
Spectrum

Vegetation Index
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4.1. Point Cloud Filtering Influence on Classification

In order to reduce the influence of complex urban areas on the classification results,
the area’s point cloud is first classified into ground and non-ground points. The main
parameters of CSF filtering based on cloth simulation are the cloth resolution, the maximum
number of iterations, and the classification threshold. The higher the fabric resolution, the
more noise points are separated from the point cloud. According to previous research,
setting the classification threshold to 0.5 with 500 iterations provides optimal parameters for
achievable results [52]. After pre-processing the training set sample selection, the ground
and non-ground points have different land-use classes after point cloud filtering. This
process dramatically reduces the workload when using the classifier later, and the higher
accuracy of the point cloud filtering allows for more accurate classification. The number of
point clouds has not changed after point cloud filtering and only contains two categories of
ground points and non-ground points in Figure 4.
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The filtering used in the experiments is based on the CSF filtering of the cloth simula-
tion. As shown from Figure 4, the filtering can accurately delineate ground and non-ground
boundaries. The study area is easy to identify due to the distribution pattern of roads and
grass, while the spatial characteristics between buildings and trees are more complex and
difficult to distinguish. The identification of non-ground points is the focus of point cloud
classification. The filtered point clouds were also denoised when ticking the training set
samples. This prevents the presence of class uncertainty in some small, sparse point clouds
from affecting the classification results. In addition, the training set samples are chosen
evenly for the classification of land use categories, with the same number of training sets
for each type of sample. For example, the training set is uniformly selected and identical
due to the significant differences in spectral information between houses with different
colored roofs.

4.2. Decision Tree Classification

After selecting the training samples, the fine decision tree classifier constructed from
the three methods inputs was divided in Figure 5. The training set was divided into five
parts, four-fifths of which were used for training, while the rest were used as a test set
to verify the accuracy of the classifier. Method (a) has a depth of 43 levels, and its self-
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validation accuracy is 72.1%; method (b) has a depth of 37 levels, and its self-validation
accuracy is 80.6%; and method (c) has a depth of 41 levels, and its self-validation accuracy
is 91.2%.
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The Gini coefficients and entropy of the three constructed decision trees are shown
in Table 4. The Gini coefficients and entropy to whether the decision tree generated by
the algorithm is overfitted. Method (a) has the largest Gini coefficient and entropy, while
method (c) has the smallest. The main reason here is that only a single band of data is used
in method (a), and this training set achieves a certain level of accuracy through overfitting.
Data overfitting occurs in method (a). In contrast, for project (c), the constructed decision
tree’s Gini index and entropy values are lower. The results of using this classifier are
better, indicating that a classifier-like decision tree is suitable for application in complex
urban landscapes. The two main reasons for this are: (1) noisy data; there is noisy data in
the training data, and some nodes of the decision tree have noisy data as segmentation
criteria, resulting in the decision tree failing to represent the accurate data. (2) Lack of
representative data: the training data does not contain all representative data, resulting
in a certain class of data not being well-matched, which can be derived by observing the
confusion matrix analysis. Similarly, this cause plays a decisive role in constructing the
decision tree, reflected in method (a) and method (c).

Table 4. Gini coefficients and entropy for the three decision trees constructed.

Method Gini Entropy

Method (a) 0.6113 5.9405
Method (b) 0.2369 2.7895
Method (c) 0.1533 1.4372

Where method (c) constructs a decision tree with small Gini coefficients and entropy
values within acceptable limits, because project (c) uses elevation information, intensity
information, and spectral information from multispectral LiDAR point clouds, there are no
lack of data or overfitting in the construction of these supervised classification classifiers.
In contrast, single-band LiDAR in classifiers such as decision trees can cause the overfitting
of the classifier due to the inclusion of elevation information and single-band intensity
information, which demonstrates that multispectral LiDAR has a wealth of information
that can be applied in land-cover classification.

4.3. Comparison of Classification Results

The three controlled classifications include point cloud data pre-processing, DSM
generation and NDVI calculation, applying the elevation information, intensity information,
and spectral information of the multispectral point cloud data, respectively. The point
clouds are first pre-processed, using a nearest-neighbor search method for data with missing
intensity data. CSF filtering based on cloth simulation is then used for point cloud filtering.
The point cloud filtering divides the data of the study area into ground and non-ground
points. Next, the point cloud feature vectors are extracted, the elevation information of
the point cloud is produced as DSM, and the three-channel intensity data of the Titan data
are combined. Due to the high reflectance of vegetation in the NIR and green bands, the
border between roads and grass (buildings and trees) was delineated by NDVI. Three
NDVIs, according to the three channels of Titan data, are computed; these three data are
fused into point cloud feature vectors. Three controlling methods, using fine decision trees
in order to obtain different LiDAR classification results, were designed. In this way, the
advantages and potential of multispectral LiDAR for complex urban land-use classification
are shown. The classification results of the three methods are shown in Figure 6. The
experimental results show that the multispectral LiDAR point cloud (method (c)) based
on intensity, elevation, and spectral information is more advantageous than the other two
classification data, especially for delineating the boundaries between roads and grassland.
Among the three methods, it was found that the elevation and intensity information of the
point clouds only played an auxiliary role in land-use classification. However, the intensity
information of the multi-channel can be used to classify features with large differences
in intensity between feature classes, such as buildings and trees as well as roads and
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grass. However, due to the ignoring of spectral information, the classification of features
with large spectral differences between the same categories is not as effective as it could
be. In contrast, the classification results in method (c) demonstrated that cars with large
differences in colors have large variability in intensity information and a large difference in
spatial distribution, which allows them to be classified as cars by using spectral information.
Tables 5–7 provide confusion matrices, total overall accuracy, and Kappa coefficients based
on the three method data.
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Table 5. Point cloud classification confusion matrix for method (a).

Classification

Reference Data

Total User’s
Accuracy (%)Road Grass Building Tree Car Power

Line

Road 1,097,171 97,940 103,538 5132 10,223 6321 1,320,325 83.10%
Grass 212,113 759,996 63,152 2352 1630 7512 1,046,755 72.61%

Building 102,331 273,251 572,886 59,479 4312 15,522 1,027,781 55.74%
Tree 43,451 41,643 76,325 293,421 8133 74,321 537,294 54.61%
Car 97,425 22,924 32,154 3211 108,176 12,312 276,202 39.17%

Power Line 42,612 55,877 49,059 43,211 313 37,034 228,106 16.24%
Total 1,595,103 1,251,631 897,114 406,824 132,787 153,022 4,436,481

Producer’s
accuracy (%) 68.78% 60.72% 63.86% 72.12% 81.46% 24.20%

Overall accuracy: 64.66%; overall Kappa statistic: 0.5380.

Table 6. Point cloud classification confusion matrix for method (b).

Classification

Reference Data

Total User’s
Accuracy (%)Road Grass Building Tree Car Power

Line

Road 1,321,096 25,978 23,313 321 19,899 411 1,391,018 94.97%
Grass 75,555 1,140,993 311 12 1234 24 1,218,129 93.67%

Building 14,721 38,967 569,436 12,675 4124 18,322 658,245 86.51%
Tree 25,091 3132 12,354 586,752 223 44,451 672,003 87.31%
Car 61,114 12,924 29,855 6249 132,969 5753 193,864 68.59%

Power Line 75,925 77,935 31,003 27,765 1231 90,636 304,495 29.77%
Total 1,518,502 1,298,929 666,272 633,774 159,407 159,597 4,436,481

Producer’s
accuracy (%) 87.00% 87.84% 85.47% 92.58% 83.41% 56.79%

Overall accuracy: 86.60%; overall Kappa statistic: 0.8246.

Table 7. Point cloud classification confusion matrix for method (c).

Classification

Reference Data

Total User’s
Accuracy (%)Road Grass Building Tree Car Power

Line

Road 1,416,547 16,019 19,211 0 7091 0 1,458,868 97.10%
Grass 46,407 1,286,950 311 0 1630 0 1,335,298 96.38%

Building 14,721 9693 621,948 12,498 3216 12,332 674,408 92.22%
Tree 8608 1643 20,280 587,432 8133 33,173 659,269 89.10%
Car 3221 2924 5222 6249 141,828 5753 165,197 85.85%

Power Line 1207 5877 9059 18,749 1123 107,426 143,441 74.89%
Total 1,490,711 1,323,106 676,031 624,928 163,021 158,684 4,436,481

Producer’s
accuracy (%) 95.02% 97.26% 92.00% 94.00% 87.00% 67.70%

Overall accuracy: 93.82%; overall Kappa statistic: 0.9179.

Method (a), method (b) and method (c) correspond to an overall accuracy of 64.66%,
86.60%, and 93.82%, respectively. Their Kappa coefficients are 0.5380, 0.8246, and 0.9179,
respectively. Compared with previous research [29,53] on 3D point cloud delineation, based
on threshold segmentation and supervised classification, the accuracy of classification is
improved, and the accuracy and completeness of feature boundary extractions in complex
urban classification are ensured.
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5. Discussion

In order to analyze the performance of multispectral LiDAR for land-use classification
in complex urban landscapes, three methods are taken in this study to illustrate this against
each other. There are two main sources of error in this experiment: the first is that point
cloud filtering has an impact on the accuracy of the classification results. Although the aim
of the experiments with point cloud filtering is to be the first to separate ground points from
non-ground points, and despite the use of CSF filtering suitable for complex urban areas,
there is no guarantee that the filtering accuracy is completely correct. After point cloud
filtering, there is a phenomenon of misclassifying ground points as non-ground points
and vice versa. This error is further exaggerated in the training set samples due to the
sample selection method used for the study, making it not completely accurate. The second
one is that the multispectral LiDAR data were collected in winter when the vegetation
is not in as lush a state as during the summer growing season. This results in smaller
NDVI values for some vegetation, which may be the same as the NDVI of some spectrally
similar buildings. On the other hand, the majority of trees in the study area are evergreen
vegetation, with less seasonal vegetation. NDVI can help to distinguish vegetation from
non-vegetation to some extent in winter. There is no denying that spectral information,
such as NDVI, plays an essential role in classification. The three NDVI values calculated in
method (c) have some deviation, as shown in Figure 7, for NDVINIR−G; when extracting
NDVINIR−G values greater than 0, as its value gets larger, it should correspond to lush
vegetation, and a building with a yellow roof. This indicates that the calculated NDVI may
not be suitable for this study area, and a better multispectral LiDAR-based vegetation cover
index should be proposed in future work to reflect its spectral characteristics.
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Overall, the classification results from the three methods confirm the potential of
multispectral LiDAR for land-use classification in complex urban landscapes. A comparison
of the classification accuracy of the three methods is shown in Figure 8. The study area
selected for the experiments covers a large area with complex land-use types, possessing
various features and representative land-use categories. Using multispectral LiDAR to
classify the area’s land use into roads, grass, buildings, trees, cars, and power lines, the
method achieved an overall classification accuracy of 93.82%. The method, which uses
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only the Titan Channel 1 single-band LiDAR and DSM classification in method (a), often
fails to yield accurate land-use classification results due to the data limitations of the
single-band LiDAR, which can only rely on single-band intensity information or radar
echo information for classification. In the case of the classification for six types of features,
spectral information is missing. It is difficult to distinguish among the six categories. In
particular, for the two feature categories of power lines and trees with similar values in the
Channel 1 band at two points, the user accuracy is only 16.24% and 54.61%. In method
(b), although the intensity data of the three channels and elevation information such as
DSM were used, the classification accuracy was still plain, especially for the cars and
power lines feature categories, where the user accuracy is only 68.59% and 29.77%. The
importance of adding elevation information, the difference in elevation between the road
and building as well as the grass and tree categories can be used to clearly delineate their
categories. However, there are still some misclassifications between buildings and roads,
grass, and trees. The main reason might be that the elevation of the study area shows an
increasing tendency from the southeast to the northwest, which would influence the lower
buildings and shrubs to be misclassified. Their elevation information is similar; it is still
difficult to distinguish them by intensity information alone, and the spectral information
needs to be added to delineate the boundaries between the low buildings and shrubs. The
elevation information, intensity information and spectral information of the point clouds
were used in method (c). The consideration of the NDVI index made it possible to classify
between cars and buildings, as well as trees and power lines, which are classes with similar
intensity information. In Figure 6, the classification using multispectral LiDAR shows
that the boundaries between the classes are more distinct than in the other two methods
and that the continuity of the classified features is improved. For the classification of
trees, method (c) shows fewer noise points of other classes, especially in the complex area
where buildings and trees overlap. In addition, the classification of power lines showed
continuous lines without noise from surrounding trees and buildings.
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In particular, the results of the comparative methods demonstrate the efficiency of
LIDAR intensity, height, and spectral information in urban land-use classification. After
using DSM with multi-channel intensity information for classification, the overall accuracy
was improved by more than 20%. Then, after adding spectral information for classification
in method (c), the overall accuracy was improved by less than 10%, but the accuracy
used for some classes was significantly increased. One of the most significant increases
was for power lines, where the user accuracy increased by almost 50%. In addition, the
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classification of vehicles was also made better. As mentioned earlier, point cloud filtering
and the calculation of NDVI are two sources of classification error. Approximately 15% of
the power line point clouds were incorrectly classified as buildings and trees. This resulted
in a user accuracy of only 74.89% in method (c). Similarly, about 14.1% of the vehicle point
clouds were misclassified, mainly as roads and trees.

Furthermore, in order to illustrate the potential and advantages of spectral information
in land-use classification, histograms of the six feature classes of the Titan three-channel
information (1550 nm, 1064 nm, and 532 nm) and NDVI are shown in Figure 9. The peaks
of each feature type in the study area can be observed. The rationale for the classification is
actually to find heterogeneity between these feature classes on a particular feature. Most
of the features in the study area show a single peak distribution, which makes it difficult
for the classifier to classify features based solely on the intensity information of the three
channels. For some feature classes with similar intensity information across the three
channels, such as roads and grasslands, the distribution is similar between Channel 2 and
Channel 3, which leads to misclassification. The elevation distribution in the study area
demonstrates a southeast to northwest increase, which may also make it difficult to separate
land-use categories if elevation information is added. For example, buildings at lower
elevations and roads at higher elevations have similar intensity information. At this point,
because their elevation information is so similar, errors in classification are created. When
adding the spectral information, the values of NDVI were calculated using the intensity
information from the three channels; it can be observed in Figure 9 that the six features
are dramatically different in terms of NDVI and are able to classify artificial features and
vegetation. Therefore, in our experiments to illustrate the advantages of multispectral
LiDAR in land use, we took three NDVIs based on the three-channel intensity information
to differentiate the features. We found that NDVINIR−G can effectively classify roads and
grass, and NDVINIR−MIR can classify buildings and trees. These NDVIs play a significant
role in classifying and illustrating the multispectral LIDAR advantages in this complex
urban land-use classification.

In detail, the differences among the three methods in the specific details of the classifi-
cation are shown in Figure 10. The differences evident in the classification results have been
selected to demonstrate the potential of multispectral LiDAR in the classification of complex
cities. For scene (a), this area is the primary road in the city, and the buildings and trees are
on both sides. Method (a) and method (b) use only intensity and elevation information; the
lack of spectral information made it hard to distinguish between the roofs of buildings and
trees, and most of the buildings and trees are incorrectly classified with each other. There
also existed cases of cars being misclassified as buildings. In contrast, the land-use types can
be better separated in method (c), and the extracted land classes are almost free from other
classes of noise points, maintaining an excellent contour and continuity. In scene (b), similar
to scene (a), the lack of spectral data for classification can cause errors between building
and tree categories. The usefulness of the spectral information is highlighted even more
in scene (c). The spectral information mainly affects the separation between vegetation
and buildings. The addition of spectral information in method (c) makes the classification
of cars relatively easy. Its effectiveness is also shown by the ability to accurately classify
the boundaries of trails in grass. Due to the insufficient point cloud density of LiDAR in
complex urban features and the fact that classification can only rely on intensity information
and elevation information, this can lead to difficulties in differentiating between feature
categories with large spectral differences, resulting in a significant increase in classification
errors. Overall, the three methods taken in this thesis effectively illustrate the advantages
and potential development possibilities of multispectral LiDAR for the classification of
complex urban land use. Multispectral LiDAR allows for more accurate classification due
to its multi-channel spectral characteristics.
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6. Conclusions

This research confirmed and discussed the potential of multispectral LiDAR for the
classification of complex urban areas. The intensity values of the three channels of Optech
Titan data were first assigned to a point cloud using a nearest-neighbor search method.
After point cloud pre-processing, ground filtering was applied to the point cloud in the
study area using CSF filtering based on cloth simulation to obtain ground points and non-
ground points. Training samples of roads and grass were selected from the ground points,
and training samples of buildings, trees, cars, and power lines were selected from the
non-ground points. A DSM of the study area using inverse distance-weighting algorithms
was generated. Then, three NDVIs were calculated for point cloud classifications based
on three bands of Titan data. The elevation, intensity, and spectral information of the
multispectral LiDAR point clouds were combined into three-point cloud feature vectors for
target classification. The first types of data are Channel 1 of the Titan data, simulating a
single-band LiDAR used for point cloud classification of the study area; the second types
of data are the point cloud of the three channels of the Titan data plus the generated DSM;
the third types of data are the three channels of the Titan data plus the DSM and the three
NDVIs. The classifier chosen for the experiment was a decision tree classification for the
multispectral LiDAR composition. The decision tree classifier trained on the data had no
overfitting phenomenon. The overall accuracy of the final classification is 64.66%, 86.60%,
and 93.82% for the three data types, respectively. Comparing the classification results of
the three data highlights that elevation information, such as DSM, plays a role in the point
cloud classification, while the importance of NDVI, calculated by the multispectral LIDAR,
is excellent in complex landscapes.
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Multispectral LiDAR is currently being upgraded to Hyperspectral LiDAR. This 3D
point cloud, containing a large amount of spectral information, can be effectively utilized
to classify complex urban areas, with further potential that is yet to be uncovered in
remote-sensing monitoring.
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