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Abstract: Stockpile quantity monitoring is vital for agencies and businesses to maintain inventory
of bulk material such as salt, sand, aggregate, lime, and many other materials commonly used in
agriculture, highways, and industrial applications. Traditional approaches for volumetric assessment
of bulk material stockpiles, e.g., truckload counting, are inaccurate and prone to cumulative errors
over long time. Modern aerial and terrestrial remote sensing platforms equipped with camera and/or
light detection and ranging (LiDAR) units have been increasingly popular for conducting high-fidelity
geometric measurements. Current use of these sensing technologies for stockpile volume estimation
is impacted by environmental conditions such as lack of global navigation satellite system (GNSS)
signals, poor lighting, and/or featureless surfaces. This study addresses these limitations through a
new mapping platform denoted as Stockpile Monitoring and Reporting Technology (SMART), which
is designed and integrated as a time-efficient, cost-effective stockpile monitoring solution. The novel
mapping framework is realized through camera and LiDAR data-fusion that facilitates stockpile
volume estimation in challenging environmental conditions. LiDAR point clouds are derived through
a sequence of data collections from different scans. In order to handle the sparse nature of the
collected data at a given scan, an automated image-aided LiDAR coarse registration technique is
developed followed by a new segmentation approach to derive features, which are used for fine
registration. The resulting 3D point cloud is subsequently used for accurate volume estimation. Field
surveys were conducted on stockpiles of varying size and shape complexity. Independent assessment
of stockpile volume using terrestrial laser scanners (TLS) shows that the developed framework had
close to 1% relative error.

Keywords: stockpile; volume estimation; LiDAR; terrestrial laser scanner (TLS); segmentation;
registration; rotation estimation

1. Introduction

Stockpile management is important for managing a variety of agriculture, construction,
and commercial bulk materials. One such sector is transportation roadway maintenance,
where several studies have emphasized the need for accurate salt stockpile inventories
to ensure the safety and flow of roadway traffic [1]. According to the Federal Highway
Administration (FHWA), approximately 70% of the roads in the US are in snow regions with
nearly 70% of the US population living in these areas. Every year, over 100,000 individuals
in the US are injured in vehicle crashes during winter months [2]. Local agencies and state
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Department of Transportations (DOTs) adopt de-icing techniques such as spreading solid
salt and/or brine over roadways to keep them clear of snow and ice accumulation. It is
not uncommon for 20% of state DOTs’ maintenance budgets to be directed towards winter
operations [2].

Studies have emphasized the need for extensive de-icing to ensure roadway traffic
safety [3]. Salt stockpiles are acquired from local or DOT vendors and are stored in
warehouses at critical delivery points. Throughout the winter season, state DOTs follow
de-icing guidelines [4,5] and weather advisories [6] to apply de-icing chemicals such as
NaCl, CaCl2, and MgCl2. However, excessive applications of these deicing chemicals may
affect pavement durability as well as roadside vegetations and salinity of surface water [7,8].
As a result, there is an increasing interest among many government agencies in accurately
tracking these salt stockpiles and assessing their environmental impact.

Traditional evaluation of stockpiles requires measurement using field survey pro-
cedures that can take up to several hours to accomplish [9,10]. The procedure exposes
surveying crews to hazardous conditions, when measurements must be taken over unstable
stockpiles, especially at facilities that store sand, salt, or other similar materials. Modern
photogrammetric and LiDAR-based remote sensing platforms provide safer, standardized,
and reliable alternatives to labor-intensive conventional methods. However, the peak
performance of current remote sensing technologies is confined to a narrow operating
environment [11]. Photogrammetry requires an excessive number of overlapping images
in well-lit environment with distinctive features in order to provide a complete 3D model.
LiDAR-based mobile mapping platforms, such as UAVs, perform well under open-sky
conditions but cannot work indoors due to the limited access to GNSS signals. Static LiDAR
platforms, on the other hand, are accurate but expensive, and depending on the size, spar-
sity, and overlap among scans, it can be challenging to process acquired data. Moreover,
when collecting remote sensing data over stockpiles, inaccessible areas often times result in
occlusions [12]. These circumstances call for an improved stockpile monitoring strategy
considering current capabilities of LiDAR and camera-based mapping platforms.

Since the advent of LiDAR, technology advances and increased market availability
have enabled the development of low-cost, scalable mapping systems. In this paper, a
camera-assisted LiDAR mapping system denoted as Stockpile Management and Reporting
Technology (SMART) is designed and developed to facilitate accurate, yet practical volume
estimation of stockpiles. Through the SMART system, this paper addresses the following
research objectives: (i) develop a portable platform equipped with a camera and LiDAR sen-
sors that can quickly acquire indoor stockpile data with minimum occlusions, (ii) introduce
data processing strategies to derive reliable volume estimates of stockpiles in GNSS-denied
environment, and (iii) compare the performance of the developed system with established
survey grade benchmarks in terms of accuracy of the generated digital surface model
(DSM) and derived volumes.

The remainder of this paper is structured as follows: Section 2 provides an overview of
prior research related to stockpile volume estimation while emphasizing photogrammetric
and LiDAR-based approaches; the developed mapping system, data collection procedure,
and study sites are introduced in Section 3; Section 4 covers the proposed data processing
strategies; experimental results and their analysis are discussed in Sections 5 and 6, respec-
tively; and finally, a summary of the study conclusions and recommendations for future
research are provided in Section 7.

2. Related Work

Periodic monitoring and accurate volume estimation of stockpile inventory ensure cost
efficiency and improved provision of services. For example, in the case of transportation
roadway management, real-time availability of an accurate salt stockpile volume estimate
may indirectly impact roadway traffic safety. It prepares the management for a timely
response to unexpected snowstorms and is also essential for prioritizing the allocation of
stockpile resources during such times. Additionally, information about current salt reserves
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help in deciding whether to continue with the same de-icing approach or implement anti-
icing strategies such as pre-wetting of solids to optimize the salt usage [13]. Combining
these strategies along with a complete salt management program has the ability to reduce
snow-related incidents. It is thus vital to establish and maintain an accurate volume
estimation approach. The most basic method of assessing stockpiles is by tracking their
hauled weight or volume [14]. For sand or gravel stockpiles, their volume is calculated
by counting haul-truck/loader bucket loads [15] or by accessing haul tickets issued by
authorities. A haul ticket contains information such as weight and density of the material.
Hugenholtz et al. [14] observed that this approach only provides rough estimate of stockpile
volume. Another disadvantage of this method is that the amount of leftover bulk material in
the facility cannot be determined independently and must be inferred based on the amount
removed. Moreover, for bulk material distribution through haul trucks, it has been observed
that some material may get lost due to spillage during truck-loading operations. A frequent
determination of available stockpile can keep track of the exact amount present in the facility
and when and how often a cleanup is necessary. An objective approach of determining
stockpile volumes is one of the key goals towards modernizing inventory management.

In recent years, stockpile volume estimation using total station (TS) and Real-Time
Kinematic-Global Navigation Satellite System (RTK-GNSS) surveys has gained atten-
tion [16–19]. A total station can achieve a measurement accuracy up to few millimeters [20].
Arango and Morales [16] used a Leica TS-02 total station in a three-hour long survey at a re-
cycling plant to gather points over a large outdoor stockpile with a simple shape. Although
they did not specify the stockpile size, it appears to be over a hundred feet wide in diameter.
They used ArcGIS to create a triangular irregular network (TIN) surface model from the
collected points. A built-in tool in ArcGIS was then used to evaluate the stockpile’s volume
with a reported accuracy of 2.88%. Generally, a TS survey is time-consuming and is not
practical for monitoring stockpiles with complex shapes as it only provides measurements
for a limited number of points. For the same amount of TS data acquisition time, an RTK
survey with its lower operational skill requirement can measure more points on stockpiles.
Khomsin et al. [18] derived comparable volume estimates from TS and RTK. Compared to
RTK, their TS surveys required hours of additional time to measure the same number of
points. While RTK techniques may be preferred over TS, their adoption is limited to out-
door environments. Considering the safety of the survey crew, both TS and RTK methods
expose operators to the hazard of climbing over the stockpile to collect measurements, and
thus are unsafe [12,18].

Terrestrial laser scanners (TLS) are mapping systems equipped with high accuracy
ranging sensors (LiDAR) capable of mapping objects without the need for GNSS signals.
These sensors are based on time-of-flight or phase-shift active ranging and thus can perform
well regardless of lighting conditions. Moreover, they can directly provide 3D information
without external control. TLS are designed to rotate on their base about their mounting axis,
thus allowing a 360◦ scan of the surrounding. To sufficiently cover the entire stockpile using
TLS, surveys from multiple stations, each producing point cloud in a different reference
frame, are required. Multi-station point clouds must be then registered to a common
reference frame to generate a complete, precise 3D surface of the stockpile. Several studies
have used TLS estimates as a reference to evaluate their proposed approach [12,14,18]. Zhu
et al. [21] validated their proposed registration method through experiments using RIEGL
VZ400 TLS. Seven scans from a granary stockpile were registered to obtain a complete
3D point cloud. Their method claimed to achieve a low volumetric error of under 1%.
Despite these excellent results, most of these studies deemed data acquisition using TLS as
time-consuming and unsafe (similar to TS and RTK surveys, operators need to climb on top
of stockpiles). Although some studies have utilized TLS systems in a permanently installed
setup for routine monitoring of surroundings [22–24], such cases have been limited to a few
special scenarios of high density and/or long-range scans. The cost of TLS systems is also
one of the limiting factors that has prevented their widespread use as a popular stockpile
monitoring solution.
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Unmanned aerial vehicles (UAVs) have recently been quite popular among researchers
developing methods to quickly and safely acquire stockpile data [9,12,14,17,25–33]. Image-
based UAV platforms use visual-band cameras to collect RGB images and obtain a 3D
model of the stockpile in question. With a sufficient number of acquired images having
high percentage of overlap, photogrammetric techniques can generate a 3D model of
the object space through Structure from Motion (SfM) [34–36] and Multi-View Stereo
(MVS) strategies [37,38]. In SfM, conjugate points among overlapping images are first
established using feature detector and descriptor algorithms such as SIFT [39], SURF [40],
and AKAZE [41]. Then, camera position and orientation parameters at the time of exposure,
known as exterior orientation parameters (EOP), a set of sparse point clouds, and camera
interior orientation parameters (IOP) are derived using established conjugate points. In the
MVS step, camera IOP, EOP, and derived sparse point cloud are used to generate a dense
point cloud of the object space in question. In order to resolve the scale ambiguity, ground
control points (GCPs), onboard GNSS units, and/or some known distances in the object
space are used.

Among photogrammetric volume estimation studies, He et al. [9] performed surveys
of stockpiles in barges and compared their developed GCP-free approach with three
different methods: tape measurements, portable LiDAR, and UAV with GCPs. In their
approach, stereo images were extracted from UAV-based videos and utilized for SfM and
photogrammetric bundle adjustment to generate a 3D point cloud. Their volume estimates
from all four methods agreed to within 3%. Christie et al. [25] proposed a two-camera
system with a baseline of 35.4 cm and unspecified base-depth ratio that allowed for scale
derivation without the need for additional control. Although a short baseline may lead
to poor imaging geometry, they tested the developed system for volume estimation of
three stockpiles and claimed to achieve a small error of approximately 3%. Several other
studies [12,17,27,30,31] reported volume error of 1–4% from UAV imagery compared to
TLS or RTK-GNSS based techniques, while highlighting the time efficiency of UAV data
acquisition. Rhodes [26] attributed the low accuracy of estimated volume to the featureless
nature of their study site and emphasized the need for better 3D reconstruction in such
situations. Although these photogrammetric approaches can be considered economical and
effective stockpile monitoring solutions, they cannot provide accurate volumetric results
for indoor facilities owing to the fact that automated feature detection and matching in
captured images under low-lit condition and/or homogenous texture are challenging. In
addition, due to the need for GNSS signals for programmed mission flights, use of UAVs for
indoor mapping is not practical unless the platform is outfitted with an obstacle avoidance
system and/or real-time SLAM capabilities.

LiDAR-based mobile mapping systems, e.g., UAV LiDAR, equipped with an integrated
GNSS/Inertial Navigation System (INS) unit have also been gaining popularity for direct
derivation of dense point clouds over stockpile surfaces [32,33]. Alsayed et al. [32] utilized
three different types of LiDAR, 1D, 2D, and 3D, in their simulations of indoor and outdoor
stockpiles. They also conducted a study site experiment with 1D LiDAR and a barometer
(for height estimation) to measure a semi-confined stockpile. They reported volumetric
errors from the 1D, 2D, and 3D LiDAR in the range of 9%, 1%, and 2%, respectively.
On the other hand, their onsite data acquisition in a semi-confined space was met with
issues of degraded GNSS reception. Nonetheless, they achieved a volumetric error of
2.4%. Similar to UAV-based imaging systems, UAV-LiDAR’s operation in indoor facilities is
challenging due to limited access to GNSS signals. Overcoming GNSS signal inaccessibility
within indoor facilities has been addressed through simultaneous localization and mapping
(SLAM) techniques implemented on various platforms including UAVs equipped with
camera and LiDAR systems [33,42,43] and handheld scanning systems [44]. However,
visual and LiDAR SLAM techniques depend heavily on feature extraction and tracking,
which make them prone to errors in environments with poor feature geometry such as
facilities with sand and salt stockpiles. For example, Gago et al. [33] used a Velodyne VLP-
16 LiDAR for UAV localization in an indoor environment by tracking simple geometric
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structures. Their experiments highlighted several failure scenarios due to problems in
handling homogeneous surfaces for feature tracking.

Among recent commercial applications of image-based technologies, Stockpile Reports
Inc’s development of a photogrammetry-based bulk material estimation has been adopted
by several inventory management agencies [45–47]. At the basic level, their approach is
based on 3D reconstruction using SfM techniques. The ease of using portable handheld
imaging devices allows personnel to obtain a quick stockpile volume estimate. However,
crew-based data acquisition still requires walking around the stockpile that could be unsafe.
Stockpile Reports Inc also supports the installation of permanent systems. However, initial
as well as equipment running/maintenance cost could be excessive.

Table 1 summarizes current surveying techniques for stockpile monitoring while
comparing them in terms of operator’s safety, scalability of the approach, ability to deliver
reliable results when working on stockpiles with featureless surfaces, cost-effectiveness,
applicability of the method for indoor facilities, and required operation skill. Through
Table 1, one can conclude that state-of-the-art approaches face several challenges when it
comes to practical, scalable monitoring of stockpiles.

Table 1. Summary of pros and cons of current mapping/surveying techniques along with the
proposed SMART for routine stockpile monitoring.

Operator’s
Safety Scalability Featureless

Surfaces Cost-Effective Indoor Operator’s
Skill

Total Station 5 5 4 5 4 High
RTK-GNSS 5 5 4 5 5 Low

Terrestrial Photogrammetry 5 4 5 4 4 Low
Terrestrial LiDAR 5 5 4 5 4 Low

UAV Photogrammetry 4 4 5 4 5 Low
UAV LiDAR 4 4 4 5 5 High

SMART 4 4 4 4 4 Low

Therefore, in order to overcome the limitations of current stockpile mapping tech-
niques, we propose a prototype mapping platform, SMART, that integrates an RGB camera
and LiDAR units for indoor stockpile monitoring. The key advantages that set the SMART
system apart from other platforms are listed below:

1. Unlike relying on a system-driven approach using sophisticated, expensive encoders
and/or inertial measurement units, the SMART system focuses on a data-driven
strategy for stockpile volume estimation using only acquired data from a simple,
cost-effective acquisition procedure;

2. It is easy to deploy and has the potential of permanent installation in indoor facilities
(after suitable modifications of the setup) for continuous monitoring of stockpiles; and,

3. Low-cost, high-precision image/LiDAR hybrid technology such as SMART can influ-
ence system manufacturers to develop inexpensive stockpile monitoring solutions,
which could be even less expensive.

3. SMART System Integration and Field Surveys

The SMART system is designed to safely and accurately assess stockpile volume.
It consists of two LiDAR units (Velodyne VLP-16 Puck) and one RGB camera (GoPro
Hero 9) mounted on an extendable tripod (hereafter denoted as a pole). A Raspberry Pi 3b
computer, mounted on the same platform, is used to trigger the LiDAR sensors and store
their measurement data. The system is also equipped with GNSS and Antenna (U-Blox
F9P) that can be used for system georeferencing when operating in outdoor environments.
All listed system elements are powered by one energy source, a lithium-polymer battery.
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3.1. SMART System Components

The major components of the SMART system are represented in Figure 1. The design
of the system (i.e., type, number, and orientation of the sensors) is envisioned to effectively
capture indoor facilities. Theoretically, one LiDAR unit can produce enough data for
stockpile volume estimation. However, the SMART system is using two LiDAR units to
capture data in four directions relative to the system, i.e., left, right, back, and forward,
simultaneously, thus reducing the number of required scans. Features (e.g., walls, roof,
ground, etc.) captured by the LiDAR sensors are used as a basis to align captured point
clouds data with high precision. The RGB camera is included in the system to serve
as a tool for the initial (coarse) alignment of the acquired LiDAR data. Additionally,
the camera provides a visual record of the stockpile in the storage facility. Through the
proposed processing strategy, the utilized sensors will produce well-aligned point cloud
with reasonable density (~500 points per square meter at 5 m distance from the system),
which can be used as a substitution for more expensive TLS system.
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Figure 1. The integrated SMART system with all its major components. System setup for data
acquisition within an indoor facility is shown on the left.

The five major components of the SMART system, i.e., LiDAR units, RGB camera,
computer module, system body, and GNSS receiver are described below:

LiDAR units: In order to derive a 3D point cloud of the stockpile in question, LiDAR data
is first acquired through the VLP-16 sensors. The Velodyne VLP-16 3D LiDAR [48] has a
vertical field of view (FOV) of 30◦ and a 360◦ horizontal FOV. This FOV is facilitated by the
unit construction, which consists of 16 radially oriented laser rangefinders that are aligned
vertically from −15◦ to +15◦ and designed for 360◦ internal rotation. The sensor weight
is 0.83 kg and the point capture rate in a single return mode is 300,000 points per second.
The range accuracy is ±3 cm with a maximum measurement range of 100 m. The vertical
angular resolution is 2◦ and horizontal angular resolution is 0.1–0.4◦. The angular resolution
of the LiDAR unit enables an average point spacing within one scan line of 3 cm, and
between neighboring scan lines of 30 cm at 5 m range (average distance to the salt surface).
Given the sensor specifications, two LiDAR units with cross orientation are adopted to
increase the area covered by the SMART system in each instance of data collection. The
horizontal coverage of the SMART LiDAR units is schematically illustrated in Figure 2. As
shown in this figure, two orthogonally installed LiDAR sensors simultaneously scan the
environment in four directions. The 360◦ horizontal FOV of the VLP-16 sensors implies that
the entire salt facility within the system’s vertical coverage is captured by the LiDAR units.
In addition to the possibility of covering a larger area of the stockpile, this design allows
for scanning surrounding structures, thereby increasing the likelihood of acquiring diverse
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features in all directions from a given scan. These features (linear, planar, or cylindrical)
can be used for the alignment of LiDAR data collected from multiple scans to derive point
clouds in a single reference frame.
RGB camera: The SMART system uses a GoPro Hero 9 camera, which weighs 158 g. The
camera has a 5184 × 3888 CMOS array with a 1.4 µm pixel size and a lens with a nominal
focal length of 3 mm. Horizontal FOV of 118◦ and 69◦ vertical FOV enable the camera to
cover roughly 460 square meters with a 10 m range. A schematic diagram of the camera
coverage from the SMART system is depicted in Figure 2. In addition to providing RGB
information from the stockpile, images captured by the RGB camera are used to assist
the initial alignment process of the LiDAR point clouds collected at a given station. This
process will be discussed in detail in Section 4.3.
Computer module: A Raspberry Pi 3b computer is installed on the system body and is used
for LiDAR data acquisition and storage. Both LiDAR sensors are triggered simultaneously
through a physical button that has wired connection to the computer module. Once the
button is pushed, the Raspberry Pi initiates a 10 s data capture from the two LiDAR units. In
the meantime, the RGB camera is controlled wirelessly (using a Wi-Fi connection) through
a mobile device, which enables access to the camera’s live view for the operator. All the
images captured are transferred to the processing computer through a wireless network.
The LiDAR data is transferred from the Raspberry Pi using a USB drive. Figure 3 shows the
block diagram of the system indicating triggering signals and communication wires/ports
between the onboard sensors and Raspberry Pi module.
GNSS receiver and antenna: As one of the potential ways to enhance SMART system
capabilities, a GNSS receiver and antenna are added as one of the system components. The
purpose of the GNSS unit is to provide location information when operating in outdoor
environments. The location information serves as an additional input to aid the point
cloud alignment from multiple positions of the system. In this study however, data collec-
tion is targeted in a more challenging indoor environment. Therefore, GNSS positioning
capabilities of the system are not utilized.
System body: LiDAR sensors, an RGB camera, and a GNSS unit of the SMART system are
placed on a metal plate attached to an extendable tripod pole that are together considered
as the system body. The computer module and power source are located on the tripod
pole. The extendable tripod, with a maximum height of 6 m, helps the system minimize
occlusions when collecting data from large salt storage facilities and/or stockpiles with
complex shapes.
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3.2. System Operation and Data Collection Strategy

At each instance of data collection, hereafter referred to as a scan, the SMART system
captures a pair of LiDAR point clouds along with one RGB image. With a 30◦ coverage and
orthogonal mounting of LiDAR units, the scan extends to all four sides of the facility. On
the other hand, a single RGB image provides only 118◦ horizontal coverage of the site. In
order to obtain complete coverage of the facility, multiple scans from each data collection
station are required. To do so, the pole is manually rotated six times around its vertical axis
in approximately 30◦ increments. This process is illustrated in Figure 4. Thus, at a given
station, seven LiDAR scans are captured. To ensure that an adequate amount of information
is obtained, LiDAR data is captured for 10 s in each scan. The SMART system has a blind
spot, i.e., the area under the system, that none of the LiDAR units can capture even after a
180◦ rotation. The blind spot is common for all tripod-based terrestrial sensors. In many
cases, not all stockpile areas can be captured from one station. To solve this issue, data
collection is conducted from multiple locations (also referred to as stations). The number of
stations varies depending on the shape and size of the stockpile/facility. Having multiple
stations also eliminates the previously mentioned blind spot problem.
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3.3. Dataset Description

In this study, two indoor salt storage facilities with stockpiles of varying size and shape
were scanned by the SMART system to illustrate the performance of the developed point
cloud registration and volume estimation approaches. These indoor facilities are managed
by the Indiana Department of Transportation (INDOT) and used for their winter weather
roadway maintenance. Figure 5 shows the location of these facilities. For the purpose of
identification, the two datasets are denoted as Lebanon and US-231 units located at Lebanon
and West Lafayette, respectively, in Indiana, USA. Finally, to serve as a benchmark for
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performance evaluation, these storage facilities were also scanned using a terrestrial laser
scanner (TLS), FARO Focus, with range accuracy of ±2 mm [18]. The scan resolution for
the TLS was set to 12 mm point spacing at 10 m range. The average measurement durations
per station for the SMART and TLS were 5 min and 4 min, respectively. Table 2 summarizes
the acquired data in the two facilities for this study.
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Table 2. Summary of the captured salt storage facilities.

Salt Storage
Facility

SMART Faro Focus (TLS)
Size (W × L × H)

Number of Stations Number of Scans Per Station Number of Stations

Lebanon unit 2 7 2 26 m × 48 m × 10.5 m
US-231 unit 1 7 3 30.5 m × 25.5 m × 10 m

4. Data Processing Workflow

Having introduced the sensors onboard the SMART system and datasets, which
will be used for illustrating the processing strategies and conducting the experimental
results, the manuscript will now focus on data processing for stockpile volume estimation.
The first step involves system calibration to estimate the internal characteristics of the
individual sensors as well as the mounting parameters (i.e., lever arm and boresight angles)
relating the different sensors. Figure 6 illustrates the workflow of the proposed processing
strategy, which is comprised of (1) an image-based coarse registration of captured scans at
a given station; (2) feature extraction and fine registration of scans at individual stations;
(3) coarse and fine registration of scans from multiple stations; and (4) volume estimation.
The image-based coarse registration is introduced to handle the arising challenges from
having sparse scans that do not have sufficient overlap. These challenges would not make
existing registration strategies applicable. A new segmentation strategy, Scan-Line-based
Segmentation (SLS), is introduced to identify planar features, which are used for the fine
registration process. Similar to the image-based coarse registration, the SLS is developed to
mitigate point cloud sparsity and lack of sufficient overlap among the scans. In this regard,
one should note that if the SMART system is used for outdoor stockpile monitoring, the
GNSS unit could be utilized to assist both the coarse and fine registration processes. Prior
information about pole position from the GNSS can aid the registration by providing an
additional constraint for the scan locations, particularly benefiting those with very sparse
points. The proposed strategies for coarse and fine registration together with stockpile
volume estimation are presented in the following subsections.
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4.1. System Calibration

SMART system calibration aims at determining the internal characteristics of the
camera and two LiDAR units together with the mounting parameters relating them to
the pole coordinate system. The system calibration is based on the mathematical mod-
els for image/LiDAR-based 3D reconstruction as represented by Equations (1) and (2).
A schematic diagram of the image/LiDAR point positioning equations is illustrated in
Figure 7. In these equations, rc(k)

i represents a vector from the camera perspective center
c(k) to image point i in the camera frame captured at scan k. This vector is defined as[

xi − xp − distxi yi − yp − distyi −c
]T

and is derived using the image coordinates of
point i and the camera’s principal point coordinates (xp and yp), principal distance (c),
and distortions in the xy-directions for image point i (distxi and distyi ). The scale factor for
image point i captured by camera c at scan k is denoted as λ(i, c, k). The position of object

point I with respect to the LiDAR unit frame is represented by r
luj(k)
I and is derived from the

raw measurement of LiDAR unit j (j can be either 1 or 2 for the SMART system), captured
at scan k. The position and orientation of the pole frame coordinate system relative to the
mapping frame at scan k are denoted as rm

p(k) and Rm
p(k). The mounting parameters are

defined as follows: rp
c and Rp

c represent the lever-arm and boresight rotation matrix relating
the camera system and pole body frame; rp

luj
and Rp

luj
denote the lever-arm and boresight

rotation matrix relating the LiDAR unit j coordinate system and pole body frame. Finally,
rm

I is the coordinate of object point I in the mapping frame.

rm
I = rm

p(k) + Rm
p(k)r

p
c + λ(i, c, k)Rm

p(k)R
p
c rc(k)

i (1)

rm
I = rm

p(k) + Rm
p(k)r

p
luj

+ Rm
p(k)R

p
luj

r
luj(k)
I (2)

In this study, the internal characteristics parameters (IOP) of the LiDAR units are
provided by the manufacturer. To estimate the internal characteristics of the RGB camera
(camera IOP), an indoor calibration procedure similar to the one proposed by He and
Habib [49] is adopted. More specifically, the camera calibration is conducted using a test
field with several checkerboard targets with known distances between the targets. The
image coordinates of these targets are manually measured and then used together with
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the known object distances in a bundle adjustment with system self-calibration procedure.
The mounting parameters relating each sensor and the pole coordinate system are de-
rived through a rigorous system calibration procedure similar to the ones developed by
Ravi et al. [50] and Zhou et al. [51]. Conceptually, these parameters are derived through
an optimization procedure that minimizes discrepancies among conjugate object features
(points, linear, planar, and cylindrical) extracted from different LiDAR scans and overlap-
ping images. Since we cannot always assume the availability of information that defines the
pole coordinate system relative to the mapping frame (e.g., when using the SMART GNSS
unit within an indoor environment), the system calibration cannot simultaneously derive
the mounting parameters for the camera and the two LiDAR units. Therefore, the mounting
parameters for the first LiDAR unit relative to the pole are not solved for (i.e., they are
manually initialized to some reasonable values and treated as constants within the system
calibration procedure). To estimate the system calibration parameters, conjugate LiDAR
planar features from both units and corresponding image points in overlapping images
are manually extracted. The mounting parameters are then estimated by simultaneously
minimizing (a) discrepancies among conjugate LiDAR features, (b) back-projection errors
of conjugate image points, and (c) normal distance from image-based object points to their
corresponding LiDAR planar features.
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Once the mounting parameters are estimated, the acquired point clouds from the two
LiDAR units for a given scan can be reconstructed with respect to the pole coordinate
system. Similarly, the camera position and orientation parameters at the time of exposure
(EOP) can also be derived in the same reference frame. As long as the sensors are rigidly
mounted relative to each other and the pole, the calibration process need not be repeated.

4.2. Scan Line-Based Segmentation

Having established the LiDAR mounting parameters, planar feature extraction and
point cloud coarse registration can be concurrently performed. Planar features from each
scan are extracted through a point cloud segmentation process, which takes into considera-
tion the following assumptions/traits of LiDAR scans collected by the SMART system:

(a) Scans are acquired by spinning multi-beam LiDAR unit(s), i.e., VLP-16;
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(b) LiDAR scans are acquired inside facilities bounded by planar surfaces that are suffi-
ciently distributed in different orientations/locations, e.g., floor, walls, and ceiling;

(c) A point cloud exhibits significant variability in point density, as shown in Figure 8.
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Figure 8. Example of varying orientation of planar features and significant variability in point density
in one scan from the SMART system, colored by height. The TLS point cloud of the facility colored by
RGB is shown in the upper left box.

To consider the above traits/challenges, a scan line-based segmentation (SLS) is
proposed. The conceptual basis of SLS is that the locus of a scan from a single beam will
trace a smooth curve as long as the beam is scanning successive points belonging to a
smooth surface (such as planar walls, floor, or roofs). Therefore, the developed strategy
starts by identifying smooth curve segments (for each laser beam scan). Combinations
of these smooth curve segments are used to identify planar features. A smooth curve
segment is assumed to be composed of a sequence of small line segments that exhibit minor
change in orientation between neighboring line segments. To identify these smooth curve
segments, starting from a given point pi along a laser beam scan, two consecutive sets of
sequentially scanned points, i.e., Si = {pi, . . . , pi+n−1} and Si+1 = {pi+1, . . . , pi+n}, are
first inspected. The criteria for identifying whether a given set, Si+1, is part of a smooth
curve segment defined by Si, are (1) the majority of points within the set Si+1 can be
modeled by a 3D line, which is derived through an iterative least-squares adjustment with
outlier removal process (i.e., the number of outliers should be smaller than a threshold
nT); (2) the orientation of the established linear feature is not significantly different from
that defined by the previous set Si (i.e., the angular difference should be smaller than a
threshold αT). Whenever the first criterion is not met, a new smooth segment is initiated
starting with the next set. On the other hand, when the second criterion is not met, a
new smooth segment is initiated starting with the current set. One should note that the
moved set is always shifted one point at a time. In addition, a point could be classified as
pertaining to more than one smooth segment.

To ensure that the derived smooth curve segments are not affected by the starting
point location, the process terminates with a cyclic investigation of continuity with the
last scanned points appended by the first n points. A detailed demonstration of the SLS
approach for a single laser beam is provided in Figure 9. In this paper, the parameter n,
used to define a set of points pertaining to the small line segments, is selected as 20. This
value is based on the point density along each scan line to ensure a reasonable length of
the line segments. Similarly, the outlier percentage threshold is selected as 20% according
to the noise level in the LiDAR data. An example of the original point cloud for a given
laser beam scan and its derived smooth curve segments is shown in Figure 10a,b. For a
calibrated system, the piece-wise smooth curve segmentation is performed for derived
point clouds from the two LiDAR units at a given scan, wherein each laser beam from each
unit is independently segmented. Figure 10c shows the derived smooth curve segments for
one scan captured by the two LiDAR units.



Remote Sens. 2022, 14, 231 13 of 35

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 38 
 

 

to define a set of points pertaining to the small line segments, is selected as 20. This value 
is based on the point density along each scan line to ensure a reasonable length of the line 
segments. Similarly, the outlier percentage threshold is selected as 20% according to the 
noise level in the LiDAR data. An example of the original point cloud for a given laser 
beam scan and its derived smooth curve segments is shown in Figure 10a,b. For a cali-
brated system, the piece-wise smooth curve segmentation is performed for derived point 
clouds from the two LiDAR units at a given scan, wherein each laser beam from each unit 
is independently segmented. Figure 10c shows the derived smooth curve segments for 
one scan captured by the two LiDAR units. 

 
Figure 9. Illustration of the proposed SLS strategy with points pertaining to two smooth curve seg-
ments. A set of sequentially scanned points is assumed to consist of five points and the outlier 
threshold 𝑛  is set to 2. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Sample results for the SLS approach: (a) point cloud from a single beam scan, (b) smooth 
curve segments along the same point cloud (different curve segments are in different colors), (c) 
derived smooth curve segments from all laser beams in a LiDAR scan (different curve segments are 
in different colors), and (d) planar feature segmentation results (different planar features are in dif-
ferent colors). 

Figure 9. Illustration of the proposed SLS strategy with points pertaining to two smooth curve
segments. A set of sequentially scanned points is assumed to consist of five points and the outlier
threshold nT is set to 2.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 38 
 

 

to define a set of points pertaining to the small line segments, is selected as 20. This value 
is based on the point density along each scan line to ensure a reasonable length of the line 
segments. Similarly, the outlier percentage threshold is selected as 20% according to the 
noise level in the LiDAR data. An example of the original point cloud for a given laser 
beam scan and its derived smooth curve segments is shown in Figure 10a,b. For a cali-
brated system, the piece-wise smooth curve segmentation is performed for derived point 
clouds from the two LiDAR units at a given scan, wherein each laser beam from each unit 
is independently segmented. Figure 10c shows the derived smooth curve segments for 
one scan captured by the two LiDAR units. 

 
Figure 9. Illustration of the proposed SLS strategy with points pertaining to two smooth curve seg-
ments. A set of sequentially scanned points is assumed to consist of five points and the outlier 
threshold 𝑛  is set to 2. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Sample results for the SLS approach: (a) point cloud from a single beam scan, (b) smooth 
curve segments along the same point cloud (different curve segments are in different colors), (c) 
derived smooth curve segments from all laser beams in a LiDAR scan (different curve segments are 
in different colors), and (d) planar feature segmentation results (different planar features are in dif-
ferent colors). 

Figure 10. Sample results for the SLS approach: (a) point cloud from a single beam scan, (b) smooth
curve segments along the same point cloud (different curve segments are in different colors), (c) de-
rived smooth curve segments from all laser beams in a LiDAR scan (different curve segments are
in different colors), and (d) planar feature segmentation results (different planar features are in
different colors).

The next step in the SLS workflow is to group smooth curve segments that belong
to planar surfaces. This is conducted using a RANSAC-like strategy. For a point cloud
(a LiDAR scan in this study) that is comprised of a total of ns smooth curve segments, a total
of C2

ns pairings are established. Among all pairings, only the ones originating from different
laser beams are investigated. For each of these pairings, an iterative least squares-based
plane fitting with built-in outlier removal is conducted. The iterative plane fitting starts
with the points from a pair of curve segments as initial inliers. The process keeps finding
new inliers and updates the plane parameters until the number of inliers does not change
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significantly between iterations. Then, all remaining smooth curve segments are checked to
evaluate whether the majority of the points belong to the plane defined by the pair of curve
segments in question. This process is repeated for all the pairs to obtain possible planar
surfaces (along with their constituent smooth curve segments). The planar surface with
the maximum number of points is identified as a valid feature and its constituent curve
segments are dropped from the remaining possible planar surfaces. Then, the process of
identifying the best planar surface amongst the remaining curve segments is repeated until
no more planes can be added. The difference between the proposed segmentation strategy
and RANSAC is that we perform an exhaustive investigation of all possible curve segment
pairings to ensure that we get as complete planar segments as possible. This is critical
given the sparse nature of the scan. Figure 10d illustrates the results of planar feature
segmentation for the scan shown in Figure 10c.

4.3. Image-Based Coarse Registration

In this step, the goal is to coarsely align the LiDAR scans at each station. At the
conclusion of this step, LiDAR point clouds from S scans (e.g., S = 7) at a given station are
reconstructed in a coordinate system defined by the pole at the first scan. In other words,
the pole coordinate system at the first scan (k = 1) is considered as the mapping frame, i.e.,
rm

p(1) is set to
[

0 0 0
]Tand Rm

p(1) is set as an identity matrix. For the SMART system, we
assume that the pole does not translate between scans at a given station, i.e., rm

p(k) = rm
p(1),

but is incrementally rotated with a nominal rotation around the pole Z axis (−30◦ in the
suggested set-up). One should note that, although there might be small translation between
different scans, assuming a constant position of the pole after its rotation is a reasonable
assumption for conducting a coarse registration of point clouds at a given station. Therefore,
considering the point positioning equation, Equation (2), and given the system calibration
parameters rp

luj
and Rp

luj
, the coarse registration problem now reduces to the estimation of

pole rotation matrices Rp(1)
p(k) , with k ranging from 2 to 7.

The rotation matrices Rp(1)
p(k) can be derived through the incremental pole rotation

estimates between successive scans, i.e., Rp(k−1)
p(k) (2 ≤ k ≤ 7). One should note that,

although the incremental rotation matrix is nominally known based on the SMART data
collection strategy, e.g., the rotation Rp(k−1)

p(k) can be assumed to be Rx(0◦)Ry(0◦)Rz(−30◦),
such rotation might not lead to point clouds with reasonable alignment. Figure 11 shows
an example of the combined point clouds from the two LiDAR units collected at two scans
(k = 3 and k = 5) for the single station in the US-231 dataset while using the nominal
rotation angles for coarse registration. As can be seen in this figure, there is a significant
misalignment between reconstructed point clouds.
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Due to the featureless nature of stockpile surfaces, sparsity of individual LiDAR
scans, and insufficient overlap between successive scans, establishing conjugate features
for coarse registration of multiple scans is a challenging task. To overcome this limitation,
an image-aided LiDAR coarse registration strategy is proposed. More specifically, we first
derive the incremental camera rotation angles using a set of conjugate points established
between successive images. Then, the pole rotation angles are derived using the estimated
camera rotations and system calibration parameters. Due to the very short baseline between
images captured at a single station, conventional approaches for establishing the relative
orientation using essential matrix and epipolar geometry, e.g., the Nister approach [52],
are not applicable. Therefore, the incremental rotation between successive scans is esti-
mated using a set of identified conjugate points in the respective images while assuming
that the camera is rotating around its perspective center. The remainder of this section
addresses the estimation of the incremental camera rotation using a set of conjugate points
and then proceeds by introducing the proposed approach for the identification of these
conjugate points.

For an established conjugate point between images captured at scans k− 1 and k from
a given station, Equation (1) can be reformulated as Equation (3), which can be further
simplified to the form in Equation (4). Assuming that the components of camera-to-pole
lever arm rp

c are relatively small,
{

R1
p(k−1) − R1

p(k)

}
rp

c can be expected to be close to 0.

Given the pole-to-camera boresight matrix Rc
p, the incremental camera rotation Rc(k−1)

c(k)

can be represented as Rc
p Rp(k−1)

p(k) Rp
c . Therefore, Equation (4) can be reformulated to the

form in Equation (5). Given a set of conjugate points, the incremental camera rotation
matrix Rc(k−1)

c(k) can be determined through a least squares adjustment to minimize the sum

of squared differences ∑m
i=1

[
rc(k−1)

i − λ(i, c, k− 1, k) Rc(k−1)
c(k) rc(k)

i

]2
, where m is the number

of identified conjugate points in the stereo-pair in question. To eliminate the scale factor
λ(i, c, k− 1, k) from the minimization process, the vectors rc(k−1)

i and rc(k)
i can be reduced

to their respective unit vectors, i.e., rc(k−1)
i and rc(k)

i . Thus, Rc(k−1)
c(k) can be determined by

minimizing ∑m
i=1

[
rc(k−1)

i − Rc(k−1)
c(k) rc(k)

i

]2
. Estimation of Rc(k−1)

c(k) can be realized through a
closed-form solution using quaternions by identifying the eigenvector corresponding to
the largest eigenvalue for a (4× 4) matrix defined by the pure quaternion representations
of rc(k−1)

i and rc(k)
i [53]. One should note that estimating the incremental camera rotation

angles requires a minimum of three well-distributed, conjugate points in two successive
images. Once the incremental camera rotation matrices are derived, the rotation between
the camera at a given scan k and the camera at the first scan can be estimated through
rotation matrix concatenation, i.e., Rc(1)

c(k) = Rc(1)
c(2)R

c(2)
c(3) . . . Rc(k−1)

c(k) . Finally, the pole rotation

between scan k and the first scan can be derived, i.e., Rp(1)
p(k) can be defined as Rp

c Rc(1)
c(k)Rc

p.
Now, the coarse registration of different pole scans at a given location reduces to the
identification of a set of conjugate points between successive images.

rm
I (k− 1) = Rp(1)

p(k−1)r
p
c + λ(i, c, k− 1)Rp(1)

p(k−1)R
p
c rc(k−1)

i

rm
I (k) = Rp(1)

p(k)r
p
c + λ(i, c, k)Rp(1)

p(k)Rp
c rc(k)

i

 (3)

{
Rp(1)

p(k−1) − Rp(1)
p(k)

}
rp

c + λ(i, c, k− 1)Rp(1)
p(k−1)R

p
c rc(k−1)

i = λ(i, c, k)Rp(1)
p(k)Rp

c rc(k)
i (4)

rc(k−1)
i = λ(i, c, k− 1, k) Rc(k−1)

c(k) rc(k)
i (5)

Due to the featureless nature of the stockpile surface as well as the presence of repet-
itive patterns inside a storage facility (e.g., beam junctions, bolts, window corners, etc.)
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as well as the inability to use epipolar constraints for images with a short baseline, tradi-
tional matching techniques would produce a large percentage of outliers. Therefore, we
propose a rotation-constrained image matching strategy where the nominal pole rotation
can be used to predict the location of a conjugate point in an image for a selected point
in another one. In this regard, one can use Equation (5) to predict the location of a point
in image k− 1 for a selected feature in image k. To simplify the prediction process, the
unknown scale factor λ(i, c, k− 1, k) can be eliminated by dividing the first and second
rows by the third one, resulting in Equation (6), where x′i and y′i are the image coordinates
of conjugate points after correcting for the principal point offsets and lens distortions. The
remainder of this subsection discusses the proposed image matching strategy, referred to
as rotation-constrained image matching, by first discussing the limitations of traditional
matching algorithms when it comes to finding conjugate features in images captured in
stockpile facilities.

x
′c(k−1)
i = −c r11 x

′c(k)
i +r12 y

′c(k)
i −r13 c

r31 x
′c(k)
i +r32 y

′c(k)
i −r23 c

y
′c(k−1)
i = −c r21 x

′c(k)
i +r22 y

′c(k)
i −r23 c

r31 x
′c(k)
i +r32 y

′c(k)
i −r23 c


(6)

Rotation-constrained image matching: Commonly used image matching strategies are
based on a detect-and-describe framework where first a set of interest points are detected
in an image pair and then a descriptor is generated for each detected feature using a local
region around that feature. Various feature detector and descriptor approaches such as
SIFT [39] have been developed and thoroughly evaluated [54–56]. For detected features in
a stereo pair, denoted hereafter as left and right images, traditional approaches establish
conjugate points through comparison of each feature descriptor in the left image with
all feature descriptors in the right image (i.e., exhaustive search is conducted) as can
be seen in Figure 12. Exhaustive search performs well for images with distinct point
features. However, in images with repetitive patterns, which is a key characteristic of
stockpile images, there will be a very high similarity between the feature descriptors, thus
resulting in a high percentage of outliers as can be seen in Figure 13 for a stereo-pair in the
US-231 dataset.
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Figure 12. Traditional exhaustive matching strategy: each feature descriptor in the left image is
compared with all feature descriptors in the right image.

In this study, nominal rotation angles between images are used in an iterative proce-
dure to reduce the matching search space and thus mitigate matching ambiguity. Figure 14
shows the workflow of the proposed rotation-constrained image matching approach. In
the first step, the SIFT detector and descriptor algorithm is applied on all images captured
at a single station. Then, lens distortions are removed from the coordinates of detected
features. Next, two successive images are selected for conducting image matching. In the
fourth step, the incremental rotation matrix of the camera for the selected successive scans
is initially defined using the nominal pole rotation angles while considering the camera
mounting parameters. Given the nominal rotation matrix and extracted features, in the
next step, an iterative procedure (Steps 5 and 6) is adopted to establish conjugate features
and consequently, refine the incremental camera rotation angles between the two images.
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Figure 14. Flowchart of the proposed rotation-constrained image matching for the SMART system.

In the iterative procedure, each extracted feature in the left image is projected to the
right image using the current estimate of incremental camera rotation angles: Equation (6).
The predicted point in the right image is then used to establish a search window with a
pre-defined dimension. This process is shown in Figure 15a. The search window size is
determined according to the reliability of the current estimate of pole rotation angles as
well as camera system calibration parameters. Accordingly, in our experiments, a window
size of 1000 × 1000 pixels is selected for the first iteration. Among all SIFT features in
the right image, only those located inside the search window are considered as potential
conjugate features. This strategy could eliminate some of the matching ambiguities caused
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by repetitive patterns in the imagery. Once a feature in the right image is selected as a
matching hypothesis, a left-to-right and right-to-left consistency check is conducted to
remove more matching outliers. In the sixth step, conjugate features are used to refine the
incremental camera rotation between the two successive scans using the abovementioned
quaternion-based least squares adjustment. At this stage, established conjugate points
in the left image are projected to the right one using the refined rotation angles, and the
root-mean-square error (RMSE) value of coordinate differences between the projected
points and their corresponding features in the right image is estimated. The RMSE value is
referred to as projection residual. Steps 5 and 6 are repeated until the projection residual
is smaller than a threshold (e.g., 40 pixels) or a maximum number of iterations (e.g., 5) is
reached. Considering the camera to object-space distance in our experiments, it is expected
that the estimated pole rotation matrix with ~40 pixels projection error leads to a reasonable
coarse registration. Additionally, the maximum number of iterations is selected as five to
establish a trade-off between the processing efficiency and alignment quality among point
clouds after the coarse registration.
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Figure 15. Rotation-constrained image matching: (a) predicted point location and matching search
window size in first iteration and (b) progression of the matching evaluation through the iterations.

One should note that, with the progression of iterations, more reliable conjugate fea-
tures are established, and therefore, the estimated incremental rotation angles between
successive images become more accurate. Consequently, the search window size is re-
duced by a constant factor after each iteration to further reduce matching ambiguity. A
conservative reduction factor of 0.8 is selected in our experiments to strike a balance be-
tween efficiency and reliability against missing correct correspondences. This process is
schematically shown in Figure 15b. Figure 16 shows sample matching results from the
rotation-constrained matching strategy after one iteration (Figure 16a) and two iterations
(Figure 16b) for the stereo-pair illustrated in Figure 13. Comparing Figures 13 and 16, one
can observe an improvement in the quality of matches, i.e., decrease in the percentage
of outliers, when using the rotation-constrained matching. Additionally, through closer
inspection of Figure 16a,b, we can see an increase in the number of matches, improvement
in distribution of conjugate points, and decrease in the projection residual in the iterative
approach compared to the case when relying on nominal rotation angles only, i.e., rotation-
constrained matching with one iteration. To illustrate the feasibility of the proposed
matching strategy, Figure 17 shows the post-coarse registration alignment for the scans in
Figure 11, which had been originally aligned using the nominal pole incremental rotation.
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a better visualization, only 10% of matches are illustrated).
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Figure 17. Image-based coarse registration results for two scans (k = 3 and k = 5) of the single
station in US-231 dataset, which had been originally aligned using the nominal pole rotation angle
(Figure 11): (a) top-view and (b) side view. Point clouds are colored by scan ID.

4.4. Feature Matching and Fine Registration of Point Clouds from a Single Station

Once the LiDAR scans are coarsely aligned, conjugate planar features in these scans
are identified through the similarity of surface orientation and spatial proximity. In other
words, segmented planar patches from different scans are first investigated to identify
planar feature pairs that are almost coplanar. A planar feature pair is deemed coplanar
if it fulfills two criteria–first, the angle between their surface normals does not exceed
a threshold angle. Given reasonable alignment of point clouds after coarse registration,



Remote Sens. 2022, 14, 231 20 of 35

this threshold is assigned a small value, e.g., 3◦. Second, the plane-fitting RMSE of the
merged planes RMSET is not significantly larger than the plane-fitting RMSE for the
individual planes RMSEp1, RMSEp2; i.e., RMSET = nRMSE ×max

(
RMSEp1, RMSEp2

)
,

where nRMSE is a user-define multiplication factor. Once the coplanarity of a planar feature
pair is confirmed, the spatial proximity of its constituents is checked in order to reject
matches between two far planes. An accepted match is considered as a new plane and the
process is repeated until no additional planes can be matched.

Following the identification of conjugate planes, a feature-based fine registration is
implemented, as described by Lin et al. [57]. The key characteristic of the adopted fine
registration strategy is simultaneous alignment of multiple scans using features that have
been automatically identified in the point clouds. Moreover, the post-alignment parametric
model of the registration primitives is also estimated. In this study, identified planar
features extracting along the floor, walls, and ceiling of the facility are used as registration
primitives. The conceptual basis of the fine registration is that conjugate features would fit
a single parametric model after registration. The unknowns of the fine registration include
the transformation parameters for all the scans except one (i.e., one of the scans is used
to define the datum for the final point cloud) as well as the parameters of the best fitting
planes. In terms of the parametric model, a 3D plane is defined by the normal vector to
the plane and signed a normal distance from the origin to the plane. The fine registration
parameters are estimated through a least-squares adjustment by minimizing the squared
sum of normal distances between the individual points along conjugate planar features
and best fitting plane through these points following the point cloud alignment.

A transformed point in the mapping frame, rm
I , can be expressed symbolically by

Equation (7), where rk
I is an object point I in scan k; tm

k denotes the transformation parame-
ters from scan k to the mapping frame as defined by the reference scan. The minimization
function is expressed mathematically in Equation (8), where f m

b denotes the feature pa-
rameters for the bth. feature; nd

(
rm

I , f m
b
)

denotes the post-registration normal distance of
the object point from its corresponding feature. Figure 18 presents the conceptual basis
of the fine registration together with sample point clouds before and after feature-based
fine registration, where the improvement in alignment can be clearly seen. The root mean
square of the normal distances between the aligned point cloud for all the features and their
respective fitted planes is adopted as a quality control metric. For truly planar features, the
RMSE should be a fraction of the ranging noise for the used LiDAR units. In other words,
the RMSE of the normal distances from the best fitting plane is expected to be within the
bounds defined by the ranging noise. To consider situations where the used primitives are
not perfectly planar, the RMSE is expected to be two to three times the range noise.

rm
I = f

(
tm
k , rk

I

)
(7)

argmin
tm
k , f m

b

∑
∀ scans and features

nd2(rm
I , f m

b ) (8)

4.5. Coarse Registration of Point Clouds from Multiple Stations

At this stage, point clouds from the same station are well-aligned. The goal of this
step is to coarsely align point clouds from different stations, if available. Assuming that the
planimetric boundary of the involved facility can be represented by a rectangle, the multi-
station coarse registration can be conducted by aligning these rectangles. The process starts
with levelling and shifting the registered point clouds from each station until the ground of
the facility aligns with the XY plane. Then, the point clouds are projected onto the XY plane
and the outside boundaries are traced using the approach proposed by Sampath [58] (see
Figure 19a). Next, the minimum bounding rectangle (MBR) [59] of the boundary for each
station is derived: each MBR is represented by four points, as shown in Figure 19b. Finally,
the inter-station coarse registration is realized by aligning the four points representing the
MBRs from the different stations. In the SMART operation, the pole orientation in the first
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scan at each station is set up to have a similar orientation relative to the facility. Since the
pole coordinate system at the first scan for different stations is used as a reference, the
coarse registration rotation angles in the XY-plane should be small (i.e., there will be no
ambiguity in rotation estimation for multi-station coarse registration when dealing with
rectangular facilities). Following the multi-station coarse registration, a feature matching
and fine registration step similar to what has been explained in Section 4.4 for single station
is repeated while considering all the scans at all the stations.
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4.6. Volume Estimation

For volume estimation, a digital surface model (DSM) is generated using the levelled
point cloud for the scanned stockpile surface and boundaries of the facility. To generate the
DSM, first, grid cells of identical size are defined in the XY plane over the stockpile area.
The cell size is chosen based on a rough estimate of the average point spacing (0.1 × 0.1 m
in this research). Then, each cell is assigned a height based on an interpolated elevation
of the stockpile surface at the center of the cell. A Delaunay triangulation-based bilinear
interpolation is implemented for this purpose. It is reasonable to assume that occlusions
will occur regardless of the system setup in the facility. The interpolation, therefore, enables
the derivation of stockpile surface in occluded areas, particularly between the scanned
surface and facility boundaries. Finally, the volume (V) is defined according to Equation (9),
where ncell is the number of DSM cells, zi is the elevation at the ith DSM cell, zground is
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the elevation of ground, and ∆x and ∆y are the cell size along the X and Y directions,
respectively. Figure 20 shows a 2D schematic diagram that illustrates the 3D volume
estimation process. The space bounded by the scanned surface (blue line), ground (black
line), boundary of the facility (red line), and interpolated surface (green line) would be the
estimated stockpile volume.

V = ∑ncell
i=1

(
zi − zground

)
∆x∆y (9)
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5. Experimental Results and Discussion

This section evaluates the capability of the developed SMART system for stockpile
volume estimation using the datasets introduced earlier. Before reporting the volume esti-
mation results, we first list the system calibration results and then evaluate the performance
of the developed strategies for coarse and fine registration of the point clouds collected
by the SMART system. C++ programming was used for the development of an in-house
implementation of the coarse and fine registration strategies. For the image-based coarse
registration, OpenCV [60] implementation of SIFT was used as the feature detector and
descriptor algorithm.

5.1. System Calibration Results

In this study, a system calibration dataset was collected inside a high-bay facility
located at the Agronomy Center for Research and Education (ACRE) in Purdue University.
Figure 21 shows sample images of the calibration site. The images show the presence of
sufficient number of planar features (e.g., ground, walls, ducts, table surfaces, and gates),
which would facilitate the SMART system calibration.
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The estimated system calibration parameters along with their standard deviations are
presented in Table 3. As mentioned in Section 4.1, the mounting parameters between the
first LiDAR unit and pole coordinate system are fixed (shown in red in Table 3). Given
the standard deviation (Std. Dev.) values, one can conclude that the estimated mounting
parameters are precise. With the mounting parameters known, point clouds from the two
LiDAR units at a given scan can now be registered to the pole coordinate frame. Figure 22
shows point clouds from the two LiDAR units at a given scan before and after calibration.

Table 3. Estimated mounting parameters relating the LiDAR and camera units to the pole coordinate frame.

Sensor
Lever-Arm Offset Boresight Angles

∆X (m) ∆Y (m) ∆Z (m) ∆ω(◦) ∆ϕ(◦) ∆κ(◦)

LiDAR
Unit 1 0 −0.20 0 42 0 0

LiDAR
Unit 2 −0.165 −0.029 −0.072 −7.102 −57.144 −104.146

(Std. Dev.) ±0.001 ±0.0004 ±0.001 ±0.004 ±0.002 ±0.004
Camera 0.017 −0.034 0.024 −14.686 −66.394 −103.886

(Std. Dev.) ±0.014 ±0.015 ±0.020 ±0.787 ±0.288 ±0.801
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5.2. Results of Image-Based Coarse Registration at a Single Station

In this subsection, the performance of the proposed feature matching algorithm for
image-based coarse registration is evaluated. The feasibility of the constrained image
matching is verified by comparing the estimated incremental rotation angles against those
derived from traditional exhaustive image matching and manually established conjugate
points. More specifically, the following criteria are used for this evaluation:

• Number of matches/projection residuals: For the automated approaches, the number
of matches signifies the ability to establish enough conjugate features between two
successive images. In the case of manual measurements, few reliable conjugate points
with a relatively good distribution are established. The projection residual, which
is the RMSE value of differences between the coordinates of projected features from
the left to right image and their corresponding features in the right image, can be
used to infer the quality of established matches and/or estimated rotation angles.
Large projection residual is an indication of high percentage of matching outliers, and
consequently, inaccurate estimates of the incremental pole rotation angles.

• Incremental pole rotation angles (∆ω, ∆ϕ, and ∆κ): Considering the results form
manual measurements as a reference, this criterion shows how accurately the auto-
mated approaches can estimate the incremental pole rotation between two scans. As
mentioned earlier, the nominal incremental pole rotation between two scans (i.e., ∆ω,
∆ϕ, and ∆κ) are (0.0◦, 0.0◦, and −30.0◦), respectively.

• Processing time: For the automated approaches, this refers to the processing time
for feature detection, descriptor generation, and matching steps. In case of manual
measurements, this refers to the approximate time required for manually identifying
point correspondences between the two images.
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The above-mentioned evaluation criteria pertaining to the exhaustive/proposed
matching approaches and manual measurement of conjugate points for the established
six stereo-pairs from the US-231 dataset are presented in Table 4. To show the impact
of adopting an iterative process, results from the proposed approach after one iteration,
i.e., using only nominal pole rotation angles, are also reported in Table 4. To differentiate
the rotation-constrained approaches without and with iterations, they are referred to as
one-step constrained and iterative constrained matching, respectively.

Table 4. Performance comparison of the traditional and proposed image matching techniques in
terms of number of matches, processing time, projection residual, and estimated relative pole rotations
for the station in the US-231 dataset.

Image-Based Coarse
Registration Technique

Stereo
(Image) ID

Number of
Matches

Projection
Residuals (Pixel) Pole ∆ω(◦) Pole ∆ϕ(◦) Pole ∆κ(◦) Processing Time

(Second)

Exhaustive
1

(1–2)

3466 348 1.1 0.1 −22.3 2.06
One-step constrained 1922 66 1.5 0.2 −22.8 39.00
Iterative constrained 3408 25 1.5 0.2 −22.5 81.19

Manual measurements 11 10 1.5 0.3 −22.4 ~600

Exhaustive
2

(2–3)

3159 447 1.6 −0.5 −22.6 2.10
One-step constrained 2065 40 0.8 −0.5 −23.6 33.14
Iterative constrained 3079 29 0.9 −0.5 −23.6 72.33

Manual measurements 10 8 0.8 −0.5 −23.6 ~420

Exhaustive
3

(3–4)

2394 4042 4.9 −1.2 −40.6 1.99
One-step constrained 513 230 −2.8 0.9 −38.3 21.15
Iterative constrained 2127 25 1.2 −0.2 −43.6 44.47

Manual measurements 12 7 1.2 −0.1 −43.6 ~540

Exhaustive
4

(4–5)

2798 8244 5.1 −2.8 −36.6 2.04
One-step constrained 1744 76 1.0 −0.5 −38.2 25.41
Iterative constrained 2506 32 1.1 −0.6 −38.4 49.62

Manual measurements 10 8 1.1 −0.7 −38.4 ~300

Exhaustive
5

(5–6)

4066 519 2.1 −0.2 −21.2 2.12
One-step constrained 2398 47 0.9 0.1 −22.0 40.26
Iterative constrained 3914 34 1.0 0.1 −21.9 82.80

Manual measurements 10 7 1.2 0.2 −21.9 ~300

Exhaustive
6

(6–7)

3680 1121 1.9 −0.7 −31.4 2.07
One-step constrained 3495 27 1.1 −0.4 −32.5 43.83
Iterative constrained 3495 27 1.1 −0.4 −32.5 42.83

Manual measurements 10 5 1.3 −0.4 −32.5 ~480

In terms of number of matches, the exhaustive approach produces the largest set of
conjugate points for all six stereo-pairs. However, looking into the reported projection
residuals in Table 4, one can observe that the exhaustive approach leads to significantly
larger errors up to ~8000 pixels. Such large projection residual indicates a high percentage
of outliers in the conjugate points established by the traditional approach as well as im-
precise estimation of the incremental rotation angles. As expected, among the automated
approaches, the iterative constrained approach results in the smallest projection residual.
In other words, RMSE of the residuals for this approach is always smaller than the selected
threshold for stopping the iteration in the proposed iterative matching (i.e., 40 pixels in
these experiments). The approach with one iteration, i.e., one-step constrained, results
in RMSE values comparable to the iterative strategy in most cases with the exception of
stereo-pair 3. Looking into the estimated incremental pole rotations for Stereo-Pair 3 using
the manual measurements, it can be seen that the pole rotation angle ∆κ between the
two images, which is −43.6◦, is significantly different from the nominal rotation angle of
−30.0◦. Thus, when using nominal rotation angles that are different from the actual ones
for deriving the matching search window, the proposed approach leads to some matching
outliers in the first iteration, resulting in a large projection error (230 pixels). However,
the iterative approach progressively derives more reliable matches and better estimates
of the incremental rotation angles. In terms of incremental pole rotation angles, the itera-
tive constrained approach always derives estimates that are quite similar to those using
manually-established conjugate points (with differences less than 0.1◦). On the other hand,
the estimated rotation angles from the exhaustive and one-step constrained approaches
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differ from the manual measurement results by as much as 4–5◦ (refer to the values in red
for stereo-pair 3). For the processing time, it can be observed that the exhaustive matching
is faster than the proposed iterative image matching strategy. The difference in the perfor-
mance is mainly due to the projection of extracted SIFT features from the left to the right
images of a stereo-pair throughout the iterations. The time consumption of the iterative
constrained matching approach when compared to the one-step constrained matching de-
pends on the number of iterations. For example, in Stereo-pairs 1 to 5, the processing time
for the iterative constrained approach is almost double of that for the one-step constrained
matching, indicating that the algorithm met the residual threshold (40 pixels) after two
iterations. For Stereo-pair 6, the results show that the iterative constrained approach is
identical in performance to the one-step constrained matching. This is due to the fact that
the nominal and true rotation angles are very similar for this stereo-pair; thus, the proposed
approach reached the projection residual threshold in just one iteration. Overall, from
Table 4, it can be concluded that, without a significant increase in the processing time, the
proposed image matching strategy can lead to more accurate estimates of the incremental
pole rotation angles.

For coarse registration of LiDAR scans at a given station, the rotation from each
subsequent scan to the reference frame is derived incrementally. In this regard, one should
note that any error in the estimated incremental rotation angles for a given scan will
propagate to the following scans. Image-based LiDAR coarse registration results from
the exhaustive, one-step constrained, and iterative constrained approaches are illustrated
in Figure 23a–c, respectively, for the SMART station in the US-231 dataset. In this figure,
point clouds are colored by their respective scan ID (seven scans in total). Through Table 4
and Figure 23, one can conclude that the misalignment in the point clouds resulting from
the exhaustive and one-step constrained approaches is mainly caused by an error in the
estimated pole rotation for Stereo-pair 3. Through a closer inspection of Figure 23, it can
be seen that other than a large error in the ∆κ angle (misalignment shown in the top-view
display in Figure 23a), large ∆ω error is also present in the point cloud generated from the
exhaustive matching strategy (misalignment shown in the side-view display in Figure 23a).
These erroneous incremental rotations are highlighted in Table 4 for the estimated pole
rotations for Stereo-pair 3. In summary, the proposed iterative approach leads to point
clouds with better alignment when compared to the exhaustive matching and one-step
constrained approach.

5.3. Fine Registration Results

The reconstructed point clouds after fine registration were assessed using the RMSE
of normal distances between post-registered point clouds along the different features and
their respective best-fit planes. Results from the SLS-based fine registration for the US-231
and Lebanon datasets are shown in Table 5. In spite of having the same number of planar
features, the Lebanon dataset has almost twice the number of points compared to that of
US-231. This can be attributed to the additional data collection station at Lebanon. One
should note that, since the facility at Lebanon is larger than the US-231 one, point clouds in
the former are sparser. In terms of registration accuracy, both datasets have a similar RMSE
of about 0.02 m despite having different point cloud densities. This level of accuracy is
consistent with the ranging noise of the LiDAR sensors used in the SMART system [48]. In
other words, the registration accuracy was only limited by the noise of the LiDAR sensors
and was not impacted by the sparsity of the point clouds.

While the quantitative results are sufficient to highlight the accuracy of fine registration,
the final point clouds can also be visually inspected. A qualitative evaluation is also
important for assessing occluded portions of the stockpile surfaces in the LiDAR scans. For
the two SMART datasets, their fine registered point clouds are visualized in Figure 24. One
should note that only planar features, none of which belong to the stockpile surface, are
shown. The blind spots at locations where the SMART system was stationed are visible
in Figure 24.
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Table 5. Accuracy assessment of post-fine registration of point clouds in the Lebanon and US-231 facilities.

Dataset Total Number of
Planar Features Used

Total Number of
Points

Point Density
Range (Points/m2)

RMSE of Normal
Distance (m)

LiDAR Ranging
Noise (m)

Lebanon 13 516,756 2–1890 * 0.0211
0.03US-231 13 275,146 0.3–790 0.0212

* Based on two stations; for one station it is in a range of 0.3–700 points/m2.

5.4. Stockpile Volume Estimation

The two SMART datasets in the Lebanon and US-231 salt storage facilities were
acquired from an extended tripod that was over 6 m high. As was mentioned earlier, the
volumetric accuracy of the SMART system is evaluated by comparing its volume estimates
to that from the Faro Focus TLS. For the Lebanon dataset, TLS point clouds were captured
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from two stations with the scanner mounted on another extendable tripod with similar
scanning height to that for the SMART system as shown in Figure 25. Like any other
stockpile measurement strategy, SMART and/or TLS are expected to have some occluded
portions. Given similar SMART/TLS scanning height for the Lebanon facility, the occlusion
pattern for these systems is expected to be similar. To study the impact of occlusions on
volume estimation, the TLS in the US 231 was mounted on a regular tripod, and three
scans were acquired with two scans on top of the stockpile, as illustrated in Figure 26. The
occlusion patterns for the SMART and TLS units in the Lebanon and US 231 facilities are
shown in Figure 27. Before volume estimation, the gaps between the stockpile surface and
facility boundaries are filled using a bilinear interpolation, as shown in Figure 28. The
estimated volume for the two datasets obtained from the SMART system is compared with
those from TLS in Table 6; where occlusion percentages for the SMART and TLS stockpile
surfaces are also reported.
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Table 6. Comparison of volume estimates from the SMART and TLS scans.

Dataset
Occlusion (%)

SMART Volume (m3) TLS Volume (m3) Difference (m3) Error (%)
SMART TLS

Lebanon 31.8 34.3 1438.9 1437.5 1.4 ~0.0
US-231 49.6 20.6 999.5 968.4 31.1 3.2
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The comparison between the TLS and SMART volume estimates in Table 6 illustrates
two main observations: (1) the relative performance of SMART and TLS given similar
occlusion pattern (Lebanon dataset); and (2) impact of occlusion extent on the estimated
volumes (US-231 dataset). For the Lebanon dataset, where the SMART and TLS had
comparable occlusion percentage, one can see that they both produce similar volumes.
This is an indication of the SMART’s ability to deliver volume estimates that are as precise
as those derived from TLS. For the US-231 dataset, on the other hand, the difference
percentage is in the range of 3%, which is a direct result of higher occlusion percentage for
the SMART system.

Salt Repositioning Test: In the Lebanon facility, a salt repositioning test was performed
to further examine the volumetric accuracy attained by the proposed system. Initially,
the stockpile consisted of two large heaps on the left and right sides of the facility. Us-
ing a bucket loader, two small quantities of salt were picked and moved into two new
piles (Figure 29). The shapes of the original and repositioned salt piles are shown in
Figure 30. Following the repositioning, another set of scans were captured by the SMART
and TLS units.
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Figure 29. Salt repositioning experiment at the Lebanon facility.
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Figure 30. Top view of RGB color-coded point clouds from the TLS, acquired before/after salt
repositioning test at the Lebanon Facility. Initial left and right piles are highlighted in red and blue,
respectively (left), along with the corresponding small and big piles after repositioning (right).

The post-repositioning individual volumes of the big and small piles are assessed
using the SMART and TLS scans (Tables 7 and 8 show the estimates for the left and right
piles, respectively). From Tables 7 and 8, it can be observed that for the big piles, volumetric
errors are under 1.4%, whereas for the smaller piles, they were 1.7% and 4.7%. The larger
error for the right small pile is attributed to the difference in the extent of occlusions
between SMART and TLS, as visualized in Figure 31, where the area marked in yellow
has no coverage from the TLS (i.e., the SMART estimate is more reliable in this case). The
combined volumes after repositioning are subsequently compared with their corresponding
initial volumes, as can be seen in Tables 9 and 10, where a small and consistent volumetric
error of under 1.4% was achieved. It is worth noting that a 2 to 3 cm registration discrepancy
could result in more than 10 m3 volumetric error for big piles (i.e., piles with large base
coverage). Therefore, volumetric errors are mainly represented as percentages rather than
absolute values.

Table 7. SMART and TLS volumes estimates for post-repositioned stockpiles on the left side.

Volume from SMART (m3) Reference/TLS (m3) Difference (m3) Error (%)

Left big pile 798 808.9 10.9 1.4
Left small pile 17.2 17.5 0.3 1.7
Combined left 815.2 826.4 11.2 1.4

Table 8. SMART and TLS volumes estimated for post-repositioned stockpiles on the right side.

Volume from SMART (m3) Reference/TLS (m3) Difference (m3) Error (%)

Right big pile 603.9 604.1 0.2 ~0.0
Right small pile 17.04 17.88 0.84 4.7
Combined right 620.94 621.98 1.04 0.2

Table 9. SMART and TLS volume estimates for the left pile before/after repositioning.

Initial Volume (m3) Combined Volume after Repositioning (m3) Difference (m3) Error (%)

SMART 819.3 815.2 4.1 0.5
Reference/TLS 815.1 826.4 11.3 1.4
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Table 10. SMART and TLS volumes for the right pile before/after repositioning.

Initial Volume (m3) Combined Volume after Repositioning (m3) Difference (m3) Error (%)

SMART 619.3 620.94 1.64 0.3
Reference/TLS 622.4 621.98 0.42 ~0.0
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6. Discussion

This study highlights several key findings. For the SMART system, design considera-
tions were vital for safe and convenient data acquisition, especially when dealing with hard
to reach, hazardous stockpiles. Comparisons between SMART and TLS volume estimates
revealed that under similar occlusion patterns, both systems derive volume estimates that
agree in the range of 1%. Therefore, one can conclude that the data acquisition and process-
ing framework is capable of handling the sparsity of the acquired scans (the Lebanon data
is sparser than the US-231 one). The study also revealed that the key factor affecting the
quality of estimated volumes is the extent of stockpile surface occlusions. It is important
to note that the interpolation method used is not a deciding factor when evaluating the
performance of SMART system against the TLS in estimating stockpile volumes. This is
expected since volume estimates for both systems are derived using the same strategy and
criteria. Therefore, careful considerations in system design and setup should be prioritized
to reduce the amount of occlusions. For scalable implementation of a stockpile volume
estimation technology, in addition to its accuracy and ease of operation, the system cost
is another important factor. Among LiDAR-based platforms, TLS are usually the most
expensive. The SMART system, owing to the simplicity of its design, is relatively less
expensive. Table 11 lists the approximate cost of three different LiDAR-based stockpile
mapping platforms based on current market cost.

Table 11. Cost comparison of LiDAR-based stockpile mapping platforms.

Platform Approximate Cost (USD)

SMART ∼8000
UAV LiDAR 30,000+

Terrestrial LiDAR 20,000–35,000+

In this study, stockpile facilities with well-defined planar features have been exten-
sively tested. These types of facilities follow the modern design criteria established by
Indiana DOT for its salt stockpile storage facilities. However, the department still operates
several of its legacy units that do not follow this design (e.g., the facilities in Figure 32).
Therefore, expanding the developed processing strategy to handle such facilities has to
be addressed to ensure the availability of an agnostic stockpile volume estimation for all
facility types.



Remote Sens. 2022, 14, 231 32 of 35Remote Sens. 2021, 13, x FOR PEER REVIEW 34 of 38 
 

 

  
(a) A salt dome 

  
(b) A hybrid facility type 

Figure 32. Examples of warehouses with non-planar building structures (left) and segmented Li-
DAR scan (right) (point clouds are colored by feature). 

7. Conclusions and Recommendations for Future Work 
In this paper, a new mapping system, denoted as Stockpile Monitoring and Reporting 

Technology (SMART), has been designed for accurate volume estimation of indoor stock-
piles. Following the system calibration, the stockpile volume is estimated through six 
steps: segmentation of planar features from individual scans, image-based coarse regis-
tration of LiDAR scans at a single station, feature matching and fine registration of LiDAR 
point clouds from a single station, coarse registration of point clouds from different sta-
tions, feature matching and fine registration of LiDAR point clouds from different sta-
tions, and DSM generation for volume estimation. The main contributions of this new 
system can be summarized as follows: 
• The integrated hardware system composed of an RGB Camera, two LiDAR units, 

and an extendable tripod. This system addresses the limitations of current stockpile 
volume estimation techniques by providing a time-efficient, cost-effective, and scal-
able solution for routine monitoring of stockpiles with varying sizes and shape com-
plexity. 

• An image-aided coarse registration technique has been designed to mitigate chal-
lenges in identifying common features in sparse LiDAR scans with insufficient over-
lap. This new approach uses the designed system characteristics and operation to 
derive a reliable set of conjugate points in successive images for precise estimation of 
the incremental pole rotation at a given station. 

• A scan line-based segmentation (SLS) approach for extracting planar features from 
spinning multi-beam LiDAR scans has been proposed. The SLS can handle signifi-
cant variability in point density and provides a set of planar features that could be 
used for reliable fine registration. 
The developed system and data processing strategy is evaluated through experi-

mental results from two facilities with different size and stockpile storage patterns. For 
the data processing strategy, the SLS has shown good performance in extracting planar 
features even when dealing with sparse point clouds leading to fine-registration quality 

Figure 32. Examples of warehouses with non-planar building structures (left) and segmented LiDAR
scan (right) (point clouds are colored by feature).

7. Conclusions and Recommendations for Future Work

In this paper, a new mapping system, denoted as Stockpile Monitoring and Reporting
Technology (SMART), has been designed for accurate volume estimation of indoor stockpiles.
Following the system calibration, the stockpile volume is estimated through six steps:
segmentation of planar features from individual scans, image-based coarse registration
of LiDAR scans at a single station, feature matching and fine registration of LiDAR point
clouds from a single station, coarse registration of point clouds from different stations,
feature matching and fine registration of LiDAR point clouds from different stations, and
DSM generation for volume estimation. The main contributions of this new system can be
summarized as follows:

• The integrated hardware system composed of an RGB Camera, two LiDAR units,
and an extendable tripod. This system addresses the limitations of current stockpile
volume estimation techniques by providing a time-efficient, cost-effective, and scalable
solution for routine monitoring of stockpiles with varying sizes and shape complexity.

• An image-aided coarse registration technique has been designed to mitigate challenges
in identifying common features in sparse LiDAR scans with insufficient overlap. This
new approach uses the designed system characteristics and operation to derive a
reliable set of conjugate points in successive images for precise estimation of the
incremental pole rotation at a given station.

• A scan line-based segmentation (SLS) approach for extracting planar features from
spinning multi-beam LiDAR scans has been proposed. The SLS can handle significant
variability in point density and provides a set of planar features that could be used for
reliable fine registration.

The developed system and data processing strategy is evaluated through experimental
results from two facilities with different size and stockpile storage patterns. For the data
processing strategy, the SLS has shown good performance in extracting planar features
even when dealing with sparse point clouds leading to fine-registration quality on par
with the ranging noise of the used LiDAR units. The image-based coarse registration was
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successful in deriving a precise set of matched points in successive images and evaluating
reliable estimates of incremental pole rotation that are independent of the quality of the
nominal values. In general terms, the experimental results have shown that (1) the system
design, operation, and data processing strategy are capable of producing volume estimates
that are quite similar to those derived from TLS in the range of 1%; and (2) the extent of
occlusions is the key factor impacting the quality of volume estimates.

While the experimental results in this paper focused on estimating volume of salt
stockpiles, the concepts, development, and analysis are equally applicable for other stock-
pile volume estimation. Moreover, for outdoor environments, the RTK-GNSS module can
be used to provide prior information for coarse and fine registration of point clouds from
multiple stations. Similar to any other volume estimation strategy, SMART estimates are
affected by the extent of occlusions in the scanned stockpile surface system. Therefore,
current and future work will focus on refining the system design and setup to reduce occlu-
sions, including the possibility of hanging/moving the sensor mount along the ceiling of
the facility. Moreover, further investigation will be conducted to improve the segmentation
performance in facilities with non-planar surfaces.
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