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Abstract: Chlorophyll-a concentrations in water bodies are one of the most important environmental
evaluation indicators in monitoring the water environment. Small water bodies include headwater
streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater
resources. However, the relatively narrow and fragmented nature of small water bodies makes it
difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we
first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands,
which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as
Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate
chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral
response function. The results showed that the extreme gradient boosting tree model (one of the
machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the
root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6
image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could
estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a
higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.

Keywords: fused Gaofen-6; Sentinel-2; chlorophyll-a; machine learning; semi-empirical; small waters

1. Introduction

When monitoring water quality, chlorophyll-a (Chla) concentration plays a pivotal
role and reflects the degree of eutrophication of water [1]. While using conventional means,
the concentrations of Chla are manually measured in the field. This technique is costly and
inefficient. In contrast, satellite remote sensing has a larger scope, presents data in real time,
and has a low-cost performance compared to the conventional method.

Small water bodies, which represent important freshwater resources, include head-
water streams, springs, ditches, flushes, small lakes, and ponds. The relatively narrow
and fragmented nature of small water bodies makes monitoring Chla via most free remote
sensors difficult. At present, the main remote sensing image data used for estimating
Chla concentration include Coastal Zone Colour Scanner (CZCS) [2], Sea-viewing Wide
Field Sensor (SeaWiFS) [3], Medium Resolution Imaging Spectrometer (MERIS) [4,5], Mod-
erate Resolution Imaging Spectroradiometer (MODIS) [6–8], Visible Infrared Imaging
Radiometer Suite (VIIRS) [9], Geostationary Ocean Colour Imager (GOCI) [10], Ocean and
Land Colour Instrument (OLCI) [11,12], Second-Generation Global Imager aboard Global
Change Observation Mission-Climate (SGLI/GCOM-C) [13–15], Landsat 8 OLI [16–22],
Sentinel-2 MSI [17,23–27], Gaofen-1 Wide Field of View (WFV) [28], and HJ-1 [29]. Except
for Sentinel-2, above mentioned free images have a spatial resolution bigger than 15 m,
which are not very suitable for monitoring small water bodies. Sentinel-2 with a 10-m
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resolution is relatively suitable. In addition to the aforementioned publicly available data
sets, there have been a few studies that have used commercial satellite data. For example,
researchers have used Worldview-2 [30] to study Chla concentration in lakes and reservoirs,
Geoeye [31] and SOPT [32] satellites to study the transparency of lakes and reservoirs, and
PlanetScopte satellites [33] to monitor water quality in rivers.

Small water bodies Chla monitoring requires high spectral resolution. The charac-
teristic absorption bands of chlorophyll a are 440 nm and 670 nm, and many models for
satellite estimation of Chla often make use of these two characteristic bands. Since these
2 absorption bands are relatively narrow, broad-band satellites often fail to capture the
feature, making Chla estimates less accurate. Most current research around Chla estimation
focuses on satellites with chlorophyll signature bands, such as the water-color satellite
SeaWiFS and the land satellite Sentinel-2.

Gaofen-6, a new satellite with a Pan-Multispectral Sensor (PMS) and wide field of
view (WFV), was successfully launched on 2 June 2018. Gaofen-6 PMS can provide a
2 m panchromatic image and an 8 m multi-spectral image with four bands (including
blue, green, red, and near-infrared bands). The orbit of the Gaofen-6 satellite is not fixed.
Additionally, Gaofen-6 WFV has eight bands (including aerosol, blue, green, yellow, red,
red-edge I, red-edge II, and near-infrared (NIR)) with a spatial resolution of 16 m. Gaofen-6
WFV has “red edge” spectral characteristics, which is crucial for Chla monitoring.

The existing models used to estimate Chla concentration mainly include empirical
models [34,35], semi-analytical models [36,37], analytical models [38,39], water classifica-
tion models [40,41], and machine learning (deep learning) models [19,42–49]. The empirical
model uses the basic principle of the inherent optical parameters and provides the theo-
retical basis of the empirical algorithm; the semi-analytical method is based on the theory
of radiation transmission of light underwater and constructs the relationship between the
inherent optical parameters and the apparent optical parameters to estimate the Chla con-
centrations in water; the analytical method is based on the mechanism of optical radiation
transmission in water, and it mainly uses the relationship between the components of the
water body and the inherent optical parameters. The water classification models are based
on water body classification, which mainly reflects the use of different models for estimating
Chla concentrations in various water body categories. Machine learning and deep learning
are involved in all engineering fields owing to the increase in computing power. Several
studies have reported remote sensing estimation of water quality parameter inversion.

In summary, small water bodies Chla monitoring requires high spatial resolution and
high spectral resolution. Therefore, fusing data from Gaofen-6 provides suitable resources
for monitoring Chla in small water bodies similar to Sentinel-2. Figure 1 illustrates the
technical roadmap of the present study. We will first fuse Gaofen-6 images using Gaofen-6
PMS and Gaofen-6 WFV images to obtain images with the 2 m resolution, eight spectral
bands, and 90 km swath width. Secondly, we will compare five semi-empirical models
and four machine learning models via simulated reflectance using fused Gaofen-6 and
Sentinel-2 spectral response functions. Thirdly, we will choose the best model and apply it
in Gaofen-6 and Sentinel-2 images to estimate Chla of the same small water bodies. At last,
we will compare the obtained results between fused Gaofen-6 and Sentinel-2.
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Figure 1. Technology roadmap.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

Beijing’s latitude and longitude ranging from 115.7◦E to 117.4◦E, and 39.4◦N to 41.6◦N
were considered as the study areas. These areas comprise five main water systems: the
Jima River, Yongding River, North Canal, Chaobai River, Ji Canal, and four artificial
reservoirs with water storage functions, namely, the Miyun Reservoir, Guanting Reservoir,
Huairou reservoir, and Haizi Reservoir. The sampling sites of the in situ data in this study
were distributed in the Summer Palace pond (Figure 2A), Beihai Park pond (Figure 2B),
Grand Canal (Figure 2C), Guanting Reservoir (Figure 2D), Purple Bamboo Park pond
(Figure 2E), and Yuyuantan Park pond (Figure 2F). The Summer Palace, Beihai Park,
Purple Bamboo Park, and Yuyuantan Park are important tourism resources, and the water
quality is indicative of the city’s maintenance of water bodies. The Guanting Reservoir
exerts unlimited power during flood control, comprehensive management, and ecological
restoration of the Yongding River. The location of the study area and the spatial distribution
of Beijing’s built-up areas are illustrated in Figure 2.

2.1.2. Field Measurements

We measured and collected remote sensing reflectance (Rrs, sr−1) and samples points
of the water body at the Guanting Reservoir, Yuyuantan Park, Summer Palace Park, Bei-
hai Park, Grand Canal, and Purple Bamboo Park on 8 September 2016, 21 August 2019,
16 September 2019, 18 September 2019, 15 October 2019, and 25 October 2019, respectively;
thereafter, we acquired 82 water body spectra in six field surveys (Table 1). The spectral type
average is as shown in Figure 3a. For each field survey, we used GPS to record the latitude
and longitude information and collected 1.5–2 L water samples from the water surface;
these samples were sent to the laboratory to measure and analyze the Chla concentration.
We collected surface water samples from the field and placed them in a low-temperature
water sample box to minimize the potential changes brought about during transportation
to the laboratory.



Remote Sens. 2022, 14, 229 4 of 22

Figure 2. Study area and in situ samples distribution. (A) Summer Palace pond; (B) Beihai Park pond;
(C) Grand Canal; (D) Guanting Reservoir; (E) Purple Bamboo Park pond; (F) Yuyuantan Park pond.

Table 1. In situ dates information table including locations and the numbers of in situ water samples
as well as reflectance measurements.

Field Experiment Data In Situ Location In Situ Numbers Symbols in Figure 2

8 September 2016 Guanting Reservoir 24 d
21 August 2019 Yuyuantan Park 9 f

16 September 2019 Summer Palace 14 a
18 September 2019 Beihai Park 12 b

15 October 2019 Grand Canal 15 c
25 October 2019 Purple Bamboo Park 8 e

The satellite-to-ground synchronization experiment was set up on 18 September 2019
and 25 October 2019. The synchronized Gaofen-6 images corresponded to the Beihai
Park field and Purple Bamboo Park field experiments conducted in the study area on
18 September and 25 October 2019, respectively. Information regarding the imaging time of
the remote sensing images used, among other aspects, is given in Table 2.
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Table 2. Image information table including sensor, data, image ID, and spatial resolution.

Sensor Data ID Spatial Resolution (m)

Gaofen-6 PMS 18 September 2019 1119925935 2
Gaofen-6 PMS 18 September 2019 1119925944 2
Gaofen-6 WFV 18 September 2019 1119926317 16
Gaofen-6 PMS 25 October 2019 1119938225 2
Gaofen-6 PMS 25 October 2019 1119938263 2
Gaofen-6 WFV 25 October 2019 1119938347 16

Sentinel-2 25 October 2019 - 10

2.1.3. Radiometric Measurements

The field experiments mainly comprised water body spectral measurements and
simultaneous water body sampling. Spectral data were measured using an analytical
spectral device (FieldSpec4 geophysical spectrometer Hi-Res NG) manufactured in the
USA. This device allows continuous measurements in the 350–2500 nm wavelength range.
In this study, the remote sensing reflectance of each in situ point was collected using
the NASA ocean optics specification and the above-water surface method proposed by
Tang et al. [50,51].

Rrs(λ) =
Lu(λ)− rsky(λ)Lsky(λ)

Lp(λ)π/ρp(λ)
(1)

where Lu(λ) is the total upwelling spectral radiance above the water surface, rsky(λ)Lsky(λ)
is the direct upwelling radiance reflected on the water surface contributed by the sky,
rsky(λ) and calculated using the Fresnel formula, Lp(λ) is the simultaneously observed
radiance of the reference panel, which has an accurately calibrated reflectance, and ρp(λ) is
the reflectance of the reference panel, which represents approximately 30%.

2.1.4. Bands Spectral Simulation

Because the in situ spectral data are spaced at 1 nm, and as the Gaofen-6 or Sentinel-2
satellites act as discrete spectral bands, each band has a certain width of wavelength
response. To apply the in situ remote sensing reflectance to the Gaofen-6 and Sentinel-2 im-
ages, it is necessary to simulate the reflectance to the multi-spectral satellite band simulation
reflectance via Equation (2) [7]:

Rrs(λi) =

∫ λmax
λmin

Rrs(λ) f (λ)dλ∫ λmax
λmin

f (λ)dλ
(2)

where f (λ) is the relative spectral response function of the Gaofen-6 and Sentinel-2 bands,
and λmax and λmin are the wavelength ranges of the spectral response function.

In situ spectra from different in situ samples at the same site are small variations, we
enhanced the information on absorption valleys and reflection peaks of in situ spectra with
Chla concentrations, we have averaged the spectra from the same site in Figure 3. Figure 3
presents the mean spectra values of our collection study areas, and we discovered that
Chla-associated spectral were present in all of these study areas. The absorption valleys
and reflection peaks at 675 and 705 nm (Figure 3) were preserved following bandwidth
averaging. Furthermore, the two vertical red lines in Figure 3 indicate that the 675 nm and
705 nm features were retained; therefore, the absorption valleys and reflection peaks can be
applied to Gaofen-6 and Sentinel-2 images spectrum.
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Figure 3. Spectral display chart. (a) Spectra based on the study area mean. (b) Fused Gaofen-6
spectral simulation based on in situ spectra. (c) Sentinel-2 spectral simulation based on in situ spectra.

2.1.5. Chlorophyll-a Concentrations Measurement

The water samples were first filtered using Whatman GF/F fiberglass filters and then
frozen at −20 ◦C for 24 h. The filter membranes were soaked in anhydrous ethanol at a tem-
perature of 85 ◦C and a concentration of 90%, and the test tubes with hot ethanol (together
with a special test tube holder) were quickly placed in a thermostatic water bath at 85 ◦C
for 2 min; after acidification with 1 mol/L hydrochloric acid, the absorbance was measured
at 665 and 750 nm using a UV2550 spectrophotometer, and the Chla concentrations were
determined [52].

2.2. Remote Sensing Materials

In this study, Gaofen-6 and Sentinel-2 remote sensing images were used. The Gaofen-
6 PMS has a spatial resolution of 2 m of the panchromatic band, while the four bands
(blue, green, red, and NIR) have a spatial resolution of 8 m. The Gaofen-6 WFV has
eight bands (aerosol, blue, green, yellow, red, red-edge I, red-edge II, and NIR) with a
spatial resolution of 16 m and a wavelength of 0.45–0.9 nm. Information on Gaofen-6 is
available at http://36.112.130.153:7777/DSSPlatform/productSearch.html (accessed on
25 October 2021). Sentinel-2 has 13 bands (aerosol, blue, green, red, red-edge I, red-edge II,
red-edge III, NIR, narrow-edge near-infrared, water vapor, short-wave infrared cirrus band,
short-wave infrared I, short-wave infrared II), with a wavelength range of 0.43–2.19 nm.
Information on Sentinel-2 is available at https://scihub.copernicus.eu/dhus/#/home

http://36.112.130.153:7777/DSSPlatform/productSearch.html
https://scihub.copernicus.eu/dhus/#/home
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(accessed on 25 October 2021). Certain bands in Gaofen-6 and Sentinel-2 are remarkably
similar (Table 3).

Table 3. Gaofen-6 and Sentinel-2 similar band setting comparison including band name, band index,
band wavelength, and resolution.

Fused Gaofen-6 Sentinel-2 MSI

Bands Name Band
Index

Wavelength
(nm)

Resolution
(m)

Band
Index

Wavelength
(nm)

Resolution
(m)

Blue B1 450–520 2 B2 458–523 10
Green B2 520–590 2 B3 543–578 10
Red B3 630–690 2 B4 650–680 10
NIR B4 770–890 2 B8 785–900 10

Red-Edge I B5 690–730 2 B5 698–713 20
Red-Edge II B6 730–770 2 B6 733–748 20

Coastal aerosol B7 400–450 2 B1 433–453 60
Yellow B8 590–630 2 None

For the fused Gaofen-6, there are the main three steps of image processing: image
fusion as well as geometric and atmospheric corrections. The image processing proceeded
as illustrated in Figure 4. We first used image fusion to obtain a fused Gaofen-6 with a
spatial resolution of 2 m and a spectral resolution of eight bands; then, we performed a
geometric correction of the fused Gaofen-6 and Sentinel-2 for a comparative analysis of the
two; and finally, we performed an atmospheric correction to complete the pre-processing
of the fused Gaofen-6.

Figure 4. Image pre-processing flow chart.

2.2.1. Fused Gaofen-6 Remote Sensing Materials

For fused Gaofen-6 images, image fusion uses pixel-knife software [53], a fusion
algorithm provided by the software. We corrected the misalignment between bands using
a fine alignment algorithm with gradient tracking to ensure that the inter-band alignment
error is less than 0.1 image element. Afterwards, we fused the PAN and MSS images using
an optimal model fusion algorithm based on multi-conditional constraints. This approach
ensures that the spectral shape and the value of the fusion remain essentially unchanged.

For fused Gaofen-6 images, geometric corrections were made using Long’s method [54],
which aims to provide geometric correction accuracy at the sub-meter level. Moreover,
high-resolution satellites reveal certain geometric distortions that need to be eliminated.
The reference image is the Google Online Satellite Image, which includes remote sensing
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data on all Google platforms from 0.5–200 m. Automatically extracts the geometric control
points in the image, extracts the connection point in the block overlap area, uses Shuttle
Radar Topography Mission Digital Elevation Model (STRM DEM) assistance to perform
the regional network adjustment, and reason for all partition images multi-class coefficient
model is correct, and finally subunit the image to splicing the full geometric refinement
image [54]. The geometric precision correction represents the key step of atmospheric
correction pre-processing in this study.

For the fused Gaofen-6 atmospheric correction of water bodies, we used the Relative
Radiation Normalization [55] method since the atmospheric correction of small turbid water
bodies requires short-wave infrared correction of aerosol information. However, because
fused Gaofen-6 does not set the corresponding band, we could not use the traditional water
body atmospheric correction method., we can use the same area’s Sentinel-2 as reference
images to complete the Fused Gaofen-6’s Atmospheric correction., and by finding the
radiation invariant control points for band-by-band atmospheric correction after geometric
precision correction. In this study, Sentinel-2 is the reference image that can be used for the
atmospheric correction of fused Gaofen-6. Before atmospheric correction is performed, the
remote sensing data from both sources must be processed at identical resolution. Therefore,
we resampled all bands of Sentinel-2 to 10 m using the Sentinel application platform
medium and high-resolution plug [56] while the fused Gaofen-6 bands were resampled at
a 10 m resolution using the down-sampling method. The atmospheric correction method
is crucial in finding the radiometric control point, and we used an iteratively re-weighted
multivariate alteration detection method [55] to identify it. The procedural steps involve
correcting and referencing the image according to the characteristics of different typical
variables to obtain the MAD and allow multiple iterations. If its feature value satisfies
the chi-square distribution [55] and the threshold is greater than 0.95, it is considered a
radiometric control point. The atmospheric correction of the water body can be completed
by regressing the reflectance from Sentinel-2 and the DN values from fused Gaofen-6 using
the radiometric control point. The relative radiation normalization method for atmospheric
correction requires the reference and sample images to be corrected to the same band
settings and similar spectral response functions. By comparing the simulated bands, the
Gaofen-6 and Sentinel-2 were in good agreement with the spectral information of the
same bands (Figure 5a). Thus, the fused Gaofen-6 can be atmosphere corrected using
the relative radiation normalization method. The atmospheric correction using relative
radiometric normalization is basically around the 1:1 line, which can accurately estimate
the Chla concentration. The randomly selected pixel value of 3 × 3 of the water body in the
Sentinel-2 image as a blended image element includes the outliers indicated in Figure 5b.

Sentinel-2 bands do not include the yellow band; hence, fused Gaofen-6 following
atmospheric correction has only seven bands: blue (450–520 nm), green (520–590 nm), red
(630–690 nm), NIR (770–890 nm), red-Edge (690–730 nm), red-Edge II (730–770 nm), and
coastal aerosol (400–450 nm).

Figure 5. Band simulation and the atmospheric correction effects. (a) Fused Gaofen-6 and Sentinel-2
band simulation at 400–890 nm. (b) Fused Gaofen-6 atmospheric correction uncertainty evaluation.
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2.2.2. Sentinel-2 Remote Sensing Materials

For Sentinel-2 images, the only pre-processing step was atmospheric correction. We
have access to the Top of Atmosphere Reflectance (TOA) level dataset at the official website,
and we used the Sen2Cor plug-in for atmospheric correction to obtain the reflectance
level dataset.

2.3. Accuracy Evaluation

Accuracy evaluation was performed using the mean relative error (MRE) and root
mean square error (RMSE) with the following formulas:

MRE =
1
n ∑n

1

∣∣Ri − Rj
∣∣

Rj
× 100% (3)

RMSE =

√
∑n

1
(

Ri − Rj
)2

n
(4)

where n stands for the number of points in this study, Ri represents the estimated Chla
concentration value, and Rj represents the in situ Chla concentration.

2.4. Methods

We compared the accuracy of a semi-empirical model to a machine learning model
for estimating Chla concentration. First, to determine the division of the dataset, the
semi-empirical model dataset is mainly divided into two parts: the modeling dataset
and the validation dataset (SE-V). The machine learning model dataset was divided into
three main parts: the training dataset, the validation dataset, and the test dataset (ML-T).
For comparisons, we divided the dataset at a 9 (N = 74):1 (M = 8) ratio and verified the
robustness of the different models by sequentially sampling eight points as the SE-V and
the ML-T. We used 74 points to train the semi-empirical model and the machine learning
model using a 5K fold division into a training set and a validation set.

For the semi-empirical model, the independent variables included two forms of Rrs
(675 nm)/Rrs (705 nm) and Rrs (705 nm))/Rrs (675 nm). Based on the correlation between
the above two forms and the concentration of Chla, and chose Rrs (675 nm)/Rrs(705 nm)
as the independent variable factor. Chla exhibited strong absorption characteristics at
675 nm; thus, the reflectance at 675 nm revealed an obvious trough, and the ratio of
675 nm/705 nm can be used to estimate the inverse Chla concentrations [3]. Simultaneously,
five functional forms were proposed for comparison: linear, exponential, logarithmic,
power, and quadratic functions [34]. The fitting results of the five models were compared,
and the optimal model was selected (Table 4). We used the accuracy evaluation indexes
MRE and RMSE for comparing the simulated spectrum estimate Chla concentrations with
the measured Chla concentrations to check the model accuracy.

Table 4. Semi-empirical model.

Model Form Formula

Linear model Chla = a × x +b
Exponential model Chla = a × exp (b × x) + c
Logarithmic model Chla = a × power (x, b) + c

Power function model Chla = a × log(x) + b
Quadratic function model Chla = a × x2 + b × x + c

For the machine learning model, the machine learning model is estimated based on the
non-linear fitting relationship between remote sensing reflectance and Chla concentrations
in water bodies; moreover, multiple linear regression (LR), multiple Bayesian regression
(BR), extreme gradient boosting tree (BST), and artificial neural networks (ANN) were used
in this study. LR assigns all inputs to a regression coefficient, the loss function is used, and
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the least-squares method is solved. BR assigns all inputs to a regression coefficient, and the
loss function adds regularisation and uses the least-squares method to solve. BST predicts
multiple weak classifiers superimposed on a final model. ANN is a model prediction that
uses multiple layers of neurons and uses a combination of activation functions.

The input feature of the machine learning model is important. We focused on the
band selected as the input. According to Section 2.2.1, seven bands were left in the fused
Gaofen-6 images after atmospheric correction. We tested five combinations: (1) six bands
without the red-edge band; (2) total seven bands; (3) eight inputs_1, including seven bands,
the ratio of the red-edge band to the red band; (4) eight inputs_2, including seven bands, the
ratio of the red band to the red-edge band; (5) nine inputs, including seven bands, the ratio
of the red-edge band to the red band, and the ratio of the red band to the red-edge band.

The MRE of six inputs, seven inputs, eight inputs_1, eight inputs_2 and nine inputs
were 12.22%, 12.52%,21.24%,16.5% and 7.9%, respectively, and the RMSEs were 3.55 mg/m3,
3.84 mg/m3, 4.49 mg/m3, 3.7 mg/m3 and 1.72 mg/m3, respectively. It was found that
nine inputs (seven reflectance bands, two bands of red-edge band, and ratio of red band)
worked best in the validation set; therefore, multiple regression input using nine inputs [19]
was used to estimate the Chla concentration (Figure 6). The selection of the characteristic
band showed that using the Rrs (675 nm)/Rrs (705 nm) ratio in the characteristic band
resulted in a remarkably smaller error and further showed a strong correlation between
Rrs (675 nm)/Rrs (705 nm) and Chla concentrations.

Figure 6. Machine learning input feature number selection accuracy chart. input six variables, seven
variables, eight variables and nine variables accuracy chart.

3. Results
3.1. Semi-Empirical Model
3.1.1. Fused Gaofen-6 Semi-Empirical Model

For fused Gaofen-6, we listed the formulas for the five models (Table 5). The verifica-
tion diagram (Figure 7) reveals that the quadratic function model is the best among the five
models [34].

Table 5. Five semi-empirical model formulas for fused Gaofen-6.

Model Form Formula

Linear model Chla = −65.788453 × x + 99.5654
Exponential model Chla = 1485.8 × exp(−3.65197 × x)
Logarithmic model Chla = 37.9778 × power (x, 4.0432)

Power function model Chla = −83.5964 × log(x) + 35.9646
Quadratic function model Chla = 186.537 × x2 − 511.3751 × x + 362.781
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Based on the verification analysis, the linear and logarithmic models exhibit a low
potential >40 mg/m3, power function, and quadratic function model distribution around
the 1:1 line; however, the quadratic function model exhibits the lowest MRE and RMSE,
attaining 11.9%, 6.04 mg/m3.

Figure 7. Verification of fused Gaofen-6 semi-empirical models. (a) Linear model; (b) exponential
model; (c) logarithmic model; (d) power function model; (e) quadratic function model.

3.1.2. Sentinel-2 Semi-Empirical Model

For Sentinel-2, we listed the formulas for the five models (Table 6); according to the
verification diagram (Figure 8), the quadratic function model is the best among these
five models.

Table 6. Sentinel-2 Semi-empirical model formulas.

Model Form Formula

Linear model Chla = −83.028 × x + 107.0218
Exponential model Chla = 1139.618 × exp (−3.98529 × x)
Logarithmic model Chla = 20.76 × power (x, 3.6926)

Power function model Chla = −85.2146 × log(x) + 23.37083
Quadratic function model Chla = 119.624 × x2 − 485.476 × x + 306.563

Based on the verification analysis, the linear model reveals low exponential model,
power function, logarithmic model, and quadratic function model distributed around the
1:1 line >45 mg/m3; however, the quadratic function model exhibits the lowest MRE of
10.64% and RMSE of 5.75 mg/m3.

Among the semi-analytical models, either fused Gaofen-6 or Sentinel-2, the quadratic
function model showed the best fit; thus, we determined that the quadratic function model
is the most suitable semi-analytical model for estimating Chla concentrations in small water
bodies. We compared the accuracy of the traditional algorithmic model with that of the
quadratic function model (Appendix A Tables A1 and A2).
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Figure 8. Verification of Sentinel-2 semi-empirical models. (a) Linear model; (b) exponential model;
(c) logarithmic model; (d) power function model; (e) quadratic function model.

3.2. Machine Learning Model
3.2.1. Fused Gaofen-6 Machine Learning Model

For fused Gaofen-6, we used nine inputs for model comparison: First, we determined
the hyperparameters of LR, BR, BST, and ANN, using the classic sklearn’s grid search
method. The hyperparameters of the LR include defaults, BR includes 0.02 alpha, BST
includes 30 trees and eight layer depth, ANN includes 10 × 10 neurones, ReLU activation,
and the 1000 s maximum iteration. The four machine learning model accuracy is shown in
Appendix A Table A3. Based on the verification diagram (Figure 9), the MRE and RMSE
of all models were <20% and 8 mg/m3, respectively; however, the BST and RMSE of
the models are 8.76% and 3.36 mg/m3, respectively. Thus, BST was assumed to be the
best model.

3.2.2. Sentinel-2 Machine Learning Model

For Sentinel-2, we used nine input bands for model comparison: first, we determined
the hyperparameters of LR, BR, BST, and ANN, using the classic sklearn grid search
method. The hyperparameters of the LR include defaults, BR includes 0.03 alpha, BST
includes 10 trees and 15 layer depth, and ANN includes 10 × 10 neurones, ReLU activation,
and 1500 maximum iterations. The four machine learning model accuracy is shown in
Appendix A Table A4. Based on the verification diagram (Figure 10), the MRE and RMSE
of all models were <25% and 8 mg/m3, respectively. However, the BST’s MRE and RMSE
were 11.78% and 5.75 mg/m3, respectively. Thus, BST is assumed to be the best model.
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Figure 9. Verification of fused Gaofen-6 machine learning models. (a) LR; (b) BR; (c) BST; (d) ANN.

Figure 10. Verification of Sentinel-2 machine learning models. (a) LR; (b) BR; (c) BST; (d) ANN.
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3.3. Comparison of Semi-Empirical Model and Machine Learning Model

Since no data was obtained from fused Gaofen-6 in 2016, we discarded the sampling
points from the Guanting Reservoir, We used in situ points for the period between 21 Au-
gust 2019 and 25 October 2019, it was during the summer and autumn seasons, and we
confirmed that there was no rainfall for five days around the sampling dates. Water Chla
concentrations were more stable during the summer and autumn months. Therefore, we
used 38 points from the above-mentioned situation and 20 points from the satellite-ground
synoptic for image validation. We used the geometric information of the sampled points to
extract the band information of the 58 sampled points on the image, and thereafter, used
the quadratic function model and BST models for image estimation verification.

Figure 11 illustrates the quadratic function model reveals a large error in either the
fused Gaofen-6 or Sentinel-2 images. The MRE and RMSE were >50% and 28 mg/m3,
respectively; it exceeds the maximum allowable error of remotely sensed Chla concentration
estimation. However, the BST model exhibited better robustness for both fused Gaofen-6
and Sentinel-2 images. The BST model showed MRE and RMSE values of 6.73% and
3.26 mg/m3 on fused Gaofen-6 images as well as 9.03% and 4.5 mg/m3 on Sentinel-2
images, respectively.

Since the BST model was the best among the fused Gaofen-6 or Sentinel-2, we de-
termined that the BST model is most suitable for estimating Chla concentrations in small
water bodies. The BST model is only applicable to the estimation of Chla concentrations in
small water bodies during the summer and autumn seasons, as the sampling period for the
in situ data is summer and autumn.

Figure 11. The verification of four models based on images. (a) Quadratic function model by fused
Gaofen-6. (b) Quadratic function model by Sentinel-2. (c) BST model by fused Gaofen-6. (d) BST
model by Sentinel-2.

4. Discussion
4.1. Comparison of Chla Estimation in Ponds

We compared the results of pond Chla concentrations estimated using the BST model
for fused Gaofen-6 and Sentinel-2, they are on the same day, 25 October 2019. Within
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Figure 12, the subplots a, b, c, and g reveal the results of Chla concentration estimation for
fused Gaofen-6, whereas the subplots d, e, f, and h exhibit the results of Chla concentration
estimation for Sentinel-2. Considering the Purple Bamboo Park pond, the fused Gaofen-6
estimation results (a) showed higher shore (values 50–60) and low distribution of the
lake center (the values between 10–20); however, more meticulous space information
was obtained. Moreover, Sentinel-2 monitoring (d) results showed higher shore (values
40–55) and low distribution of the lake center (values 15–25), the low spatial resolution
of Sentinel-2 leads to salt and pepper noise in the estimation results. The Summer Palace
estimation results showed fused Gaofen-6 (b) exhibiting a trend of being higher on the
northwest side (the values between 12–14) and similar in other places (the values between
10–12); the results of Sentinel-2 (e) were similar to those of Gaofen-6 estimation. The Beihai
Park estimation results showed that both (c and f) exhibited a spatial distribution with
high middle (values 15–22) and low sides (10–15). The Yuyuantan Park estimation results
showed that the fused Gaofen-6 estimation results (g) exhibited higher shore (values 30–60)
and low distribution of the lake center (values 10–20). the spatial patterns in the results
from Gaofen-6 and Sentinel-2 (h) are different. They show advantages of Gaofen-6 with
high spatial- resolution. Thus, the fused Gaofen-6 estimation produced more detailed
spatial information than Sentinel-2 when monitoring the Chla concentrations in small
water bodies. Comparing the results of Chla concentrations from the fused Gaofen-6 and
Sentinel-2 estimates, only the Purple Bamboo Park pond estimation was inconsistent. This
can be explained by the fact that the Purple Bamboo Park pond area was smaller, and
Sentinel-2 Salt and Pepper Noise was serious, which indicated different estimation results
between the fused Gaofen-6 and Sentinel-2.

Figure 12. Comparison of fused Gaofen-6 and Sentinel-2 estimation results in the ponds. (a) Fused
Gaofen-6 estimation results in the Purple Bamboo Park. (b) Fused Gaofen-6 estimation results in the
Summer Palace. (c) Fused Gaofen-6 estimation results in Beihai Park. (d) Sentinel-2 estimation results
in the Purple Bamboo Park. (e) Sentinel-2 estimation results in the Summer Palace. (f) Sentinel-2
estimation results in the Beihai Park. (g) Fused Gaofen-6 estimation results in Yuyuantan Park.
(h) Sentinel-2 estimation results in the Yuyuantan Park.



Remote Sens. 2022, 14, 229 16 of 22

4.2. Comparison of Chla Estimation in the Rivers

In this section, we compared the results of the estimated Chla concentrations in small
rivers using the BST model for fused Gaofen-6 and Sentinel-2, they are on the same day,
25 October 2019. The confluence of the Wenyu River and North Canal in Beijing was
selected as a case study due to its large watershed and rich river width. While monitoring
small water bodies via remote sensing, we selected pure water body image elements of
rivers to evaluate Chla and avoid the influence of mixed image elements along the banks;
therefore, we only monitored rivers with river widths greater than three pixels; (a) the
Wenyu River section (Figure 13a), (b) the Yunchaojian River section (Figure 13b), and (c) the
Beiyun River section (Figure 13c). The NDWI [57] was also used, and water bodies with a
threshold value > 0.15 were subjected to water body extraction and Chla estimation; the
estimation results are depicted in Figure 13. ROI A represents the Tonghui River while ROI
B represents the Zhongba River, both of which are less than 10 m wide. Both ROI A and B
can be monitored for water body information using the fused Gaofen-6, but no water body
information can be obtained using Sentinel-2. Compare Sentinel-2, fused Gaofen-6 exhibit
a higher spatial resolution, and can be monitored in narrower rivers.

Figure 13. Plotted results of the assessment of Chla concentrations using the Sentinel-2 and fused
Gaofen-6. (a) the Wenyu River section, (b) the Yunchaojian River section, and (c) the Beiyun River section.



Remote Sens. 2022, 14, 229 17 of 22

We used (a), (b), and (c) to estimate the river section drawing and estimation consis-
tency studies (Figure 14). In (a), Sentinel-2 showed values of 42–45, while fused Gaofen-6
produced values between 41–50; in (b), Sentinel-2 showed values of 38–40, while fused
Gaofen-6 produced values between 40–45; and in (c), Sentinel-2 showed values of 38–40,
while fused Gaofen-6 produced values between 43–52. We used the mean values as true
values to calculate the relative errors (TMRE) of different sensors. The values of (a) are
9.7%, 4.8%, and 4.8%; those of (b) are 12.4%, 10%, and 2.4%; and those of (c) are 8%, 8%,
and 0.4%. All TMREs were below 15%, and their consistency was still better. The difference
between fused Gaofen-6 and Sentinel-2 estimated Chla concentration indicates that it is
within the uncertainty of the estimate.

Figure 14. Estimated result in river sectional drawing. (a) Wenyu River sectional drawing; (b) Yun-
chaojian River sectional drawing. (c) Beiyun River sectional drawing.

4.3. Fused Gaofen-6 and Sentinel-2 Monitoring Frequency

Water bodies change relatively quickly and higher monitoring frequencies can lead
to more accurate monitoring results. The satellite orbit of the Gaofen-6 is not fixed, but
the satellite orbit of the Sentinel-2 is fixed. Therefore we need to count the monitoring
frequency. Here, we used the fused Gaofen-6 and Sentinel-2 monitoring of water bodies in
Beijing as an example.

To examine the temporal resolution, we used data from the fused Gaofen-6 and
Sentinel-2 from July 2018 to July 2021 to detect the complete number of images of the
built-up area of Beijing. Although the orbit of fused Gaofen-6 is not fixed and the number
of images varies each month, it meets the frequency of quarterly observation (Figure 15a).
Since Sentinel-2 has a fixed orbit, it guarantees a fixed number of images every month and
meets the monthly requirements (Figure 15b), jointly using both sensors can have more
images to monitor small water bodies Chla month changes (Figure 15c).
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Temporal resolution and spatial resolution are important factors in the ability to
monitor small bodies of water by remote sensing of images. Thus, different sensors should
be used according to the time scale, river width, and study area scale. The fused Gaofen-6
can provide more detailed information with roughly the same detection range, while the
higher frequency river monitoring of Sentinel-2 provides better temporal resolution.

Figure 15. Temporal coverage of Fused Gaofen-6 and Sentinel-2 archive from July 2018 to August
2021 used in the Beijing city. (a) Temporal coverage of Fused Gaofen-6. (b) Temporal coverage of
Sentinel-2. (c) Temporal coverage of Fused Gaofen-6 and Sentinel-2.

5. Conclusions

In this study, we compared the Chla concentration estimation results for fused Gaofen-6
(with 2 m spatial resolution, eight bands, and 90 km width) and Sentinel-2 (with 10 m
spatial resolution, 13 bands, and 100 km width) and obtained the following conclusions.

When comparing the five semi-empirical and four machine learning models, the
quadratic model performed best in the semi-empirical model and the BST model performed
best in the machine learning model. Both fused Gaofen-6 and Sentinel-2 are the most
accurate machine learning models, and the best model is the extreme gradient boosting
tree model, which combines Gaofen-6 and Sentinel-2 MRE, with RMSE values of 6.73% and
3.26 mg/m3 as well as 9.03% and 4.5 mg/m3. this study fused the Gaofen-6 PMS and WFV
images into 2 m resolution eight-band images, which can be applied to applications other
than water body monitoring.

The fused Gaofen-6 and Sentinel-2 have similar abilities to estimate Chla concentration
for small water bodies. The fused Gaofen-6 exhibited a higher spatial resolution, it can
monitor smaller bodies of water, such as narrower rivers and smaller ponds. While the
Sentinel-2 exhibited a higher temporal resolution for monitoring small water bodies.
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Appendix A

Table A1. Comparison of this study’s Semi-empirical algorithms with existing algorithms for esti-
mating Chla concentrations in inland water environments. Sentinel-2 MSI; Normalized Difference
Chlorophyll Index; three bands algorithm; modified three bands algorithm.

Algorithm Variable (x) Formula R2 RMSE (mg/m3) MRE

NDCI [58] (Rrs (705) − Rrs (665))
/(Rrs (705) + Rrs (665)) Chla = 745.08x2 + 159.37x + 20.354 0.87 7.13 11.17

3BDA [59] (1/Rrs (665) − 1/Rrs (705)) × Rrs (740) Chla = 743.73x2 + 225.02x + 20.517 0.88 7.84 11.89

YA10 [60] (Rrs
−1 (665) − Rrs

−1 (705))
/(Rrs

−1 (754) − Rrs
−1 (705)) Chla = 262.04x2 + 144.71x + 20.405 0.86 7.67 11.79

This study Rrs (705)/Rrs (665) Chla = 126.45x2 − 178.9x + 72.976 0.88 7.79 12.21

Table A2. Comparison of this study’s Semi-empirical algorithms with existing algorithms for esti-
mating Chla concentrations in inland water environments. Fused Gaofen-6; Normalized Difference
Chlorophyll Index; three bands algorithm; modified three bands algorithm.

Algorithm Variable (x) Formula R2 RMSE (mg/m3) MRE

NDCI [58] (Rrs (705) − Rrs (665))
/(Rrs (705) + Rrs (665)) Chla = 1051.1x2 + 323.98x + 38.229 0.74 6.30 13.11

3BDA [59] (1/Rrs (665) − 1/Rrs (705)) × Rrs (740) Chla = 2040.4x2 + 474.61x + 37.772 0.78 7.28 11.39

YA10 [60] (Rrs
−1 (665) − Rrs

−1 (705))
/(Rrs

−1 (754) − Rrs
−1 (705)) Chla = 864.57x2 + 307.18x + 37.22 0.78 7.96 13.62

This study Rrs (705)/Rrs (665) Chla = 304.42x2 − 435.6x + 169.14 0.78 6.88 13.64

Table A3. Machine learning estimation models of Chla concentration in fused Gaofen-6 on training
set and validation sets: R2, MRE, and RMSE.

Algorithm R2 RMSE (mg/m3) MRE

LR 0.92 4.72 19.33
BR 0.92 4.72 19.33
BST 0.91 4.55 12.56

ANN 0.92 3.38 16.67

Table A4. Machine learning estimation models of Chla concentration in Sentinel-2 on training set
and validation sets: R2, MRE, and RMSE.

Algorithm R2 RMSE (mg/m3) MRE

LR 0.96 2.31 11.56
BR 0.95 3.83 11.14
BST 0.95 3.32 10.90

ANN 0.96 3.05 10.82
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