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Abstract: This paper studies the imaging of a ground moving target with airborne circular stripmap
synthetic aperture radar (CSSAR). First, the range equation of a target moving with accelerations is
developed. Then, a new range model of high accuracy is proposed, since the commonly used second-
order Taylor-approximated range model is inaccurate when the azimuth resolution is relatively
high or the target moves with accelerations. The proposed range model also makes it easy to
derive an accurate analytical expression for the target’s 2-D spectrum. Third, based on the proposed
range model, the target’s 2-D spectrum is derived and an efficient imaging method is proposed.
The proposed imaging method implements focusing via a phase multiplication in the 2-D frequency
domain and utilizes the genetic algorithm to accomplish an efficient search of the parameters of the
proposed range model. Finally, numerical experiments are conducted to validate the proposed range
model and the proposed imaging method.

Keywords: circular stripmap synthetic aperture radar; imaging method; range equation model;
ground moving target imaging; generic algorithm

1. Introduction
1.1. Background of Airborne CSSAR and Ground Moving Target Imaging

Airborne synthetic aperture radar (SAR) has been widely applied in both civilian and
military fields due to its high-resolution observation capability and the ability to work
regardless of weather and daylight [1–5]. The ground moving target imaging is a typical
application of airborne SAR, which is of great value in air-to-ground surveillance and
reconnaissance [6–11].

Airborne circular stripmap SAR (CSSAR) is a kind of SAR that travels along a horizonal
circle with its antenna pointing to the outside of the horizonal circle [12–15], as shown in
Figure 1. Benefiting from the circular path and the outward-pointing antenna, airborne
CSSAR possess the advantages of a short revisit time and large coverage, and thus is
an attractive tool for air-to-ground wide-area reconnaissance and time-sensitive targets
surveillance [15].

SAR time-sensitive targets surveillance usually involves ground moving target imag-
ing, and it has been a hot research topic in recent years. A key parameter in SAR imaging is
the range equation of the target (i.e., the instantaneous range between the radar and the
target), which determines the azimuth phase characteristics and the range cell migration
(RCM) of the target [16]. The second-order Taylor approximated range equation model
is a commonly used range model in SAR ground moving target imaging [9,10,17–21].
It enables the derivation of an accurate analytical two-dimensional (2-D) spectrum of the
target and thus can simplify the design of imaging method. However, its accuracy will
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be insufficient when the azimuth resolution is relatively high or the target moves with
accelerations [22–24]. Although the higher order Taylor approximated range equation
has higher accuracy, the derivation of the accurate 2-D spectrum is challenging and thus
would complicate the design of imaging methods [25]. To address this problem, in [26–28],
an equivalent hyperbola range model was proposed. This range model is much more
precise than the second-order Taylor approximated range model. Besides, based on this
range model, the analytical expression of the target’s 2-D spectrum can be easily derived.
However, it is only applicable to the constant-moving target in the case of straight path SAR.
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Figure 1. Geometry of airborne CSSAR. (a) 3-D view and (b) top view. 

SAR time-sensitive targets surveillance usually involves ground moving target im-
aging, and it has been a hot research topic in recent years. A key parameter in SAR imag-
ing is the range equation of the target (i.e., the instantaneous range between the radar and 
the target), which determines the azimuth phase characteristics and the range cell migra-
tion (RCM) of the target [16]. The second-order Taylor approximated range equation 
model is a commonly used range model in SAR ground moving target imaging [9,10,17–
21]. It enables the derivation of an accurate analytical two-dimensional (2-D) spectrum of 
the target and thus can simplify the design of imaging method. However, its accuracy will 
be insufficient when the azimuth resolution is relatively high or the target moves with 
accelerations [22–24]. Although the higher order Taylor approximated range equation has 
higher accuracy, the derivation of the accurate 2-D spectrum is challenging and thus 
would complicate the design of imaging methods [25]. To address this problem, in [26–
28], an equivalent hyperbola range model was proposed. This range model is much more 
precise than the second-order Taylor approximated range model. Besides, based on this 
range model, the analytical expression of the target’s 2-D spectrum can be easily derived. 
However, it is only applicable to the constant-moving target in the case of straight path 
SAR. 

Figure 1. Geometry of airborne CSSAR. (a) 3-D view and (b) top view.

Due to the unknown motion of the target, SAR ground moving target imaging usually
involves the searching of the target’s motion parameters or other equivalent parameters
(e.g., the Doppler parameters), the coefficients of the target’s range equation, and the
coefficients of the target’s phase history [18–21,29–31]. For instance, for the imaging method
proposed in [29], the two velocity parameters and two acceleration parameters of the target
need to be searched. As for the imaging method proposed in [30], the coefficients of the
phase history’s second-order and third-order terms also require to be searched. These
searches result in a huge computational load since the inefficient ergodic search method
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is usually used. Several papers proposed to utilize the second-order keystone transform
and time-frequency techniques to replace the searching of the target’s parameters [22–24].
However, the interpolation required by the second-order keystone transform and the
searching involved in the time-frequency techniques make these methods still suffer from
the problem of large computation load.

1.2. Objectives of this Paper

The main objective of this paper is to propose an imaging method that is able to
efficiently focus a ground moving target with high quality, for airborne CSSAR with
relatively high azimuth resolution. Based on the research gaps discussed in Section 1.1,
studies are carried out to achieve the above objective from the following two aspects: (1) an
accurate range equation model is proposed for airborne CSSAR ground moving target
imaging; and (2) an efficient parameter searching strategy is proposed.

In [25], an advanced hyperbolic range model was proposed for medium-Earth-orbit
SAR stationary scene imaging. This range model is much more precise than the second-
order Taylor-approximated range model. Inspired by this work, in this paper, a new
range equation model is proposed for airborne CSSAR ground moving target imaging.
The proposed range model has two main advantages: (1) its accuracy is higher than that of
the second-order and third-order Taylor approximated range models; and (2) based on the
proposed range model, an accurate analytical expression for the target’s 2-D spectrum can
be easily derived.

After deriving the target’s 2-D spectrum based on the proposed range model, an
efficient imaging method is proposed in this paper. The proposed imaging method imple-
ments focusing process efficiently via a phase multiplication in the 2-D frequency domain.
Moreover, to accomplish an efficient searching of the parameters of the proposed range
model, the genetic algorithm (GA) is utilized. GA is a powerful parallel stochastic algorithm
that searches the optimal solution based on the principles of natural selection and natural
genetics [32–37]. It is an efficient and robust optimization algorithm that can locate the
global optimum in a multimodal landscape, and thus is utilized to reduce the computation
load of the parameter searching involved in ground moving target imaging.

The rest of this paper is organized as follows. The airborne CSSAR geometry and the
proposed range model are presented in Section 2. In Section 3, the target’s 2-D spectrum
based on the proposed range model is derived. In Section 4, the proposed imaging method
is described in detail. Numerical experiments are conducted in Section 5 to validate
the proposed range model and the proposed imaging method. Finally, discussions and
conclusions are made in Sections 6 and 7, respectively.

2. Proposed Range Model for CSSAR
2.1. Geometry

The geometric relationship between an airborne CSSAR and a ground moving target
is shown in Figure 1. The aircraft travels along a horizonal circle with height h and radius
ra at a constant angular velocity ω, with its antenna pointing perpendicular to the aircraft
direction fixedly. At the azimuth slow time ta = 0, the radar and the target are assumed to be
located at (ra, 0, h) and (r0 cosθ0, r0 sinθ0, 0), respectively, where r0 is the distance between
the target and the coordinate origin, and θ0 is the target’s azimuth angle. In addition, it is
assumed that the target moves with velocities (vx, vy) and constant accelerations (ax, ay)
along the x-and y-axes.

According to the geometric relationship shown in Figure 1, the instantaneous distance
from the radar to the target (i.e., the target’s range equation) can be expressed as

R(ta) =

√(
r0 cos θ0 + vxta +

1
2

axta2 − ra cos(ωta)

)2
+

(
r0 sin θ0 + vyta +

1
2

ayta2 − ra sin(ωta)

)2
+ h2 (1)
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Applying Taylor series expansion to (1) around the target’s beam center crossing time,
one can obtain

R(ta) = Rc + l1(ta − tac) + l2(ta − tac)
2 ++l3(ta − tac)

3 + · · · (2)

With

l1 =
vtc(rc − ra)

Rc
(3)

l2 =
v2

ta − 2raω · vta + rarcω2

2Rc
+

atc(rc − ra)

2Rc
+

h2v2
tc

2R3
c

(4)

l3 =
vta(atc+raω2)+ata(vtc−raω)

2Rc
− vta(rc−ra)[v2

tc−2vtcraω+v2
ta+rarcω2+atc(rc−ra)]

2R3
c

+
v3

ta(rc−ra)
3

2R5
c

(5)

vtc = vx cos θc + vy sin θc (6)

vta = vy cos θc − vx sin θc (7)

atc = ax cos θc + ay sin θc (8)

ata = ay cos θc − ax sin θc (9)

where tac is the beam center crossing time, Rc is the range between the radar and the target
at ta = tac, rc is the range between the origin of coordinate and the target at ta = tac, vtc and
atc are the projections of the target’s velocity and acceleration onto the vertical direction of
the radar platform velocity at ta = tac, respectively, and vta and ata are the projections of the
target’s velocity and acceleration onto the direction of the radar platform velocity at ta = tac,
respectively, and θc is the target’s azimuth angle at ta = tac.

The accuracy of the Taylor-approximated range equation increases with the order of
Taylor series expansion. However, when this order is more than two, the derivation of an
accurate analytical 2-D spectrum and the design of imaging method will be challenging.
Thus, a second-order Taylor expansion is usually applied to the target’s range equation.
Nevertheless, when the azimuth resolution goes high or the target moves with accelerations,
the accuracy of the second-order Taylor-approximated range equation would be insufficient.
Herein, a novel range equation model is proposed. The accuracy of the proposed range
model is even higher than that of the third-order Taylor approximated range equation.
Moreover, based on the proposed range model, an accurate analytical expression for the
target’s 2-D spectrum can be easily derived.

2.2. Proposed Range Model

In order to accomplish an accurate imaging of the target and to allow for an accurate
analytical 2-D spectrum to benefit the design of imaging method, the following range
equation model is proposed

Rp(ta) =
√

R2
c + v2

e t2
a + αta + βta (10)

As can be seen from (10), there are three variables (i.e., ve, α, and β). In order to obtain
the expression for these parameters, a third-order Taylor series expansion is applied to (10)
and then we obtain

Rp(ta) ≈ Rc +

(
β +

α

2Rc

)
(ta − tac) +

(
v2

e
2Rc
− α2

8R3
c

)
(ta − tac)

2 +

(
− αv2

e

4R3
c
+

α3

16R5
c

)
(ta − tac)

3 (11)
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Letting the coefficients of the first, second, and third terms of (11) be equal to those of
(2), respectively, one can obtain the expressions for ve, α, and β as follows

ve =

√(
Rcl3

l2

)2
+ 2Rcl2 (12)

α = −2R2
c l3

l2
(13)

β = l1 +
Rcl3

l2
(14)

From (10) it can be seen that the proposed range model consists of a hyperbola and a
linear term. The proposed range model has two advantages: (1) it allows for an accurate
analytical 2-D spectrum which will benefit the design of imaging algorithm (the target’s
2-D spectrum will be presented in the next section); and (2) its accuracy is significantly
higher than those of the commonly used second-order and third-order Taylor-approximated
range equations.

In the following, the accuracy superiority of the proposed range model over the
second-order and third-order Taylor approximated range models are demonstrated via
numerical experiments.

The phase error is utilized to indicate the accuracies of the proposed range equation
model as well as the second-order and third-order Taylor-approximated range equations,
and it is calculated as follows

Ω = max
ta∈[−Ta/2,Ta/2]

{
4π · |R(ta)− R′(ta)|

λ

}
(15)

where R(ta) is the target’s actual range equation, R
′
(ta) indicates the approximated range

models (i.e., the proposed range model, the second-order and third-order Taylor approxi-
mated range models), λ is the wavelength. Ta is the synthetic aperture time, and it can be
approximately expressed as [16]

Ta ≈ θbwRc
vg

≈ 0.886 · λRc
2vaρa

(16)

where θbw is the 3 dB beamwidth of the radar, ρa ≈ 0.886λvg/(2θbwva) is the azimuth
resolution, vg = ω·rc is the velocity of the beam footprint along the ground, and va = ω·ra is
the velocity of the radar platform.

In Figures 2 and 3, the phase errors under different velocities and accelerations are
illustrated, respectively. The color indicates the value of the phase error with the unit being
radian. Comparing Figure 2a with Figure 2b and Figure 3a with Figure 3b, it can be seen that
the phase errors of the proposed range model are much smaller than that of the second-order
Taylor approximated range equation. Moreover, by comparing Figure 2a with Figure 2c and
Figure 3a with Figure 3c, one can see that the phase errors of the proposed range equation
model are even smaller than that of the third-order Taylor approximated range equation.
These results validate the accuracy superiority of the proposed range equation model over
the second-order and third-order Taylor approximated range equations. The parameters of
the CSSAR for the simulations are presented in Table 1.
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Table 1. Parameters of airborne CSSAR for simulation.

Parameter Value

Carrier frequency 10 GHz

Range bandwidth 150 MHz

Sampling frequency 180 MHz

Pulse repetition frequency 1500 Hz

Azimuth resolution 1 m

Illumination time 1.69 s

Flying radius 2.3 km

Platform altitude 8 km

Platform velocity 125 m/s

Ground range of scene center 16 km
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3. Target’s 2-D Spectrum Based on the Proposed Range Model

After demodulating to the baseband, the target’s signal in the raw data domain can be
expressed as

s(tr, ta) = wr

(
tr −

2Rp(ta)

c

)
exp

{
jπkr

[
tr −

2Rp(ta)

c

]2
}
× wa(ta) exp

{
−jπ

4Rp(ta)

λ

}
(17)

where wr (·) and wa (·) denote the range and azimuth envelopes, respectively, tr is the
range time, kr is the chirp rate of the transmitted signal, c is the speed of light, and fc is the
carrier frequency.

Applying a Fourier transform in range to (17), one can obtain the target’s signal in the
range frequency domain as follows

S( fr, ta) = Wr( fr) exp
{
−jπ

fr
2

kr

}
× wa(ta) exp

{
−jπ

4( fc + fr)RP(ta)

c

}
(18)

where fr denotes the range frequency and Wr (·) denotes the range frequency envelope.
To obtain the target’s 2-D spectrum, a Fourier transform in azimuth is applied to (18):

S( fr, fa) =
∫ +∞

−∞
S( fr, ta) exp{−j2π fata}dta (19)
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where fa denotes the azimuth frequency. To obtain the analytical expression for the target’s
2-D spectrum, the principle of stationary phase [16] is utilized. Based on (10), (18), and (19),
the stationary phase point is given by

t∗a = −
√

4v2
e R2

c − α2

2v2
e


(

c fa
2ve( fc+ fr)

+ β
ve

)
√

1−
(

c fa
2ve( fc+ fr)

+ β
ve

)2

− α

2v2
e

(20)

According to the principle of stationary phase, the target’s 2-D spectrum can be
obtained as follows

S( fr, fa) = S( fr, t∗a) exp{−j2π fat∗a}
= Wr( fr)Wa( fa) exp{jθ( fr, fa)}

(21)

With

θ( fr, fa) = − 2π
√

4v2
e R2

c−α2

λve

√
1−

(
λ fa
2ve

+ β
ve

)2
+
(

1− β
ve

(
λ fa
2ve

+ β
ve

))(
2 fr
fc

)
+

(
1−

(
β
ve

)2
)(

fr
fc

)2

+ 2παβ( fc+ fr)

cv2
e

+ πα fa
v2

e
− π fr

2

kr

(22)

where Wa (·) denotes the azimuth frequency envelope.
From the above derivations it can be seen that the analytical expression of the target’s

2-D spectrum can be easily derived without any approximations being made. Therefore,
the proposed range model enables the derivation of an accurate analytical expression for
the target’s 2-D spectrum.

4. Proposed Imaging Method

In this section, based on the proposed range model and the derived 2-D spectrum of
the target, a novel ground moving target imaging method is presented. First, the imaging
process is modeled as an optimization problem. Then, the details on utilizing the GA
to solve the optimization problem are described. Finally, the flowchart of the proposed
imaging method is presented.

4.1. Optimization Modeling

From (21), it can be seen that the target focusing can be accomplished via compensating
the phase modulation in the 2-D frequency domain and a 2-D inverse Fourier transform.
Based on (21) and (22), the filter for compensating the phase modulation is constructed
as follows:

H( fr, fa; ve, α, β) = exp


jπ fr

2

kr
+

j2π
√

4ve2R2
c − α2

λve

√√√√√√ 1−
(

fa
2λve

+ β
ve

)2
+
[
1− β

ve

(
fa

2λve
+ β

ve

)](
2 fr
fc

)
+

[
1−

(
β
ve

)2
](

fr
fc

)2

 (23)

From (23) it can be seen that this filter depends on the three variables of the proposed
range model. In practice, these three variables are usually unknown. Therefore, in the pro-
cess of target imaging, we need to search these variables, and the target will be completely
focused when the searched values match the true values of these variables. Given that the
contrast of the target’s image will reach its maximum value when the target is completely
focused, the process of imaging can be modeled as the following optimization problem(

v̂e, α̂, β̂
)
= argmax

ve,t ∈ [ve,min, ve,max]
αt ∈ [αmin, αmax]
βt ∈ [βmin, βmax]

{Contrast[s(tr, ta; ve,t, αt, βt)]} (24)
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With

Contrast[s(tr, ta; ve,t, αt, βt)] =

√
E
{[
|s(tr, ta; ve,t, αt, βt)|2 − E

(
|s(tr, ta; ve,t, αt, βt)|2

)]2
}

E
{
|s(tr, ta; ve,t, αt, βt)|2

} (25)

s(tr, ta; ve,t, αt, βt) = IDFT2{S( fr, fa) · H( fr, fa; ve,t, αt, βt)} (26)

where IDFT2 (·) indicates the 2-D inverse Fourier transform, E (·) presents the spatial aver-
age, Contrast (·) is the image contrast, v̂e, α̂, and β̂ are the estimates of the corresponding
variables, ve,min and ve,max are the minimum and maximum values of ve, respectively, αmin
and αmax are the minimum and maximum values of α, respectively, and βmin and βmax are
the minimum and maximum values of β, respectively.

From the above analysis it can be seen that the solution for the optimization problem is
the optimal estimation of the three parameters. Thus, the focused SAR image of the target
can be given by

I(tr, ta) = IDFT2
{

S( fr, fa) · H( fr, fa; v̂e, α̂, β̂)
}

(27)

If the traditional ergodic search method is utilized to solve the above optimization
problem, the computation load will be very high since it is a three-dimensional search.
To decrease the computation load, in the following subsection, the GA is used to solve this
optimization problem.

4.2. Solving the Optimization Problem via GA

GA starts with encoding the parameters of the search space in the form of a chromosome-
like structure. Then, an initial population (a population is constituted by a group of
chromosomes) is generated. After that, the fitness value of each individual chromosome of
the population is calculated based on a defined fitness function. Subsequently, a selection
operation is performed, in which the fittest chromosomes will be chosen with a larger
probability. Then, the selected chromosomes are used as parents to produce the next
generation by the crossover and mutation operations. This procedure is repeated until the
stopping criterion is met.

In this subsection, GA is utilized to solve the optimization problem presented in (24).
The specific steps are explained as follows.

(1) Step 1—Coding: Each individual chromosome of the population is encoded as a binary
string with a fixed length. The length of the string depends on the range of the
parameters to be searched and the required accuracy. For example, the length of the
string for the parameter ve should be 2lve−1 < (ve,max − ve,min)/∆ve < 2lve , where lve
is the length of the string for ve, and ∆ve is the encoding accuracy for ve.

(2) Step 2—Population initialization: The population size NP, the maximum number of
generations Gmax, and the generation counter g are initialized. All individuals of the
population in the 0th generation are generated randomly.

(3) Step 3—Calculating the f itness: Since the optimization problem is based on maximizing
the contrast of the target’s image, the fitness value of a chromosome is chosen to be
the contrast of the image that is focused with the parameters corresponding to this
chromosome. The image is obtained via (26), and the contrast is calculated via (25).

(4) Step 4—Selection: The selection operation keeps good chromosomes and eliminates
inferior ones. In this paper, to improve the efficiency, the roulette wheel selection
rule [33] is adopted, and the selection probability for each chromosome is calculated
as follows:

p
(
CPg,n

)
=

f
(
CPg,n

)
N
∑

n=1
f
(
CPg,n

) (28)
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where f (·) is the fitness function, and CPg,n is the nth chromosome of the population
in gth generation. In addition, the optimal individual preservation strategy [32] is
used. In other words, the optimal individual of the parent population will directly
enter the offspring population.

(5) Step 5—Crossover and mutation: In this paper, the single-point crossover operator and
simple mutation operator [33] are applied to the selected chromosomes to produce
the population of the next generation.

(6) Step 6—Judgment: If g is equal to Gmax or the maximum fitness value remains stable,
jump to step 7. Otherwise, return to step 3.

(7) Step 7—Output the optimal solution: The chromosome that has the largest fitness
value is the optimal solution, and the corresponding parameters are the solutions
for the optimization problem. To obtain the solutions for the optimization problem,
a decoding operation should be performed with two steps (taking ve for example):
(1) convert the binary string to the decimal number ve’; (2) calculate the actual value
of ve by (29).

v̂e = ve,min + v′e ·
ve,max − ve,min

2lve − 1
(29)

4.3. Flowchart of the Proposed Imaging Method

Based on the analyses presented in Sections 4.1 and 4.2, the flowchart of the proposed
imaging method is presented in Figure 4. It starts with the target signal that has been
extracted. First, a 2-D Fourier transform is applied to the target signal to transform the
target signal into the 2-D frequency domain. Then, the strategy presented in Section 4.2 is
utilized to solve the imaging optimization problem shown in (24). Note that, in using GA
to solve the optimization problem, the fitness function is the contrast of the image that is
focused with each chromosome, and the image is obtained via (26). Therefore, it is essential
to use GA to find the chromosome that obtains the largest image contrast. Finally, with the
optimal solution obtained by GA, the target focusing is performed efficiently via (27).
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5. Experimental Results
5.1. Validation of the Proposed Range Model

In Section 2.2, we have demonstrated the accuracy superiority of the proposed range
model over the second-order and third-order Taylor approximated range models. In this
subsection, to further validate the proposed range model, the focusing results based on
the original range equation, the proposed range model, the second-order and third-order
Taylor-approximated range models are analyzed and compared. The parameters of CSSAR
used in the experiments are given in Table 1.

Figure 5 shows the focusing results, with the expanded range and azimuth profiles
of the focused target being plotted. In addition, the focusing quality parameters are
measured and the results are shown in Table 2. The measured quality parameters include
the azimuth impulse response width (IRW) broadening, the peak sidelobe ratio (PSLR),
and the integrated sidelobe ratio (ISLR) [16]. From Figure 5 and Table 2 it can be seen that
the focusing quality of these four range models in range are almost the same. This indicates
that the accuracies of these range models are sufficient for range compression and RCM
correction. However, it can also be seen that the azimuth profile obtained based on the
second-order Taylor approximated range model suffers significant sidelobe asymmetry,
IRW broadening, PSLR and ISLR losses. Besides, the focusing result obtained based on
the third-order Taylor-approximated range model also suffers azimuth IRW broadening,
PSLR and ISLR losses. Nevertheless, quality parameters obtained based on the proposed
range model are very close to those obtained based on the original range equation, which
indicates that the target is accurately focused.

Table 2. Measured quality parameters.

IRW Broadening PSLR
(dB)

ISLR
(dB)

Original range model
Azimuth 0.00% −13.23 −10.12

Range 0.00% −13.26 −10.04

Proposed range model
Azimuth 0.00% −13.12 −9.86

Range 0.00% −13.26 −10.04

Second-order Taylor
approximated range model

Azimuth 2.03% −11.05 −9.06

Range 0.00% −13.26 −10.04

Third-order Taylor
approximated range model

Azimuth 1.35% −12.91 −9.25

Range 0.00% −13.26 −10.04

5.2. Validation of the Proposed Imaging Method

In this subsection, numerical experiments are conducted to investigate the perfor-
mance of the proposed imaging method. The parameters of CSSAR are given in Table 1.
Five moving targets, named T1, T2, T3, T4, and T5, are simulated, and their parameters are
presented in Table 3. The signal-to-noise ratio (SNR) is set to be −10 dB.

Table 3. Parameters of the moving targets.

vx (m/s) vy (m/s) ax (m/s2) ay (m/s2) r0 (km) θ0 (rad)

T1 −29 20 −0.5 0.3 15.8 0

T2 −5 10 0.1 0.2 15.9 0.01

T3 21 10 −0.4 −0.3 16.0 0

T4 5 −5 0.2 −0.5 16.1 −0.01

T5 −24 −20 0.5 0.4 16.2 0
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Figure 5. Focusing results. (a) azimuth profile, (b) range profile. The parameters of the target are
Rc = 21 km, vx = 3 m/s, vy = −12 m/s, ax = 0.6 m/s2 and ay = −0.3 m/s2.

In using the GA, first, the value ranges of the parameters to be searched and the encoding
accuracies should be determined so that we can encode these parameters. In this paper,
it is assumed that vx∈[−30 m/s, 30 m/s], vy∈[−30 m/s, 30 m/s], ax∈[−1 m/s2, 1 m/s2],
ay∈[−1 m/s2, 1 m/s2]. Then, according to (3)–(9) and (12)–(14), the value ranges of ve, α,
and β can be figured out and the results are: ve∈[−297.31 m/s, 362.59 m/s], α∈[−7.75× 105 m2/s,
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7.75 × 105 m2/s], β∈[−50.34 m/s, 50.34 m/s]. The encoding accuracies for the three
parameters can be set according to the required focusing quality. To keep the azimuth
impulse response width (IRW) broadening within 2%, the Doppler chirp rate error should
be less than 1/T2

a , where Ta is the synthetic aperture time [16]. The Doppler chirp rate is
related to ve and α, and their relationship is as follows

Ka = −
4
λ

(
v2

e
2Rc
− α2

8R3
c

)
(30)

In the experiments, the bound for the Doppler chirp rate error is set to be 1/(3T2
a ). Then,

based on (30), the encoding accuracies for ve and α can be given by (31) and (32), respectively.

∆ve = min
ve

{
−ve +

√
v2

e +
λRc

12T2
a

}
(31)

∆α = min
α

−α +

√
α2 +

λR3
c

3T2
a

 (32)

The derivation for (31) and (32) are presented in Appendix A. As for β, the Doppler
center frequency is depended on it and their relationship is formulated in (33). Based on
the imaging method shown in (27), the estimation accuracy of β should keep us obtain an
accurate Doppler ambiguity. In the simulations, the encoding accuracy for β is given by
(34), which could make the estimation error for the Doppler center frequency be less than
PRF/10, where PRF is the pulse repetition frequency.

fac = −
2
λ

(
β +

α

2Rc

)
(33)

∆β = λ · PRF
20

(34)

According to (31), (32), and (34), the encoding accuracies for the three parameters are
figured out, and the results are: ∆ve = 0.03 m/s, ∆α = 9000 m2/s, ∆β = 2.25 m/s. In addition,
the population size is set to be 50, and the maximum generation is set to be 40. After these
parameters being set, the strategy presented in Section 4.2 is utilized to solve the imaging
optimization problem. The execution time for each target is measured, which shows that
it needs only about 24 min to obtain the optimal solution. The solving processes for the
five targets are illustrated in Figure 6, with the optimal image contrasts of each generation
being plotted. As can be seen from Figure 6, the proposed method converges quickly.

Figure 7 shows the imaging results, with the contours of target energy being plotted.
The results are obtained by extracting a window of 64 × 64 samples centered on the target
and then expanding this “window” by a factor of 64 via zero padding the spectrum and
inverse transforming. In addition, the image quality parameters are measured and the
results are shown in Table 4. The ideal ISLR is measured from the ideal sinc function with
the same bandwidth. From Figure 7 it can be seen that the five targets are all finely focused.
Moreover, from Table 4 one can see that the image quality parameters are all very close
to their theoretical values, which indicates that the targets are accurately focused by the
proposed imaging method.
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Table 4. Measured image quality parameters.

IRW Broadening PSLR
(dB)

ISLR
(dB)

Ideal ISLR
(dB)

T1
Azimuth 0.81% −13.21 −10.02 −10.01

Range 0.00% −13.16 −9.79 −9.86

T2
Azimuth 0.00% −13.22 −9.90 −9.96

Range 0.00% −13.22 −9.80 −9.86

T3
Azimuth 0.00% −13.26 −9.98 −10.00

Range 0.00% −13.27 −9.88 −9.86

T4
Azimuth 0.00% −13.25 −9.95 −9.96

Range 0.00% −13.22 −9.80 −9.86

T5
Azimuth 0.00% −13.18 −9.89 −9.94

Range 0.00% −13.27 −9.90 −9.86

6. Discussions

The experimental results presented in Section 5 validate the proposed range model
and the proposed imaging method. In Section 5.1, the qualities of the results obtained based
on the original range equation, the proposed range model, the second-order and third-order
Taylor-approximated range models are measured and compared. The results demonstrate
that the accuracy of the proposed range model is better than that of the second-order and
third-order Taylor-approximated range models, and that one can obtain a high-quality
focusing result with the proposed range model. In Section 5.2, the imaging results obtained
by the proposed method are analyzed. It is seen that the image qualities of the five targets
are all close to the theoretical values. Therefore, the proposed imaging method can focus
ground moving targets accurately.

The computational load of the proposed imaging method is discussed as follows.
According to the analyzes presented in Section 4, the major operations of the proposed
method include twice 2-D Fourier transform, twice inverse 2-D Fourier transform, and a 2-D
phase multiplication. Assuming that the number of azimuth samples and range samples are
Na and Nr, respectively. Then, the total number of floating operations can be calculated as:

20Nr Na log2(Nr) + 20Nr Na log2(Na) + 6Nr Na (35)

Therefore, the computational order of the proposed method is O
(

N2 log2 N
)
, where N

denotes the 1-D size of the data.
GA is a parallel stochastic algorithm, and it may not converge to the optimal result

in a few cases. Now we discuss the variability and statistical significance of the results
obtained by GA. Five hundred random experiments are conducted, with the target T1
being considered. The results obtained by these random experiments are analyzed, and the
deviations of the obtained optimal image contrasts are plotted in Figure 8. It is found
out that there are 479 out of 500 experiments converge to the optimal results. Moreover,
it is also figured out that the maximum deviation, the mean deviation, and the standard
deviation of the results are 0.1007, 0.0034 and 0.0178, respectively, which are all very small.
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Figure 8. Deviations of the optimal image contrasts obtained by 500 random experiments.

7. Conclusions

In this paper, an accurate range model and an efficient ground moving target imaging
method have been proposed for airborne CSSAR. The main merits of the proposed range
model are highlighted in two aspects: (1) its accuracy is even higher than that of the third-
order Taylor approximated range equation; and (2) based on the proposed range model,
the accurate analytical expression for the target’s 2-D spectrum can be easily derived. More-
over, an efficient ground moving target imaging method has been proposed. The proposed
method focuses the target via a phase multiplication in the 2-D frequency domain and
utilizes the GA to accomplish an efficient search of the parameters of the proposed range
model. Experimental results have validated the proposed imaging method.
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Symbols

The symbols used in this paper are summarized as follows
h Height of the aircraft
ω Angular velocity of the aircraft
ra Flying radius of the aircraft
ta Azimuth slow time
r0 Distance from the target to the coordinate origin
θ0 Azimuth angle of the target
vx Target’s velocity along the x-axis
vy Target’s velocity along the y-axis
ax Target’s acceleration along the x-axis
ay Target’s acceleration along the y-axis
Rc Distance from the target to the radar at the beam center crossing time
tac Beam center crossing time of the target
l1 Coefficient of the first-order term of the Taylor-approximated range model
l2 Coefficient of the second-order term of the Taylor-approximated range model
l3 Coefficient of the third-order term of the Taylor-approximated range model
rc Distance from the target to the coordinate origin at the beam center crossing time

vtc
Projection of the target’s velocity onto the vertical direction of the radar platform
velocity at the beam center crossing time

atc
Projection of the target’s acceleration onto the vertical direction of the radar platform
velocity at the beam center crossing time

vta
Projection of the target’s velocity onto the direction of the radar platform velocity at
the beam center crossing time

ata
Projection of the target’s acceleration onto the direction of the radar platform
velocity at the beam center crossing time

θc Target’s azimuth angle at the beam center crossing time
ve Variable introduced in the proposed range model, its unit is m/s
α Variable introduced in the proposed range model, its unit is m2/s
β Variable introduced in the proposed range model, its unit is m/s
Ta Synthetic aperture time
θbw 3 db beamwidth of the radar
ρa Azimuth resolution
vg Velocity of the beam footprint along the ground
va Velocity of the radar platform
wr (·) Range envelope
wa (·) Azimuth envelope
tr Range time
kr Chirp rate of the transmitted signal
c Speed of light
fc Carrier frequency
fr Range frequency
Wr (·) Range frequency envelope
fa Azimuth frequency
Wa (·) Azimuth frequency envelope
lve Length of the string for ve
∆ve Encoding accuracy for ve
CPg,n nth chromosome of the population in gth generation
Ka Doppler chirp rate
∆α Encoding accuracy for α

∆β Encoding accuracy for β

PRF Pulse repetition frequency
fac Doppler center frequency
Na Number of azimuth samples of data
Nr Number of range samples of data
N 1-D size of the data
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Appendix A

This appendix drives the encoding accuracies for ve and α.
First, the derivation of the encoding accuracy for ve is presented. Since the bound for

the Doppler chirp rate error is set to be 1/(3T2
a ), according to the relationship between the

Doppler chirp rate and ve shown in (30), the encoding accuracy for ve (i.e., ∆ve) should
satisfy the following equation

1
6T2

a
=

4
λ
· (ve + ∆ve)

2 − v2
e

2Rc
(A1)

By solving the above quadratic equation of one unknown, the solution for ∆ve can be
expressed as

∆ve = −ve +

√
v2

e +
λRc

12T2
a

(A2)

Since ve ranges from ve, min to ve, max, the encoding accuracy for ve can be calculated by

∆ve = min
ve

{
−ve +

√
v2

e +
λRc

12T2
a

}
(A3)

Now, we present the derivation of the encoding accuracy for α. Similar to the deriva-
tion of ∆ve, according to (30), the encoding accuracy for α (i.e., ∆α) should satisfy the
following equation

1
6T2

a
=

4
λ
· (α + ∆α)2 − α2

8R3
c

(A4)

The solution for the above quadratic equation of one unknown is given by

∆α = −α +

√
α2 +

λR3
c

3T2
a

(A5)

Since α ranges from αmin to αmax, the encoding accuracy for α can be calculated by

∆α = min
α

−α +

√
α2 +

λR3
c

3T2
a

 (A6)
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