
����������
�������

Citation: Hu, K.; Li, M.; Xia, M.;

Lin, H. Multi-Scale Feature

Aggregation Network for Water Area

Segmentation. Remote Sens. 2022, 14,

206. https://doi.org/10.3390/

rs14010206

Academic Editors: Jungho Im,

Yang-Won Lee, Jaeil Cho and

Chu-Yong Chung

Received: 8 December 2021

Accepted: 30 December 2021

Published: 3 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Scale Feature Aggregation Network for Water
Area Segmentation

Kai Hu 1 , Meng Li 1 , Min Xia 1,* and Haifeng Lin 2

1 Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, B-DAT,
Nanjing University of Information Science and Technology, Nanjing 210044, China;
001600@nuist.edu.cn (K.H.); 20201249097@nuist.edu.cn (M.L.)

2 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
haifeng.lin@njfu.edu.cn

* Correspondence: xiamin@nuist.edu.cn

Abstract: Water area segmentation is an important branch of remote sensing image segmentation,
but in reality, most water area images have complex and diverse backgrounds. Traditional detection
methods cannot accurately identify small tributaries due to incomplete mining and insufficient
utilization of semantic information, and the edge information of segmentation is rough. To solve the
above problems, we propose a multi-scale feature aggregation network. In order to improve the ability
of the network to process boundary information, we design a deep feature extraction module using a
multi-scale pyramid to extract features, combined with the designed attention mechanism and strip
convolution, extraction of multi-scale deep semantic information and enhancement of spatial and
location information. Then, the multi-branch aggregation module is used to interact with different
scale features to enhance the positioning information of the pixels. Finally, the two high-performance
branches designed in the Feature Fusion Upsample module are used to deeply extract the semantic
information of the image, and the deep information is fused with the shallow information generated
by the multi-branch module to improve the ability of the network. Global and local features are used
to determine the location distribution of each image category. The experimental results show that
the accuracy of the segmentation method in this paper is better than that in the previous detection
methods, and has important practical significance for the actual water area segmentation.

Keywords: water area segmentation; residual network; deep learning; feature aggregation

1. Introduction

In remote sensing images, the river region is an important landmark, with important
practical significance in water resources investigation, water management of the region,
flood monitoring and water resources’ protection planning [1]. Increasing attention has
been paid to research into river detection. Therefore, the accurate segmentation of rivers is
the first step in this research. Traditional segmentation methods mainly include methods
based on threshold, edge, active region and support vector machines, etc. Zhu et al. [2]
used filtering and morphological methods, combined with a regional growth algorithm,
to detect changes in river areas. However, this algorithm is an iterative method, which
has large time and space costs and is not universal. Sun [3] proposed a new algorithm for
river detection in Synthetic Aperture Radar (SAR) images, which extracted edges in the
wavelet domain and combined water areas through ridge tracking. The edge detection
results first obtains the wavelet transform data on the adjacent scale, and then approximates
these by using their spatial correlation. This algorithm improves the detection effect of
river edges to a certain extent, but the parameter setting of this method is greatly affected
by artificial influences and the operating efficiency is still low. McFeeters [4] proposed
the Normalized Difference Water Index (NDWI) method, which uses the near-infrared
light and green light of the image to boost image features and then performs accurate
segmentation. Since the ratio calculation can eliminate the influence of topographical
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factors, it can remove all kinds of shadows, but the results obtained by this method are
extremely susceptible to environmental influences. Singh [5] proposed a new technology
that combines strength and texture information for effective area classification, combined
with Neighborhood-based Membership Ambiguity Correction (NMAC) and Dynamic
Sliding Window Size Estimation (DSWSE), which removes most pixel level noise and
smoothes the boundary between adjacent regions. However, this can also be disturbed by
noise. In addition, many parameters need to be set manually, meaning that the results are
greatly affected by humans. Zhang [6] proposed a support vector machine (SVM) method
that weakens and enhances the edge features, which can minimize errors. However, this
method was more difficult to train when the amount of data was too large, the boundary
results extracted by this algorithm are still very rough, and the accuracy needs to be
improved. In sum, the abovementioned methods have many problems, such as a large
manual input, high requirements for data processing, poor generalization performance,
and inaccurate river information.

With the continuous application of convolutional networks, an increasing number
of deep learning explorations are being carried out. In 2006, Hinton proposed the deep
learning method. The back propagation algorithm is used to train the network to improve
the effect of the model [7]. When the convolutional network was first developed, it was
generally used for image level classification. The main idea is to input the picture into the
network to continuously convolve and pool, and then the features are extracted. Finally,
the probability of each category is produced in the output layer, and the highest category
is the final result. However, these models cannot segment more precise details, and the
classification objects are limited. The traditional model of small tributaries cannot meet the
accuracy requirements. To solve these problems, some scholars have proposed a network
for the pixel-level classification of images. This network can correspond between the pixels
in the image and the labels, which can extract more detailed information than the classi-
fication network. In 2014, the semantic segmentation network, full revolution network
(FCN) [8], was proposed. This can realize the pixel level classification of images, which is a
qualitative leap and improves the efficiency of image classification. However, it ignores the
relationship between pixels, and the results are not accurate enough and are sensitive to
image details. Ref. [9] proposed a semantic segmentation network SegNet composed of
an encoding structure and a decoding structure, which retains detailed information of the
image by storing the position index in the pooling process, but the training time is long and
the efficiency is low. Ronneberger [10] proposed a UNET semantic segmentation network,
which spliced features in dimensions during the upsampling process, continuously inte-
grated features, obtained richer feature information, and achieved precise segmentation
tasks. However, simply splicing image features cannot restore the rich features of the image,
and it is easy to generate redundant information. In 2017, Ciecholewski [11] proposed a
watershed segmentation method based on morphology, which improves the segmentation
quality by maximizing the average contrast to merge regions, but the segmentation details
are not perfect, and misjudgments may occur. In 2016, Sghaier [12] proposed an algorithm
based on local texture measurement and global knowledge related to the shape of the target
object, but the algorithm will lose some detailed information. In 2017, Zhao [13] designed
a Pyramid Scene Analysis Network (PSPNET), which aggregated contexts in different
regions, made use of different receptive fields, and combined local and global clues to
enrich and enhance the extracted feature information. Shamsolmoali [14] proposed a new
multi-patch feature pyramid network (MPFP-Net) architecture, which divides small blocks
into subsets of class associations, and the small blocks are related to each other to enhance
the relevance of the small blocks. This contains bottom-up and horizontal connections,
and integrates features of different scales to improve the accuracy of the model. However,
in complex waters and dark waters, it is impossible to accurately identify the scope and
boundaries of the waters. The Deep Feature Extraction module proposed in this paper
carries out an attention design in the fusion process of features of different scales, and
further optimizes the features to better mine information. Shamsolmoali [15] proposed the
rotation equivariant feature image pyramid network, which reduces the amount of pyramid
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parameters, but, for complex backgrounds, it cannot capture location information. When
the river boundary is similar to the surrounding environment, it will make misjudgements.
In this paper, position attention is introduced in the Deep Feature Extraction module, and,
in order to strengthen the model’s segmentation of edge effects, we introduce strip convolu-
tion to refine the edge. Shamsolmoali [16] proposed a feature pyramid (FP) network, which
improves the performance of the model by extracting effective features from each layer of
the network to describe objects of different scales, but we propose a stripe for the edge’s
convolution. In addition, a new fusion module is designed to integrate the information
to achieve precise segmentation of the water area. In 2020, Hoekstra [17] proposed an
algorithm that combines IRGS segmentation and supervised pixel-by-pixel RF marking,
which improves the accuracy of segmentation, but reduces the efficiency of segmentation.
In 2020, Sghaier [18] proposed the Separable Residual SegNet Network for Water Areas
Segmentation, which improves the ability of network features by quoting residual blocks,
but when the background is complex, the edges cannot be accurately identified and the
edges are not smooth.

Although previous remote sensing image segmentation algorithms have a good per-
formance, because the extraction of semantic features adopts the down-sampling method
in the convolutional neural network, it is easy to lose details in the feature extraction stage,
which can easily cause problems such as inaccurate segmentation results and blurred edges.
Many methods have been proposed to improve model performance, among which the
fusion of high-level and low-level features proved to be effective [19]. The traditional
feature restoration method is a simple fusion of high-level features and low-level features,
does not focus on edge features and is committed to the overall image segmentation, so
it cannot accurately segment the river in the complex background, and consequently the
small tributaries cannot be identified. In this work, a new water segmentation model,
called a multi-scale feature aggregation network, is proposed to solve these issues. This
network extracts features from remote sensing images by down-sampling, then extracts and
optimizes advanced features, and finally generates segmentation results by up-sampling.
In terms of deep feature extraction, 3× 3, 5× 5, and 7× 7 convolutions are used to form a
pyramid to integrate information at different scales, which can accurately integrate con-
textual information at adjacent scales. To evade the loss of global and channel semantic
information, the attention mechanism and 1× 3, 3× 1 convolution are used to locate the
global information and spatial information, and solve the problem of identifying the small
tributaries of the river. In the upsample part, two modules are used. Firstly, to provide
richer semantic information to the up-sampling module, the features fused by the fusion
module at different scales are provided to the up-sampling module. In the upsample
module, the high-level features obtain long-term dependence through the attention module
to compensate for the information loss in the downsample process, and this can reduce
the interference of the complex background on the recognition task, and then multiply the
features obtained by the fusion module and gradually upsample. The module deeply exca-
vates image information at different scales, and uses high-level features to guide low-level
features to better restore high-definition images. This paper makes four contributions:

1. A Deep Feature Extraction module is proposed. In the last stage of down-sampling,
context adjacent scales are integrated, and global and location information is extracted,
so as to obtain more effective information and optimize context learning.

2. A multi-branch aggregation network is proposed to enhance the communication
abilities of the two channels through different-scale guidances. By capturing different
scale feature representations, it can enhance the interconnection and merge the two
types of element representations, which can provide more detailed information for
image restoration.

3. A Feature Fusion Upsample module is proposed to optimize the high-level features,
enhance the pixel information and spatial position at the edge of the background,
use the long-term dependence, eliminate useless information, guide the low-level
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features, obtain new features, and then guide the new features with the original
high-level features.

4. A high-resolution, remote-sensing image segmentation network is proposed, which uses
the feature extraction network and three additional modules for segmentation tasks.

The rest of this article is organized as follows. In the Section 2, we introduce the
original intention of the model and a brief introduction. In the Section 3, we introduce the
main structure of the model, including backbone, Deep Feature Extraction module (DFE),
multi-branch aggregation module (MBA) and Feature Fusion Upsample module (FFU).
In the Section 4, we introduce the details of the experiment, including the collection of
datasets, the setting of hyperparameters, ablation experiments, the comparative analysis of
different models, and the generalization performance analysis of the models. Finally, the
model of this article is summarized, and future research directions are proposed.

2. Method

After the continuous development of deep convolutional network, its application
in the field of computer vision has achieved remarkable results. However, due to the
complexity and diversity of the background, rich details and spatial information, many
traditional networks cannot achieve accurate water area segmentation. To more accurately
recover the segmented images, it is essential to effectively use contextual information to
optimize information. However, the simple information combination of traditional models
cannot fulfill the detection demands of small tributaries and edges in waters. In response
to the above problems, a new water area segmentation model was proposed to solve these
difficulties. The backbone network of this model is ResNet [20]. The overall composition of
the network is shown in Figure 1, which, respectively, consisted of the backbone network,
the Deep Feature Extraction (DFE) module, the multi-branch aggregation (MBA) module
and the Feature Fusion Upsample (FFU) module.

Next, the structure of the multi-scale feature aggregation network will be explained in
detail, and then the three modules, DFE, MBA and FFU, will be disassembled for analysis.

 
 

 
 

 
 Layer1 Layer2 Layer3 Layer5 
 

MBA

MBA

MBA

Layer4

Conv1×1

DFE

FFU FFU FFU FFU

addition

Down sampling

Up sampling

Figure 1. Multi-scale Feature Aggregation network. The ResNet-50 is used to extract features of
different levels. The deep feature extraction module (DFE) can obtain multi-scale features and pay
attention to global and local edge information. The multi-branch aggregation module (MBA) is used
to enhance the interconnection and integrate the two types of feature representation, and the feature
fusion upsample module (FFU) is used to complete feature fusion and location recovery.

3. Network Structure

A new type of semantic segmentation network is proposed in this work, which can
lessen the interference of the water segmentation background and achieve the fine seg-
mentation of small tributaries. Figure 1 shows the specific structure of the network. In the
process of model building, the backbone network used for information extraction is ResNet,
and this paper proposes a DFE module, whose function is to capture multi-scale contextual
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information and extract accurate dense features at the end of the downsampling. Secondly,
MBA module is proposed, which can enhance the communication ability of two channels
through different scale guidance. By capturing different scale feature representations, it can
enhance the interconnection and fusion of two types of feature representations, to provide
more useful features for the up-sampling process. Finally, in the decoding stage, this paper
proposes a module that continuously integrates features of different scales, and obtains
rich features through mutual fusion and guidance. The low-level features provide more
accurate spatial positioning; meanwhile, the high-level features enhance the long-term
dependence of information and provide more accurate category consistency judgments.
The recovery of low-level features relies on the continuous guidance and optimization of
high-level features to make up for the serious loss of low-level feature information; the
image undergoes four up-sampling modules to gradually fuse the feature information, and
continuously restore the detailed information of the image, which greatly heightens the
performance of the model.

3.1. Backblone

The selection of the backbone network is very important in the segmentation task. The
appropriate backbone network can better extract the feature information of the image to
achieve fine segmentation. Typical convolutional neural networks include DenseNet [21],
VGGNet [22], MobileNet [23], ResNet, Inception [24] and ShuffleNet [25]. In the water
segmentation process, it is extremely important to extract the high-precision feature infor-
mation of the image. To solve the gradient disappearance caused by too many convolutional
layers, the error propagates backward, so this paper uses ResNet as the backbone to extract
different levels of deep semantic features. The mathematical expression of the residual unit
is as follows:

xl+1 = Wl+1σ(Wl xl) + xl , (1)

where xl is the input vector of the lth residual unit; xl+1 represent the output vector of the
(l + 1)th residual unit; the function σ(·) represents ReLu function, Wl and Wl+1 represent
weight matrices; the specific residual structure is shown in Figure 2.

W1

W2

x

F(x) ReLu

F(x)+x
ReLu

Figure 2. Residual structure. xl is the input vector of residual unit.Wl and W2 represents weight
matrices. F(x) is residual mapping.

ResNet50 extracts detailed information of different scales through continuous down-
sampling, and finally obtains the output feature map of 1/32 of the input image. The
specific parameters are shown in Table 1.
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Table 1. ResNet detailed parameter settings.

Layer Name Imput Kernel Size Stride Output

Layer1 256× 256× 3
7× 7conv

3× 3conv
2 64× 64× 64

Layer2 64× 64× 64

 1× 1, 64
3× 3, 64

1× 1, 256

× 3 2 64× 64× 256

Layer3 64× 64× 256

 1× 1, 128
3× 3, 128
1× 1, 512

× 4 2 32× 32× 512

Layer4 32× 32× 512

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6 2 16× 16× 1024

Layer5 16× 16× 1024

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3 2 8× 8× 2048

3.2. Deep Feature Extraction Module

In the water body segmentation task in the actual environment, it is very difficult to
identify the small tributaries, especially in the complex background. Therefore, to better
perform the recognition task, this work proposes a deep feature extraction module that
can perform deep mining of deep features. It can obtain features of different scales, and
focus on edge information on the basis of ensuring global information, which is essential
for optimizing the accuracy of segmentation boundaries. Besides, the simple acquisition
and stacking of different scales will lose pixel information location. In order to achieve
more fine-edge segmentation, the dependence between features can not be ignored [26].
This paper used attention to strengthen the interdependence between feature information.
Therefore, this paper designs a depth feature extraction module, which is divided into three
branches. One branch is a pyramid structure composed of the convolution of different
scales, which is used to mine different scales and deep features, and the other branch is
composed of a designed attention mechanism. It can strengthen the selection of features,
use positional attention and spatial attention to capture useful information, weaken useless
information, and enhance the effectiveness of information. The last branch consists of 1× 3
and 3× 1 strip convolutions. As there are many small branches in the water area and it
is difficult to identify, the strip convolution in this paper can improve the edge detection
effect, and the combination of the whole module is essential for the algorithm. Figure 3
shows its specific composition.
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Figure 3. Deep Feature Extraction module.
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In the module design, we obtain information of different scales, avoiding loss of
information as much as possible, and use the convolution of 3× 3, 5× 5 and 7× 7 in the
pyramid structure; because the size of deep features is small, we can use the larger convo-
lution kernel without causing too much calculation loss. Using the pyramid structure to
integrate the features of three different scales can more accurately integrate the information
of different scales, reduce the influence of complex backgrounds on tributary segmentation,
and more accurately locate the river. However, although the receptive field will increase
with the expansion of the convolution kernel, the actual receptive field cannot reach the
theoretical level, which is not enough to capture the global and channel semantic infor-
mation. Therefore, the attention module is used to multiply the feature graph, combined
with different scales to weigh the weight. The attention mechanism [27,28] has been shown
to be helpful in numerous deep-learning-related tasks, such as image classification [29],
image change detection [30], image segmentation [31,32]. This is an attention model that
simulates the human brain. When we look at the environment, although we focus on
the whole picture, when we look deeply, our eyes will only focus on a small part, that is,
our attention to the whole picture is weighted. The attention mechanism works just like
this. The commonly used attention model structures include the SE module [33], CBAM
module [34] and SK module [35]. Their main working principle is to learn feature weights
through loss calculation, filter and manipulate information, and enhance the connection of
information by scaling channel information. This article uses this to capture cross-channel
information, as well as direction perception and location perception information, which
can help the model more accurately locate and identify the target of interest to achieve
fine segmentation of the river. The attention part encodes the channel relationship and
long-range dependence relationship through accurate position information. For input
X, first use the pooling kernel of size (H, 1) and (1, W) to encode along the horizontal
coordinate and numerical coordinate direction. Finally, the output with channel height h
and width w is:

zh
c =

1
W ∑

0≤i≤W
xc(h, i), (2)

zw
c =

1
H ∑

0≤i≤W
xc(j, w), (3)

where w is the width, j is the jth position pixel of the cth channel with width w, h is the
height, i is the ith position pixel of the cth channel with height h and c is the cth channel.
After these two transformations, the attention module captures the long-range dependence
of the two spaces while ensuring accurate position information, and then cascades the two
feature maps using shared 1× 1 convolution. The feature map f containing the direction
information of these two spaces can be obtained by transformation.

f = σ(F([zh, zw])), (4)

where σ is the non-linear activation function, h is the height, w is the height. Divided f
into two separate tensors f h ∈ RC/r×H and f w ∈ RC/r×W along the spatial dimension,
r represents the lower sampling ratio, and then f h and f w are transformed to the same
channel number as the input through two 1× 1 convolved with Fh and Fw, thus obtaining:

gh = σ(Fh( f h)), (5)

gw = σ(Fw( f w)). (6)

Then, the weight of attention is determined by gh and gw, and finally output:

gc(i, j) = xc(i, j)× gh
v(i)× gw

c (j). (7)
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The obtained output is multiplied by the pyramid output to redistribute the weight,
optimize information of different scales, remove redundant information and obtain spatial
information. In addition, the spatial information extracted by 1× 3 and 3× 1 convolution
from the input is added to the reconstructed feature map for further detail optimization. The
experiment shows that this module has a important impact on the location and acquisition
of small tributaries.

3.3. Multi-Branch Aggregation Module

To meet the small segmentation requirements of complex background tributaries in the
water area segmentation task, a variety of feature information needs to be fused, so multiple
channels need to be fused for operation. However, simply combining the two different
scales will result in a loss in the diversity of the two kinds of information. Therefore,
this paper designed a multi-branch aggregation module to enhance the communication
abilities of the two channels through different scale guidance. By capturing different
scale features, it is possible to enhance the interconnection and merge the two types of
feature representation.

In terms of computational loss reduction, the depth-separable convolution is used
in the first stage of two-branch feature extraction. This operation cannot only reduce the
parameters more than the ordinary convolution, it can also change the traditional way of
considering the channel and region at the same time. In another branch of low-level features,
a hole convolution pyramid is used to obtain information. The use of hole convolution
in the field of image segmentation improves the overall accuracy of the model [36]. Hole
convolution can greatly perceive the field, but no additional parameters are added. By
increasing the receptive field to enhance the context information, the accuracy of the
segmentation boundary can be improved. The size of the convolution expansion in the
hole convolution is represented by the dilation factor, and the expanded convolution kernel
has a larger receptive field. Deprived of information loss due to pooling, as the sensing
field of the convolution core expands, the output of each convolution can contain as much
information as possible. As shown in Figure 4, the three figures represent the receptive
field of the hole convolution with different expansion coefficients. When the expansion
coefficient is 3, the overall receptive field is 121, and the effect is the same as when using an
11× 11 convolution kernel. From this, we can conclude that the receptive field increases
significantly with the increase in the expansion coefficient under the condition that the
parameters remain unchanged. The expression of the receptive field changing with the
expansion factor is as follows:

Rd = (4× d− 1)2, (8)

where d represents the expansion factor, and Rd represents the receptive field under the d
expansion factor.

(a) (c)(b)

Figure 4. Schematic diagram of different expansion factors. (a) The expansion factor is 1 1 (b) is the
convolution kernel with expansion factor of 2 (c) is the convolution kernel with expansion factor
of 3. The red dot represents the 3 × 3 convolution kernel. Blue represents the receptive field of
hole convolution. Dark colors represent overlapping receptive fields, and light colors represent
normal conditions.
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In this work, we use dilated convolutions with expansion rates of 3, 6, and 7 to
extract multi-scale contextual information from a multi-branch aggregation network, which
greatly reduces the loss of text information. The specific structure is shown in Figure 5.
Experiments show that the detection effect of small tributaries was significantly improved
after the information optimization of this module.

Upsample

U
ps
a
mp
l
e

DWConv3×3

Conv1×1
Conv1×1

BN

ReLU

Conv3×3 DWConv3×3

Conv3×3

Rate=3 Rate=6 Rate=9

addition

multiplication

Figure 5. Multi-branch Aggregation module. DWConv is depthwise conv, which is used to reduce
calculation parameters. Rate stands for void rate.

3.4. Feature Fusion Upsample Module

In this paper, an encoding and decoding network is proposed. Four upsample modules
are used to complete up-sampling feature fusion and recovery step by step. The Feature
Fusion Upsample model mainly guides low-level features twice through high-level features,
and provides them with high-level semantic features to obtain the latest semantic features.
It has a high effect for the detection of river tributaries in complex background, and an
effective role in the location of small tributaries.

The up-sampling process is essential to form a clear high-resolution image. A simple
decoder is not enough to obtain a clear object boundary, and lacks feature information
for different scales. This paper proposes an up-sampling module that can deeply mine
and use contextual information. To obtain more accurate detailed features, rich, high-level
features are used to provide weighted parameters for low-level features. In addition, in the
low-level feature branch, not only is the semantic information of downsampling used, but
the semantic information optimized by the multi-branch aggregation module proposed in
this paper, which can provide more detailed characteristic information for the realization
of small tributary segmentation. Figure 6 shows its overall structure.

The module first uses a convolution operation to change the number of channels of
low-level features. In the deep feature operation stage, after the input is convolved with
three 1× 1× 1 convolutions of Wg ,Wθ and Wφ, the number of channels is reduced by half,
which reduces the burden of calculation, and then the size of the Wθ and Wφ outputs is
changed, the output Wθ is transposed and the output Wφ is matrix-multiplied to calculate
the similarity. The softmax operation is performed on the last dimension. This process is
equivalent to position attention; it mainly finds the normalized correlation coefficient of
each pixel in the characteristic image and other images in the picture. Finally, the value of
the element in the ith row and jth column in the (N, N) matrix is the correlation between
the pixel at position i and the pixel at position j in the figure, and then we perform the
same operation on the thematrix with the (N, N) matrix and multiply it again. The output
obtained in this way is the feature map considering the global information. Each position
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value of the output is the weighted average of all other positions. The softmax function
operation can further highlight the commonality, and then adjust the output to be the
same as the input through 1× 1 convolution. This output is multiplied with low-level
features, and finally high-level features and weighted low-level features are added and
gradually upsampled. In terms of effect, this module enhances the pixel information and
spatial position at the edge of the background, uses long-term dependencies, weakens or
eliminates useless information, can identify small tributaries and smooth edge information,
and can adapt to different widths and complex water segmentation tasks.

Conv3×3

Conv1×1

BN

ReLU

： ： g:1×1×11×1×11×1×1

Figure 6. Feature Fusion Upsample module. 1× 1× 1 means 1× 1× 1 convolutions. BN is the batch
normalization layer.

4. Experiment
4.1. Datasets
4.1.1. Water Segmentation Dataset

The data in this paper come from high-resolution remote sensing images selected from
Landsat8 satellites and Google Earth (GE). Landsat8 carried Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS) into the sky on 11 February 2013. The OLI land imager
has a total of 11 bands. True color synthesis is carried out through 4, 3 and 2 bands, and
standard false-color synthesis for vegetation-related monitoring is carried out through 5, 4
and 3 bands. To make the model more suitable for application requirements and reduce the
requirements of hardware conditions, most of the image acquisition equipment includes
lack of sensors in other bands; as a result, the datasets produced in this paper are mainly
natural true color images formed by the combination of 4, 3, and 2 bands. The satellite
images of Ge were mainly provided by QuickBird commercial satellite and earthsat. GE
global landscape images on the effective resolution of at least 100 m, usually in the form of
30 m, and ngle of elevation is about 15 km, but, for some places that need more precision,
such as some scenic spots and buildings that require attention, it will provide a more accurate
resolution, of about 1 m and 0.6 m accuracy, and the viewing angles are about 500 m and
350 m, respectively.

To enhance the authenticity of the data, we used a wide range of distribution, and in
terms of river selection, we chose rivers with different widths and colors, and small, rugged
rivers. Meanwhile, to ensure that the model can maintain a good performance in different
scenarios, we use driver areas with a complex surrounding environment, including forests,
cities, hills, and farmland. Some of the images that were collected by the river are shown in
Figure 7. The average size of the Landsat8 satellite image was 10,000 × 10,000 pixels, and



Remote Sens. 2022, 14, 206 11 of 20

the Google Earth image was intercepted as 4800× 2742 pixels, which was cut to 256 × 256
for model training. We obtained 12,840 training sets and 3480 test sets for the experiment.

Figure 7. Partial sample display of water area dataset.

A great deal of experimental data is essential for the training of neural networks, but
the data acquisition process is more complicated. Therefore, when there are few training
samples, the model is prone to overfitting, so we performed enhancement operations on
the data [37]. Therefore, this paper enhances the data by translation, flipping and rotation.

4.1.2. Cloud and Cloud Shadow Dataset

The generalized dataset used in this paper is the cloud and cloud shadow dataset,
which is collected from Google Earth (GE) and annotated manually. The dataset is com-
posed of high-definition remote sensing images that were randomly collected by profes-
sional meteorological experts in Qinghai, Yunnan, Qinghai, Qinghai-Tibet Plateau and
Yangtze River Delta. To fully test the processing capacity of the model in this task, we
selected multiple groups of high-resolution cloud images with different shooting angles
and heights, and ensured the diversity of the image background. We captured the back-
ground remote sensing images of water area, forest land, farmland, city and desert to
ensure the richness of images. We cut the intercepted image with 4800 × 2742 pixels to
the size of 224× 224. After screening, we obtained 1916 images, and then expanded the
data through translation, flipping and rotation to obtain 9580 images, among which there
were 7185 training sets and 2395 verification sets, as shown in Figure 8, which lists some
examples of the datasets in this article.

Figure 8. Partial sample display of cloud and cloud shadow dataset.

4.1.3. LandCover Dataset

To further verify the performance of the model in the water domain segmentation
task, we used the LandCover dataset [38]. This dataset includes images selected from aerial
photos of 216.27 square kilometers of land in Poland (a Central European country). Four
kinds of objects were manually labelled: building (red), woodland (green), water body
(grey), and background (black), which is called ground truth. The dataset had 33 images
with a resolution of 25 cm (about 9000× 9500 px) and 8 images with a resolution of 50 cm
(about 4200× 4700 px). Due to the water area task, this article processed the dataset. We
cropped the picture to a size of 256× 256, set the rest of the categories as the background,
and retained the water as the segmentation category, water (red), background (black).
Finally, the large-scale pictures with only background were eliminated, and 3666 training
sets and 754 training sets were obtained. A part of the dataset is shown in Figure 9.
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Figure 9. Partial display of LandCover Dataset.

4.2. Implementation Details

All experiments in this article were performed on a computer equipped with GEFORCE
RTX 3070 and Intel Core i5. The operating system used is Windows 10, and the basic frame-
work is pytorch. In this paper, when the original remote sensing image was input, the
output image of the current network was counted by forward propagation. The cross-
entropy loss function was used to calculate the error between the output image and the
label, and the obtained error was transmitted back to the network through the chain rule.
The adaptive moment estimation (Adam) optimizer updated the network parameters in
back propagation [39]. The Adam optimizer uses the exponential decay rate with a coeffi-
cient of 0.9 to control the weight distribution (momentum and current gradient), and used
the exponential decay rate with a coefficient of 0.999 to control the effect of the square of
the previous gradient. In addition, the Adam optimizer chose a high momentum of 0.99
and avoided the divisor from zero. For the selection of learning strategies, including “fixed”
strategy, “stepping” strategy, “ploy” strategy, etc. Previous work [40] shows that the “ploy”
strategy is a better method in the experiment. When training samples, the starting learning
rate of the network model was 0.001, the number of samples selected for one training was
4, and the iteration was 300.

4.3. Ablation Experiment

In the ablation experiment, by deleting part of the network structure, the effect of each
module on the overall model was tested. In the ablation experiment, the feature extraction
network in this paper is ResNet. In this part, we used Mean Intersection over Union
(mIOU) as the indicator of the evaluation model. When all the modules are combined, the
performance of the structure can be fully brought into play. The specific parameters are
shown in Table 2.

Table 2. Comparison of the effects of different modules on the model.

Method mIOU (%)

ResNet50 90.94
ResNet50 + FFU 94.57

ResNet50 + FFU + DFE 95.01
ResNet50 + FFU + DFE + MBA 95.94

For the ablation of the up-sampling module, the up-sampling module uses high-level
features to guide low-level features twice, firstly instructing the formation of new features,
and then further instructing the formed features to obtain optimized feature information.
This has a high effect on the detection of river tributaries against a complex background,
and it an effective role in the location of small tributaries. From the results shown in Table 2,
we know that through the feature fusion upsample module, the model performance mIOU
increased from 90.94% to 94.57%.

Aiming to ablate the depth feature extraction module, to solve the loss of information
that results from continuous downsampling, the deep features are better optimized, further
capture multi-scale context information, and enhance the global and channel semantic
information. The proposed depth feature extraction module can be used for information
recovery and different scales of information acquisition. From the results shown in Table 2,
the deep feature extraction module improves the overall performance mIOU by 0.44%.

For the ablation of the MBA module, we used the semantic information of two branches
at different scales to aggregate, to obtain a richer feature map as a branch of upsampling,
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which can more effectively restore remote sensing images. From the results shown in
Table 2, we can see that the performance of the deep feature extraction module proposed in
this paper further improved the model mIOU by 0.93%.

4.4. Comparative Experiment with Other Networks

In the comparative experiment, to fully test the performance of this model, we com-
pared the existing semantic segmentation network with this method. This paper selects
floating point operations (FLops), Training time (T), the harmonic average of P and R, F1,
the mean pixel accuracy MPA, and the mean intersection over Union Miou as evaluation
indicators to comprehensively test the performance of the model; the specific parameters
are shown in Table 3.

Table 3. Comparison results of different algorithms.

Method FLops (GMac) T (s) P (%) R (%) F1 (%) MPA (%) mIOU (%)

FCN8sAtOnce 73.35 73 94.74 92.26 93.48 95.32 91.89
Deeplabv3+ [41] 64.92 76 96.28 92.75 94.48 95.81 93.09

SegNet 42.48 43 95.93 93.16 94.52 95.95 93.13
PANnet [42] 5.73 29 96.94 92.27 94.54 95.67 93.17

MSResNet [43] 31.94 53 94.91 94.54 94.73 97.46 93.35
DFNnet [44] 7.81 45 95.93 93.58 94.74 96.16 93.38
BiSeNet [45] 15.24 26 96.88 94.01 95.42 96.52 94.21

PSPNet 46.07 56 97.53 94.12 95.80 96.68 94.68
UNet 40 41 96.98 94.70 95.83 96.88 94.70

DenseASPP [46] 38.71 91 96.23 95.49 95.86 97.15 94.73
MEcnet [47] 46.04 105 97.67 94.64 95.45 96.13 95.01

Ours 29.43 56 98.07 95.62 96.83 97.51 95.94

As shown in Table 3, the comparison results of different methods under the same
experimental environment revealed that, among the Flops and Training Time indicators,
PANnet and DFNnet have smaller Flops, and PANnet and BiSeNet’s Training Time is small,
but its accuracy is low. Compared with other models, our model still maintains a high
performance and high accuracy, even with relatively low Flops and Training Time. In
addition, it can be seen that our proposed algorithm performed better than the current
excellent segmentation method in the other five indicators. In all networks, the performance
of FCN8sAtOnce model is the worst according to these indicators. With the continuous
improvements in the model, the indicators of other models have increased, but these
indexes are still lower than in the model proposed in this work.

The data in Table 3 show that the method in this paper can achieve high-precision
segmentation of water body datasets. Figure 10 shows the test results of the test images
on different algorithms, where black represents the default background and red repre-
sents the water area. It can be found that FCN8sAtOnce and Segnet cannot identify the
detailed information of the river, and the outline of the river is rough. Deeplabv3+ has
improved the details, but there are false detections. PSPNet and UNnet can identify some
tributaries, but still cannot meet the fine requirements. The deep feature extraction module
is used to further obtain multi-scale semantic information, and enhance spatial and channel
information, which is of great benefit to the improvement in model performance. The
multi-branch aggregation module enhances the communication capabilities of the two
channels through different guidance scales, and enhances the interconnection and fusion of
the two types of element representations, which can capture richer semantic information
for upsampling. The FFU module restores the position of each pixel through high-level
features and guides the recovery of low-level features, which is very important for similar
object recognition and recognition in complex backgrounds. By effectively detecting the
waters, this method can solve the problem wherein small waters cannot be detected with
complex backgrounds and cannot be accurately identified. It performs well in different
scenarios, thereby achieving better detection results.
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      (c)   (d)   (g)   (f)     (h)     (e) (a)   (b)

Figure 10. The comparison experiments of water domain segmentation. (a) Image; (b) label;
(c) FCN8sAtOnce; (d) Segnet; (e) Deeplabv3+; (f) PSPNet; (g) UNet; (h) Our model.

We compared the segmentation effects of different methods on small water images,
and the specific effects are shown in Figure 11. This article selects five examples to show the
effect of segmentation. It can be observed that the method proposed in this article is more
accurate in the segmentation of waters, especially in the segmentation of small tributaries.
Compared with other depth models, the segmentation effect of FCN8Satonce and Segnet
models is relatively rough, with incomplete edge information acquisition and an excessive
loss of information in the feature extraction stage. As can be seen from Figure 11, these
two models have poor segmentation effect on tributaries, failing to identify small streams,
and relatively rough edges. Deeplabv3+ has slightly improved this effect, and its edge
processing is more delicate, but the recognition of small tributaries still cannot be accurately
achieved. Compared with the above models, PSPNet can segment the outline of the water
body, but when there are many river branches and the river channel is complicated, PSPNet
cannot completely segment the first group of river channels and small branches. UNnet
is a classic two-classification network. It further improves the segmentation effect of the
image. It obtains a smoother segmentation edge, but the processing of details still needs
to be improved. For each group of graphics, there are cases of missed detection, and a
misjudgment occurred in the fourth group of image segmentation. The proposed model
algorithm can accurately identify the river boundary, and still has a strong detection ability
in the face of small tributaries. The experimental results show that the effect of the model
proposed in this work is very superior, which fully proves the importance and effectiveness
of the module.

In order to further confirm whether the segmentation effect of the model can be
maintained in complex situations, as shown in Figure 12, we selected remote sensing
images of water with a complex background that were difficult to distinguish for the model
test. When faced with remote sensing images with a lot of complex background noise,
the FCN8sAtOnce, Segnet and Deeplabv3+ models had very poor effects, and there was
very serious missed detection. Compared with the first three effects, the segmentation
effect of PSPNet was improved. It can detect the contours of some rivers, but its loss
information was still too great: there were faults inside the river, and some small branches
could not be identified. The edge information of the image segmented by UNet was
relatively complete, but the recognition effect of the whole water area was not good. In
the first group of images, the river segmentation was intermittent, information loss was
increased, and the more hidden rivers could ot be identified. The above model adapted to
the task of water segmentation in a difficult environment. The algorithm proposed in this
paper, by optimizing the deep features, continuously upsampled the information that was
obtained by the multi-branch aggregation module and the optimized information to restore
high-definition remote sensing images, and could handle the task of water segmentation in
different situations and scenes.
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(c)     (d)     (g)    (f)    (h)(e)     (a)     (b)

Figure 11. The comparison of different methods for segmentation of small water images. (a) Image;
(b) label; (c) FCN8sAtOnce; (d) Segnet; (e) Deeplabv3+; (f) PSPNet; (g) UNet; (h) Our model.

      (c)     (d)    (g)    (f)    (h)       (e)   (a)     (b)

Figure 12. The comparison of different methods with complex background noise. (a) Image; (b) label;
(c) FCN8sAtOnce; (d) Segnet; (e) Deeplabv3+; (f) PSPNet; (g) UNet; (h) Our model.

4.5. Generalization Experiment
4.5.1. Cloud and Cloud Shadow Dataset

To fully test whether the algorithm has the same segmentation performance in different
tasks, our algorithm was evaluated on a cloud and cloud shadow dataset to verify that it
can not only deal with two classification tasks, such as river segmentation, but also segment
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multiple types of tasks. We used Mean Intersection over Union (mIOU), the mean pixel
accuracy (MPA) and pixel accuracy (PA) as evaluation indicators to assess the performance
of the algorithm on the dataset. The comparison between this algorithm and other models
on three indexes shows that the impression of this algorithm is better than that of other
models. The specific comparison is shown in Table 4.

Figure 13 shows the segmentation influence of different models on the dataset. From
the figure, we can see that FCN8sAtOnce and Segnet can only distinguish the outline of the
image, and lose too much detailed information. The segmentation of details by UNET is
improved, but, as shown in the third group, there are more missed detection cases. The
effect of PSPNet further improves the segmentation effect, but the detection of edges is
not clear enough, and the detection of thin clouds will be missed. As this model can fully
extract detailed information, and the depth feature extraction module optimizes context
information, it provides better global features for the feature fusion upsample module for
continuous upsampling, so this article has better results in terms of detail processing, cloud
and cloud shadow detection.

Table 4. Comparison of evaluation indexes of different models in cloud and cloud shadow dataset.

Method PA (%) MPA (%) mIOU (%)

FCN8sAtOnce 93.13 91.02 84.39
SegNet 93.30 91.53 84.70
DFNnet 93.99 92.60 86.20

UNet 94.18 92.84 86.43
PSPNet 94.19 92.18 86.76

Ours 94.46 93.13 87.28

     (c)  (d)  (e)    (f)  (g) (a)  (b)

Figure 13. (a) Image; (b) label; (c) FCN8sAtOnce; (d) Segnet; (e) UNet; (f) PSPNet; (g) Our model.

4.5.2. LandCover Dataset

To further verify the generalization ability of the model proposed in this paper, our
algorithm will be evaluated in a landcover dataset to verify its excellent performance in
water segmentation. We used the Mean Intersection over Union (mIOU), the Mean pixel
Accuracy (MPA) and pixel accuracy (PA) as evaluation indicators to assess the performance
of the algorithm on the dataset. The comparison between this algorithm and other models
on three indexes shows that the impression of this algorithm is better than other models.
The specific comparison is shown in Table 5.
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Table 5. Comparison of evaluation indexes of different models in LandCover dataset.

Method PA (%) MPA (%) mIOU (%)

SegNet 94.93 94.38 89.97
BiSeNet 95.64 95.38 91.35

PAN 96.07 95.69 92.15
DenseASPP 96.11 95.85 92.24

UNet 96.17 95.58 92.35
MSResNet 96.20 96.04 92.43

Deeplabv3+ 96.23 95.84 92.45
Ours 96.45 96.12 92.89

Figure 14 shows the segmentation effect of different models on the dataset. From
the figure, we can see that DenseASPP, UNet and MSRNet will have different situations
of misdetection and missed detection, a lack of processing of edge information, and the
segmentation edge is too rough. The segmentation effect of Deeplabv3+ was further
improved, but, for the second set of pictures, there was a missed detection. In addition,
the segmented edges were still a bit rough and there were tooth marks. Compared with
the algorithm proposed in this paper, it can not only better segment the river region, but
achieve a smooth and noise-free segmentation boundary, which fully reflects the usefulness
of the algorithm model in this paper.

  (a)    (b)      (c)   (d)     (e)      (f)  (g)

Figure 14. (a) Image; (b) label; (c) DenseASPP; (d) Unet; (e) MSRNet; (f) Deeplapv3+; (g) Our model.

5. Conclusions

In remote sensing images, the river area is an important landmark, which has im-
portant practical significance in the surveying of water resources, flood monitoring and
water resources’ protection planning. A multi-scale feature aggregation algorithm is pro-
posed in this article to better deal with water segmentation tasks. The algorithm used the
advantages of convolutional neural networks in feature extraction, and downsampling
feature extraction was performed using ResNet network to obtain features at different
levels. In this algorithm, the deep feature extraction module was used to obtain rich context
information, aggregate spatial information and semantic information, and the multi-branch
aggregation module was used for two-channel information communication to provide rich
pixel information for the recovery of up-sampling information. Then, in the up-sampling
process, the low-level feature branches fused by the Feature fusion upsample module are
optimized by the high-level feature guidance, which is very important for the location
of information during remote sensing image restoration. Compared with the existing
segmentation algorithms, the method in this paper obtained better segmentation accuracy.
This method has strong anti-interference and recognition abilities. The river can be accu-
rately located, and the small tributaries in the complex environment are still finely divided
with smoother edges. However, the algorithm in this paper still has some shortcomings.
When the color of the river is similar to the forest and the light is not strong, the detection
of the edge of the river will appear scattered. Although the accuracy of our algorithm
was improved, the number of parameters was not effectively improved, and the accuracy
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may fluctuate when used in other tasks. In the future, to obtain better applications, we
should reduce the weight of the model and relieve the training pressure. We could consider
optimizing the backbone network, changing the convolution kernel or the convolution
type, and even continuing to select a lighter network. In addition, the MBA model can be
optimized, the connection mode can be changed, or the pyramid with an appropriate void
rate can be selected for adjustment. In addition, for follow-up research, a lighter attention
mechanism can be added to the backbone network to enhance its feature extraction abilities.
In addition to the above methods, readers can also refer to relevant papers and some of the
most advanced methods to continue to improve the algorithm.
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