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Abstract: Deep learning has obtained remarkable achievements in computer vision, especially image
and video processing. However, in synthetic aperture radar (SAR) image recognition, the application
of DNNs is usually restricted due to data insufficiency. To augment datasets, generative adversarial
networks (GANs) are usually used to generate numerous photo-realistic SAR images. Although
there are many pixel-level metrics to measure GAN’s performance from the quality of generated
SAR images, there are few measurements to evaluate whether the generated SAR images include
the most representative features of the target. In this case, the classifier probably categorizes a SAR
image into the corresponding class based on “wrong” criterion, i.e., “Clever Hans”. In this paper,
local interpretable model-agnostic explanation (LIME) is innovatively utilized to evaluate whether a
generated SAR image possessed the most representative features of a specific kind of target. Firstly,
LIME is used to visualize positive contributions of the input SAR image to the correct prediction of the
classifier. Subsequently, these representative SAR images can be selected handily by evaluating how
much the positive contribution region matches the target. Experimental results demonstrate that the
proposed method can ally “Clever Hans” phenomenon greatly caused by the spurious relationship
between generated SAR images and the corresponding classes.

Keywords: generative adversarial networks (GAN); synthetic aperture radar (SAR); deep neural
network understanding; target interpretation and recognition; local interpretable model-agnostic
explanation (LIME)

1. Introduction

Synthetic aperture radar (SAR) can realize full-time observation and obtain high-
resolution SAR images without being restricted by weather and light, thus it is widely
applied in both civil and military fields [1]. Target recognition is generally considered as the
most challenging process in SAR image interpretation because of the complex procedures
in the feature extraction and classification [2]. With the development of high-performance
computers, deep learning has gradually become popular in computer vision and natural
language processing [3]. Deep learning methods autonomously learn the inner relationship
between massive labeled data and the corresponding categories. However, SAR images are
extremely limited and difficult to collect in large quantities. Worse, even if we can collect
enough raw data, manually labeling them is time-consuming and labor-intensive. In this
case, SAR image simulation draws increasing attention. Traditional SAR image simulation
methods are mainly based on ray-tracing and rasterization theories [4–6]. Unfortunately,
the generated simulation images through traditional methods are quite different from
the real SAR images. Worse, these methods are quite time-consuming. This limitation
can be alleviated with the emergence of various generative adversarial networks (GANs).
Ian J. Goodfellow et al. proposed GAN in 2014 [7]. GANs can generate spurious samples
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by mimicking the data distribution of real samples. However, it is usually difficult to train a
stable GAN due to various issues such as mode collapse, training instability, and ambiguity
in model evaluation. Refs. [8,9] proposed deep convolutional generative adversarial
network (DCGAN) and Wasserstein generative adversarial network (WGAN) to alleviate
the mode collapse from the aspects of network structure and loss function, respectively.
Note that the aforementioned GANs can only generate SAR images without labels, thus
it is still difficult to use these data directly in SAR image recognition. To provide labeled
images, Mirza and Osindero [10] proposed the conditional generative adversarial network
(CGAN) to control the properties of generated images. The label of generated images
is corresponding to the conditional information input to the model, such as category
information, semantic information, etc. Cao et al. [11] proposed a label-directed generative
adversarial network (LDGAN) to alleviate the issue of data insufficiency of data-driven
based SAR target recognition methods. In the multi-constraint generative adversarial
network (MCGAN) designed by Du et al. [12], the input of generator is features learned by
an encoder rather than random noise, which can effectively generate high-quality labeled
SAR images. Ref. [13] presented a hierarchical GAN to gradually generate high-resolution
SAR images through a multi-stage model.

Although there are numerous novel GANs that can improve the quality of gener-
ated SAR images, Clever Hans, a serious problem on networks’ interpretation, is seldom
considered. Clever Hans [14] is a famous example of observer expectation effects. Hans
was a horse that conquered the audience with the extraordinary ability of mathematical
calculations. In fact, Hans did not carry out a real reasoning process but just relied on
unconscious cues from the trainers and the observers, such as facial expressions, postures,
etc., to give the correct answer. The “Clever Hans” phenomenon often appears in the field
of deep learning [15], i.e., although the trained classifiers can achieve high accuracy, they
do not really learn the features or strategies that match people’s cognition, but learn the
spurious connection between the trained samples and their labels. In this case, the “Clever
Hans”-type decision strategy will probably fail to provide reliable and stable classification,
which may be disqualifying or even unacceptable for some low-risk tolerance scenarios,
such as medical, finance, automatic driving, military, etc. Therefore, it is necessary and
significant to understand the internal mechanism of DNN to prevent it from “Clever
Hans”-type decision making.

Multiple methods were proposed to visualize the internal mechanism of deep neural
networks (DNNs). The methods can be divided into four categories: Propagation-based
method, Class activation mapping (CAM) method, Perturbation-based method, and model-
agnostic method. Propagation-based methods visualize the correlation between input and
output by decomposing the result of the output layer and propagating it to the input space
layer by layer according to the designed propagation rules [16,17]. CAM methods visualize
the area of interest of the model by providing a highlighted region to reflect the networks’
interest in a specific class by weighted summation of feature maps [18–22]. Perturbation-
based methods observe the change of the output by masking, deleting, or blurring different
regions of the input, thereby, determining the impact of the corresponding region on
the output [23,24]. Model-agnostic methods are currently state-of-the-art interpretation
methods, e.g., local interpretable model-agnostic explanation (LIME) [25], Shapley Additive
exPlanation (SHAP) [26], etc. They can give a relatively uniform interpretation for various
types of machine learning models. LIME is a practical and effective method for describing
and verifying the behavior of non-linear deep learning algorithms. It helps to evaluate
whether the trained model has learned the features or strategies that people expect. Few
of the SAR image generation methods based on deep learning consider the influence of
the “Clever Hans” phenomenon. In this case, the labeled images are likely to be generated
according to the spurious relationship between the real samples and the corresponding
classes. To avoid this, we proposed a data selection method based on LIME to alleviate
“Clever Hans” phenomenon. In our proposed method, the visualization results of the
classifier obtained by LIME are utilized as the detectors of “Clever Hans” phenomenon
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to select the training data of GAN from the MSTAR dataset. LIME is adopted to visualize
the classifier since LIME has the following advantages compared with other methods:
(1) LIME is a model-agnostic method with good versatility and less computational burden
compared with perturbation-based method; (2) There are usually numerous scattered
speckles in the heatmap generated by Propagation-based method, which will not appear
in the result of LIME method; (3) CAM method visualizes only positive contributions to
the result, while LIME can mark both the positive and negative contributions to the result,
respectively. We conduct experiments on the moving and stationary target acquisition and
recognition (MSTAR) dataset to verify the effectiveness of our proposed method. Note that,
our aim is to explore the effectiveness of LIME method in alleviating the “Clever Hans”
phenomenon in DNNs, but not to obtain a GAN with superior performance by optimizing
the architecture and the loss function of the GAN. Despite this, the GAN employed in this
study still generates images of high quality.

The follow-up contents of this article are arranged as follows: Section 2 reviews the
algorithm of C-DCGAN and LIME. Section 3 describes our method in detail. Section 4
presents some experimental results from different perspectives. Section 5 discusses the
experimental results and the future research direction. Section 6 gives the conclusions.

2. Materials and Methods
2.1. Conditional Deep Convolutional GAN

The GAN is composed of a generator G and a discriminator D. It alternately optimizes
G and D by playing the two-player min–max game with the value function V(G, D) until
they reach the Nash equilibrium point [7]. Assume that pr represents the distribution of the
real data x, pz represents the prior distribution of random noise vector z. The optimization
goal of the GAN can be written as:

min
G

max
D

V(D, G) = Ex∼pr [logD(x)] +Ez∼pz [log(1− D(G(z)))] (1)

The generation process of the original GAN lacks operability and semantics due to
the randomness of the input data, thus it is impossible to generate samples with specified
characteristics. In response to this shortcoming, Mirza and Sindero [10] added conditional
information on the basis of basic GAN, and proposed CGAN. The algorithm introduces
the condition information y, such as category information, semantic information, etc., in
both the generator and the discriminator. The conditional information y is spliced with
the hidden variable z and the input image x as the input of G and D, respectively. The
objective function of the training would be as:

min
G

max
D

V(D, G) = Ex∼pr [logD(x|y)] +Ez∼pz [log(1− D(G(z|y)))] (2)

Multi-layer perceptron (MLP) has difficulty capturing the local correlation in the image,
therefore GANs with the MLP structure usually cannot achieve ideal generation effects
on some complex image datasets. To solve this problem, Alec Radford et al. proposed
DCGAN [8]. It only retains the fully connected layer in the input layer of the G and the
output layer of the D, and uses step convolution and deconvolution to replace the pooling
operation to implement the down-sampling and up-sampling operations, respectively.
The output layer of the G uses the Tanh function as the activation function, and the other
layers use the ReLU function. The D uses LeakyReLU as the activation function in all
layers. In addition, it introduces the batch normalization layer to stabilize the training of
the model.

In this paper, we utilize CGAN with the deep convolution structure (C-DCGAN),
and choose category information as the conditional information. The detailed architecture
of C-DCGAN is presented in Figure 1.
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Figure 1. The architecture of C-DCGAN.

2.2. Local Interpretable Mode-Agnostic Explanation

LIME was proposed by Ribeiro et al. [25] to explain the prediction of arbitrary clas-
sifiers. The overall idea of LIME is training an interpretable model to approximate the
explained deep model in the local range. The explained deep model is represented as f .
We define an interpretable model g ∈ G, G represents the family of all possible simple
models, such as linear regression models, logistic regression models, decision trees, etc.
Mathematically, the explanation of the input sample x obtained by the local surrogate
model can be expressed as:

explanation(x) = arg min
g∈G

L( f , g, πx) + Ω(g) (3)

The model complexity Ω(g) is kept low to ensure the interpretability of g, e.g., a shal-
low depth for decision trees or a small number of non-zero weights for linear models.
In practice, we usually directly constrain the complexity, e.g., by determining the number
of non-zero coefficients of the linear regression model. Therefore, LIME only optimizes the
loss part L( f , g, πx). Lmeasures how close the explanation obtained by g is to the predic-
tion of the explained deep model f . Mathematically, we can use the following formula to
measure the difference between the predictions of the two models:

L( f , g, πx) = ∑
z,z′∈Z

πx(z)( f (z)− g(z′))2 (4)

where z, z′ are the perturbed instances with dimension corresponding to the input layer
of f and g, respectively. The similarity kernel πx(z) defines the locality of the interpreted
sample x. It is believed that the closer the distance to the original sample x, the greater the
weight, i.e., the greater the impact. πx(z) defined on distance measure function D with
width σ can be expressed as:

πx(z) = e−
D(x,z)2

σ2 (5)

For images, D is usually the L2 distance.
Specifically, LIME trains the local surrogate model according to the following steps:

Firstly, the image instance x is segmented into superpixels by any standard algorithm, e.g.,
Turbopixel [27], Quick-shift [28], SLIC [29], etc. Secondly, the perturbed instances z′ can
be obtained by turning superpixels off or on. A superpixel can be turned off by replacing
each pixel in it with a user-defined color, such as black. Thirdly, we recover the perturbed
instances z′ to the original input space and obtain z as the new input of f . The predictions
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of z are the corresponding labels of the perturbed instances. Subsequently, z
′

and f (z) form
the nearest neighbor dataset Z = {z′, f (z)} of the input sample. Finally, g is trained on the
dataset Z.

In conclusion, LIME uses the perturbed instances z
′

obtained in the neighborhood
around instance x to train the interpretable model g(z

′
) to achieve the purpose of always

g(z
′
) ≈ f (z) in the local range. Consequently, the explained deep model can be replaced

locally by the trained interpretable model. The flowchart of LIME is described in Figure 2.

Figure 2. The flowchart of LIME method.

3. Our Method

The SAR images generated by GANs according to the spurious connection between the
real SAR images and the corresponding labels can not be applied to SAR target recognition
due to lack of authenticity and reliability. To this end, we proposed a LIME-based data
selection method to improve the quality of generated images by preventing the classifier
from making “Clever Hans”-type decision. Our proposed method consists of the following
five steps: (1) CNN training; (2) CNN visualization; (3) Data selection; (4) GAN training;
and (5) GAN evaluation. We can select the data based on the distribution of the positive
contribution delineated by LIME. The detailed processes can be described as follows:

1. A CNN is trained on the MSTAR dataset. All the SAR images are converted to pseudo
RGB images by repeatedly copying the monochromatic image in three channels.
The input size of the SAR image is 64× 64× 3;

2. The LIME is adopted to provide the positive contribution to the CNN’s classification
result of each SAR image;

3. The original SAR images are selected according to the distribution of the positive
contribution. The SAR images with the positive contribution in the background are
discarded; The SAR images with the positive contribution coincident with targets are
selected to form a new dataset;

4. Two C-DCGANs are trained on the MSTAR dataset and the selected dataset, respec-
tively, to generate two labeled SAR image datasets;

5. Evaluate the two C-DCGANs based on different metrics. The evaluation results are
presented in Section 4.3.

The flowchart of our proposed method is presented in Figure 3.
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Figure 3. The flowchart of our method.

4. Experimental Results

In this article, the MSTAR database is employed to evaluate the performance of our
method. MSTAR is a dataset composed of ten classes of real measured SAR images of
ground stationary vehicles. CNN is used as the classifier in our experiments. The ar-
chitecture of CNN to be visualized is presented in Figure 4. Stochastic gradient descent
(SGD) was adopted as the optimizer, learningrate = 5× 10−4, momentum = 0.9. Indeed,
CNN with a more exquisite structure may perform better in SAR image classification
task, but the complex structure may be obstacle for interpretation, which mismatch our
propose. Therefore, a lightweight CNN with an approximate accuracy of 97% is adopted as
the classifier.

Figure 4. The architecture of CNN.

4.1. LIME Versus CAM Methods

In this section, experiments are conducted on MSTAR to compare the performance
of LIME with Grad-CAM and Score-CAM. CAM methods generate heatmap HCAM by
performing a weighted summation of the feature maps Ak in the last convolutional layer,
which can be defined as:

Hij = ∑
k

αk
c Ak

ij (6)

where αk
c is the weight of Ak corresponding to the target class c, (i, j) is the coordinate of

the pixel in the feature map. The CAM methods can be divided into gradient-based and
gradient-free methods according to the calculating method of αk

c .
Selvaraju et al. [18] proposed a gradient-based method: Grad-CAM. Grad-CAM uses

the average channel gradient obtained in backpropagation process as the weight, which is
formalized as:

αc,k
Grad =

1
Z ∑

i
∑

j

∂Sc

∂Ak
ij

(7)

where Z is the number of the pixels in the kth feature map, Sc is the model’s prediction
score of the target class c when the original image X is sent to the classification model.



Remote Sens. 2022, 14, 204 7 of 14

Wang et al. [22] proposed a gradient-free method: Score-CAM. Score-CAM removes
the dependence on the gradient, and uses the increase in confidence (CIC) of the feature
map to calculate the weights. Specifically, each feature map in the last convolutional layer is
upsampled and multiplied with the input image. The difference between the classification
model’s prediction of the masked image and the prediction of the baseline image is used to
represent the weight, defined as:

αc,k
Score = Sc(X ◦Yk)− Sc(Xb) (8)

Yk = Sup(Ak) (9)

where Sup(.) represents the upsampling operation, Xb is the base image set to 0.
The comparison of Grad-CAM, Score-CAM and LIME is shown in Figure 5. The visual-

ization results of CAM methods are heatmaps with the colormap set to [0, 1]. “LIME-P” and
“LIME-N” represent the positive and negative contributions of the LIME result, respectively.
It is evident that the performance of LIME is significantly better than the performance
of CAM methods. CAM methods highlight areas that only contribute positively to the
classifier’s decision. Conversely, LIME can reflect both positive and negative contributions
to the classifier’s decision. In addition, the highlighted area in the heatmaps generated
by CAM methods excessively covers the target or even deviates from the target. This is
mainly caused by the process of upsampling the feature map to the size of the input image.
In contrast, LIME method can delineate a region that precisely covers the target. Therefore,
we can clearly observe the “Clever Hans” phenomenon in the classification task by using
LIME method.

4.2. “Clever Hans” Phenomenon in SAR Image Classification Task

In this experiment, LIME is utilized on MSTAR dataset to observe the “Clever Hans”
phenomenon in the CNN. Figure 6 presents two types of the distribution of the positive
contribution, according to which we can assess whether the CNN actually reliably solves the
problem we set for it. The first case is that the positive contribution is the target, as shown
in the second column. It demonstrates that the CNN makes classification decisions through
the difference of SAR target. This decision strategy embodied by the CNN is indeed valid
and generalizable. The other case is that the positive contribution is the scattered speckles
in the background, as shown in the fourth column. It indicates that the CNN implements
“Clever Hans”-type decision strategy to make classification, that is, the CNN likely learns
the “wrong” feature, such as the speckles around the target. The CNN that relies on “Clever
Hans”-type decision strategy will probably make wrong decisions in the real scenarios
where the spurious connection is not existing. Therefore, we discard this type of images to
ensure that the CNN indeed learns the effective ability of correct classification.

In this experiment, we first conduct LIME on MSTAR dataset to visualize the positive
contribution to the CNN’s classification result in each SAR image. Afterwards, we select
the SAR images in which the positive contribution coincides with the target. The change in
the number of images before and after selection is shown in Table 1, where “MSTAR-LIME”
represents the result after selection. After selection, the number of images belonging to
BRDM_2, BTR_60, and SN_C71 is almost one-tenth of the number of the other classes.
Particularly, we discard these three classes of images to avoid the problem of unbalanced
sample distribution in the training of the C-DCGAN in Section 4.3.



Remote Sens. 2022, 14, 204 8 of 14Version November 24, 2021 submitted to Remote Sens. 8 of 12

SAR Grad-CAM Score-CAM LIME-P LIME-N

Figure 5. Comparison of Grad-CAM, Score-CAM and LIME. The first column is the SAR images
of ten classes. The second, third columns are corresponding heatmaps generated by Grad-CAM,
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Figure 5. Comparison of Grad-CAM, Score-CAM, and LIME. The first column is the SAR images
of ten classes: 2S1, BRDM_2, BTR_60, D7, SN_132, SN_9563, SN_C71, T62, ZIL131, ZSU_23_4.
The second, third columns are corresponding heatmaps generated by Grad-CAM, Score-CAM,
respectively. The fourth, fifth columns are the positive and negative contributions obtained by
LIME, respectively.
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Figure 6. Revealing “Clever Hans” phenomenon of the CNN using LIME. The first and third columns
are SAR images of ten classes: 2S1, BRDM_2, BTR_60, D7, SN_132, SN_9563, SN_C71, T62, ZIL131,
ZSU_23_4. The second and fourth columns are corresponding results of LIME method.
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Table 1. Selection Result of LIME.

2S1 BRDM_2 BTR_60 D7 SN_132 SN_9563 SN_C71 T62 ZIL131 ZSU_23_4

MSTAR 573 572 452 573 428 486 427 572 573 573
MSTAR-LIME 520 - - 567 425 393 - 568 487 567

4.3. Quality Analysis of Generated Images

In this section, we first train two C-DCGANs on the MSTAR dataset and MSTAR-LIME
dataset, respectively. Then, we evaluate the visual quality, independence, authenticity, and
diversity of the images generated by C-DCGANs based on different metrics, respectively.

4.3.1. Visual Quality

In this part, the generated images are subjectively evaluated through human vision.
The comparison of the visual quality of two types of generated images and real images
is shown in Figure 7. Compared with the images generated by C-DCGAN trained on
the MSTAR dataset, the images generated by C-DCGAN trained on the MSTAR-LIME
dataset have clearer contour features, more obvious scattering features, and finer texture.
It indicates that the process of data selection can improve the quality of generated images.

Figure 7. Comparison of visual quality of generated images and real SAR images. The first row is
real SAR images of seven classes: 2S1, D7, SN_132, SN_9563, T62, ZIL131, ZSU_23_4. The second row
is SAR images of the corresponding category generated by the C-DCGAN trained on the MSTAR
dataset. The third row is SAR images of the corresponding category generated by the C-DCGAN
trained on the MSTAR-LIME dataset.

4.3.2. Independence Analysis

In this experiment, mutual information (MI) value is employed to measure the inde-
pendence between the generated images and the corresponding real images. MI value is
a measure of the degree of interdependence between random variables. This experiment
calculates the average of the MI values of 100 images as the final results. The comparison
results of the two types of generated images and the real images are shown in Table 2.
The smaller the interdependence between two images, the smaller their MI value, i.e., the in-
dependence between the two images is more obvious. It is evident from Table 2 that the
MI values of the images generated by the C-DCGAN trained on the MSTAR-LIME dataset
are significantly smaller than the MI values of the images generated by the C-DCGAN
trained on the MSTAR dataset. In other words, the images generated by our method are
more independent of the real image than the images generated by C-DCGAN without data
selection. Therefore, it is more reasonable to apply the images generated by our method to
the SAR target recognition task.
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Table 2. MI Value.

Before Selection After Selection

2S1 1.96 1.78
D7 1.41 1.39

SN_132 1.37 1.15
SN_9563 1.74 1.41

T62 1.41 1.09
ZIL131 1.31 1.10

ZSU_23_4 1.53 1.41

4.3.3. Authenticity

GAN-test [30], a measure based on the classification task, was proposed to evaluate
the authenticity of images generated by GAN. GAN-test score is obtained by training the
classification neural network with the real sample, and then calculating the accuracy on
the validation set composed of the generated data. In this experiment, we employ the
CNN presented in Figure 4 to conduct the image classification task for GAN-test measure.
The GAN-test score of the two C-DCGANs is shown in Table 3. It is apparent from Table 3
that C-DCGAN trained on data selected through the LIME method can generate images
that are more close to the real samples. That is because the selection process reduces the
spurious relationship between the generated images and the corresponding labels.

Table 3. GAN-test score.

Before Selection After Selection

71.67% 80.62%

4.3.4. Diversity

In this experiment, the GAN-train score is employed to evaluate the diversity of the
generated images. GAN-train score [30] is calculated by using the generated samples to
train the classifier, and then testing the classifier on the real samples. The GAN-train score
is higher, the generated images are more diverse. The CNN presented in Figure 4 is utilized
to conduct the image classification task for GAN-train measure. The result of GAN-train is
shown in Table 4. According to Table 4, the performance of GAN-train of our proposed
method is better than the generation method without data selection. Therefore, our method
can generate more diverse images than the generation method without data selection.

Table 4. GAN-train score.

Before Selection After Selection

58.73% 62.56%

5. Discussion

In our study, we provide qualitative and quantitative analysis to prove the effectiveness
of the proposed method. In qualitative analysis, firstly the comparison of visualization
results of LIME and CAM methods demonstrates that LIME can reflect the contributions to
the decision comprehensively and clearly. Secondly, we provide an intuitive comparison of
generated images to subjectively prove the improvement of the quality of generated images.
In quantitative analysis, MI value, GAN-test score, and GAN-train score are calculated to
prove the improvement of independence, authenticity, and diversity of images generated
by our method.

Next, we will discuss our method from the following three aspects: (1) How does
LIME perform in comparison to CAM-based approaches? LIME aims at detecting positive
and negative contribution pixels, while the CAM methods aim at providing the positive
contribution region by highlighting the related area. The highlighted area in the heatmaps
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generated by CAM methods designed for optical images usually excessively covers the
target or even deviates from the target since that SAR images have low resolution and
contain many interference spots. In contrast, LIME method can accurately demarcate the
target area. Therefore, the “Clever Hans” phenomenon can be clearly observed in the
visualization results of LIME. This is the reason why we select the dataset according to the
result of LIME. (2) What are the limitations or failure modes of the technique? The limitation
of this method is mainly the manual process of data selection. It is difficult to perform more
detailed processing due to small extra-class differences and low resolution of SAR images.
It probably would be better to use the cases in which the CNN showed “Clever Hans”
decisions to guide the GAN’s training instead of discarding them entirely. However, this
study aims to improve the quality of GANs by alleviating the “Clever Hans” phenomenon
in DNNs instead of proposing a complicated and detailed data selection method. Therefore,
the samples in which the CNN implements “Clever Hans”-type decision strategy are
discarded entirely. (3) What other strategies except for data selection could be employed
based on LIME (e.g., active learning), etc.? In our method, we use the result of LIME to
guide the selection of SAR images. In addition, we can carry out some feature engineering
work based on the result of LIME, such as removing some misleading features to focus on
the generation of SAR target [21]. At a deeper level, the result of LIME can guide us to select
the best model [12], i.e., we can create a model that automatically uses the visualization
results to guide the training of networks. The above two research directions based on LIME
will be our future research direction.

6. Conclusions

In this paper, a data selection method based on LIME is proposed to improve the
quality of images generated by C-DCGAN under the “Clever Hans” phenomenon. We
conduct a series of experiments on the benchmark dataset (MSTAR) to verify the validity
and improvement of the method. First, the comparison with other visualization methods
indicates that LIME can provide more clear visual results in network visualization based
on SAR images. Second, the method converts the “Clever Hans” phenomenon in classifi-
cation task into the visualization results obtained by LIME. As an innovative application,
it not only explains the internal mechanism of the neural network to a certain extent but
provides a basis for data selection. Finally, the experimental results based on visual quality,
dependence, authenticity, and diversity verify that the GAN trained on the selected dataset
can generate images with higher quality. In summary, the proposed method prevents the
classifier from making decisions that depend on the “Clever Hans”-type decision strategy,
thereby improving the quality and practicability of the generated images. Our proposed
method also provides a new idea combined with network visualization to solve the issue
of insufficient training samples in the SAR automatic target recognition task.
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