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Abstract: When segmenting massive amounts of remote sensing images collected from different
satellites or geographic locations (cities), the pre-trained deep learning models cannot always output
satisfactory predictions. To deal with this issue, domain adaptation has been widely utilized to
enhance the generalization abilities of the segmentation models. Most of the existing domain
adaptation methods, which based on image-to-image translation, firstly transfer the source images
to the pseudo-target images, adapt the classifier from the source domain to the target domain.
However, these unidirectional methods suffer from the following two limitations: (1) they do not
consider the inverse procedure and they cannot fully take advantage of the information from the
other domain, which is also beneficial, as confirmed by our experiments; (2) these methods may fail
in the cases where transferring the source images to the pseudo-target images is difficult. In this
paper, in order to solve these problems, we propose a novel framework BiFDANet for unsupervised
bidirectional domain adaptation in the semantic segmentation of remote sensing images. It optimizes
the segmentation models in two opposite directions. In the source-to-target direction, BiFDANet
learns to transfer the source images to the pseudo-target images and adapts the classifier to the target
domain. In the opposite direction, BiFDANet transfers the target images to the pseudo-source images
and optimizes the source classifier. At test stage, we make the best of the source classifier and the
target classifier, which complement each other with a simple linear combination method, further
improving the performance of our BiFDANet. Furthermore, we propose a new bidirectional semantic
consistency loss for our BiFDANet to maintain the semantic consistency during the bidirectional
image-to-image translation process. The experiments on two datasets including satellite images and
aerial images demonstrate the superiority of our method against existing unidirectional methods.

Keywords: unsupervised domain adaptation; bidirectional domain adaptation; convolutional neural
networks (CNNs); image-to-image translation; generative adversarial networks (GANs); remote
sensing images; semantic segmentation

1. Introduction

In the last few years, it has been possible to collect a mass of remote sensing images,
thanks to the continuous advancement of remote sensing techniques. For example, Gaofen
satellites can capture a large number of satellite images with high spatial resolution on a
large scale. In remote sensing, such a large amount of data has offered many more capability
for image analysis tasks; for example, semantic segmentation [1], change detection [2]
and scene classification [3]. Among these tasks, the semantic segmentation of remote
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sensing images has become one of the most interesting and important research topics
because it is widely used in many applications, such as dense labeling, city planning, urban
management, environment monitoring, and so on.

For the semantic segmentation of remote sensing images, CNN [4] has become one of
the most efficient methods in the past decades and several CNN models have shown their
effectiveness, such as DeepLab [5] and its variants [6,7]. However, these methods have
some limitations, because CNN-based architectures tend to be sensitive to the distributions
and features of the training images and test images. Even though they give satisfactory
predictions when the distributions of training and test images are similar [1], when we
attempt to use this model to classify images obtained from other satellites or cities, the
classification accuracy severely decreases due to different distributions of the source images
and target images, as shown in Figure 1. In the literature, the aforementioned problem is
known as domain adaptation [8]. In remote sensing, domain gap problems are often caused
due to many reasons, such as illumination conditions, imaging times, imaging sensors,
geographic locations and so on. These factors will change the spectral characteristics of
objects and resulted in a large intra-class variability. For instance, the images acquired from
different satellite sensors may have different colors, as shown in Figure 1a,b. Similarly, due
to the differences of the imaging sensors, images may have different types of channels. For
example, a few images may consist of near-infrared, green, and red channels while the
others may have green, red, and blue bands.

In typical domain adaptation problems, the distributions of the source domain are
different from those of the target domain. In remote sensing, we assume that the images
collected from different satellites or locations (cities) are different domains. The unsuper-
vised domain adaptation defines that only annotations of the source domain are available
and aims at generating satisfactory predicted labels for the unlabeled target domain, even
if the domain shift between the source domain and target domain is huge. To improve the
performances of the segmentation models in aforementioned settings, one of the most com-
mon approaches in remote sensing is to diversify the training images of the source domain,
by performing data augmentation techniques, such as random color change [9], histogram
equalization [10], and gamma correction [11]. However, even if these methods slightly
increase the generalization capabilities of the models, the improvement is unsatisfactory
when there exists huge differences between the distributions of different domains. For
example, it is difficult to adapt the classifier from one domain with near-infrared, red, and
green bands to another one with red, green and blue channels by using simple data aug-
mentation techniques. To overcome such limitation, a generative adversarial network [12]
was applied to transfer images between the source and target domains and made significant
progress in unsupervised domain adaptation for semantic segmentation [13,14]. These
approaches based on image translation can be divided into two steps. At first, it learns
to transfer the source images to the target domain. Secondly, the translated images and
the labels for the corresponding source images are used to train the classifier which will
be tested on the unlabeled source domain. When the first step reduce the domain shift,
the second step can effectively adapt the segmentation model to the target domain. In
addition, inverse translations which adapt the segmentation model from the target domain
to the source domain have been implemented as well [15]. In our experiments, we find
that these two translations in opposite directions should be complementary rather than
alternative. Furthermore, such unidirectional (e.g., source-to-target) setting might ignore
the information from the inverse direction. For example, Benjdira et al. [16] adapted the
source classifier to the unlabeled target domain, they only simulated the distributions of
the target images instead of making the target images fully participate in domain adaption.
Therefore, these unidirectional methods cannot take full advantage of the information from
the target domain. Meanwhile, the key to the domain adaptation methods based on image
translation is the similarity between the distributions of the pseudo-target images and the
target images. Given fixed image translation models, it will depend on the difficulty of
converting between two domains: there might be some situations where transferring the
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target images to the source domain is more difficult, and situations where transferring
the source images to the target domain is more difficult. By combining the two opposite
directions, we will acquire an architecture more general than those unidirectional methods.
Furthermore, the recent image translation network (e.g., CycleGAN [17]) is bidirectional so
that we can usually obtain two image generators in the source-to-target and target-to-source
directions when the training of the image translation model is done. We can use both of
generators to make the best of the information from the two directions.

(a) (b)

(c) (d)

Figure 1. An example of the domain adaptation. We show the source images and the target images
which are obtained from different satellites, the label of the target image and the prediction of
DeeplabV3+. In the label and the prediction, black and white pixels represent background and
buildings respectively. (a) Source image. (b) Target image. (c) Label of the target image. (d) Prediction
for the target image.

However, solving the aforementioned problems presents a few challenges. First, the
transformed images and their corresponding original images must have the same semantic
contents with the original images. For instance, if the image-to-image translation model
replaces buildings with bare land during the translation, the labels of the original images
cannot match the transformed images. As a result, semantic changes in any directions
will affect our models. If the semantic changes occur in the source-to-target direction, the
target domain classifier will have poor performance. If the approach replaces some objects
with others in the target-to-source direction, the predicted labels of the source domain
classifier would be unsatisfactory. Secondly, when we transfer the source images to the
target domain, the data distributions of the pseudo-target images should be as similar as



Remote Sens. 2022, 14, 190 4 of 27

possible to the data distributions of the target images and the data distributions of the
pseudo-source and source images should be similar as well. Otherwise, the transformed
images of one domain cannot represent the other domain. Finally, the predicted labels
of the two directions complement each other and the method of combining the labels is
crucial because it will affect the final predicted labels. Simply combining the two predicted
labels may leave out some correct objects or add some wrong objects.

In this article, we propose a new bidirectional model to address the above challenges. This
framework involves two opposite directions. In the source-to-target direction, we generate
pseudo-target transformed images which are semantically consistent with the original
images. For this purpose, we propose a bidirectional semantic consistency loss to maintain
the semantic consistency during the image translation. Then we employ the labels of the
source images and their corresponding transformed images to adapt the segmentation
model to the target domain. In the target-to-source direction, we optimize the source
domain classifier to predict labels for the pseudo-source transformed images. These two
classifiers may make different types of mistakes and assign different confidence ranks to
the predicted labels. Overall the two classifiers are complementary instead of alternative.
We make full use of them with a simple linear method which fuses their probability output.

Our contributions are as follows:

(1) We propose a new unsupervised bidirectional domain adaptation method, coined
BiFDANet, for semantic segmentation of remote sensing images, which conducts
bidirectional image translation to minimize the domain shift and optimizes the classi-
fiers in two opposite directions to take full advantage of the information from both
domains. At test stage, we employ a linear combination method to take full advantage
of the two complementary predicted labels which further enhances the performance
of our BiFDANet. As far as we know, BiFDANet is the first work on unsupervised
bidirectional domain adaptation for semantic segmentation of remote sensing images.

(2) We propose a new bidirectional semantic consistency loss which effectively supervises
the generators to maintain the semantic consistency in both source-to-target and
target-to-source directions. We analyze the bidirectional semantic consistency loss by
comparing it with two semantic consistency losses used in the existing approaches.

(3) We perform our proposed framework on two datasets, one consisting of satellite
images from two different satellites and the other is composed of aerial images from
different cities. The results indicate that our method can improve the performance of
the cross-domain semantic segmentation and minimize the domain gap effectively. In
addition, the effect of each component is discussed.

This article is organized as follows: Section 2 summarizes the related works. Section 3
presents the theory of our proposed framework. Section 4 describes the data set, the
experimental design and discusses the obtained results, Section 5 provides the discussion
and Section 6 draws our conclusions.

2. Related Work
2.1. Domain Adaptation

Tuia et al. [8] explained that in the research literature the adaptation methods could be
grouped as: the selection of invariant features [18–21], the adaptation of classifiers [22–27],
the adaptation of the data distributions [28–31] and active learning [32–34]. Here we
focus on the methods of aligning the data distributions by performing image-to-image
translation [35–39] between the different domains [40–43]. These methods usually match
the data distributions of different domains by transferring the images from the source
domain to the target domain. Next, the segmentation model is trained on the transferred
images to classify the target images. In the fields of computer vision, Gatys et al. [40]
raised a style transfer method to synthesizes fake images by combining the source contents
with the target style. Similarly, Shrivastava et al. [41] generated realistic samples from
synthetic images and the synthesized images could train a classification model on real
images. Bousmalis et al. [42] learned the source-to-target transformation in the pixel
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space and transformed source images to target-like images. Taigman et al. [44] proposed
a compound loss function to enforce the image generation network to transfer images
from target to themselves. Hoffman et al. [14] used CycleGAN [17] to transfer the source
images into the target style alternatively and transformed images were input into the
classifier to improve its performance in the target domain. Zhao et al. [45] transformed fake
images to the target domain which performed pixel-level and feature-level alignments with
sub-domain aggregation. The segmentation model trained on such transformed images
with the style of the target domain outperformed several unsupervised domain adaptation
approaches. In remote sensing, Graph matching [46] and histogram matching [47] were
employed to perform abovementioned image-to-image translation. Benjdira et al. [16]
generated the fake target-like images by using CycleGAN [17], then the target-like images
are used to adapt the source classifier to segment the target images. Similarly, Tasar et al.
proposed ColorMapGAN [48], SemI2I [49] and DAugNet [50] to perform image-to-image
translation between satellite image pairs to reduces the impact of domain gap. All the above
mentioned methods focus on adapting the source segmentation model to the target domain
without taking into account the opposite target-to-source direction that is beneficial.

2.2. Bidirectional Learning

Bidirectional learning was used to approach the neural machine translation problem [51,52],
which train a language translation system in opposite directions of a language pair. Com-
pared with unidirectional learning, it can improve the performance of the model effectively.
Recently, bidirectional learning was applied to image-to-image translation problems as
well. Li et al. [53] learned the image translation model and the segmentation adaptation
model alternatively with a bidirectional learning method. Chen et al. [54] presented a
bidirectional cross-modality adaptation method that aligned different domains from feature
and image perspectives. Zhang et al. [55] adapted the model by minimizing the pixel-level
and feature-level gaps. The theses method does not optimize the segmentation model in the
target-to-source directions. Yang et al. [56] proposed a bi-directional generation network
that trained a simple framework for image translation and classification from source to
target and from target to source. Jiang et al. [57] proposed a bidirectional adversarial train-
ing method which performs adversarial trainings with generating adversarial examples
from source to target and back. These methods only use bidirectional learning techniques
in training process, but at test time, they do not make full use of two domains even if they
have optimized the classifiers in both directions. Russo et al. [58] proposed a bidirectional
image translation approach which trained two classifiers on different domains respectively
and finally fuses the classification results. However, semantic segmentation task is more
sensitive to pixel category while classification task focuses on image category. This pro-
posed method can only be used to deal with the classification tasks, which can’t apply to
semantic segmentation tasks directly because it may not preserve the semantic contents.

3. Materials and Methods

The unsupervised domain adaptation assumes that the labeled source domain (XS,YS)
and unlabeled target domain XT are available. The goal is to train a framework which
correctly predicts the results for unlabeled target domain XT .

The proposed BiFDANet consists of bidirectional image translation and bidirectional
segmentation adaptation. It learns to transfer source images to the target domain and
transfer target images to the source domain, and then optimizes the source classifier FS and
the target classifier FT in two opposite directions. In this section, we detail how we transfer
images between the source and target domain. And then we introduce how we adapt
the classifier FT to the target domain and optimize the classifier FS in the target-to-source
direction. Thereafter, we describe how we combine the two predicted results of the two
classifiers FS and FT . Finally, we illustrate the implementations of the network architectures.



Remote Sens. 2022, 14, 190 6 of 27

3.1. Bidirectional Image Translation

To perform bidirectional image translation between different domains, we use two gen-
erators and two discriminators based on GAN [12] architecture and we add two classifiers
to extract the contents from the images. GS→T denotes the target generator which generates
pseudo-target images, GT→S denotes the source generator which generates pseudo-source
images. DS, DT denote the discriminators and FS, FT are the classifiers.

First of all, we want the source images xs and the pseudo-source images GT→S(xt)
to be drawn form similar data distributions, while the target images xt and the pseudo-
target images GS→T(xs) have similar data distributions. To deal with these issues, we
enforce the data distributions of the pseudo-target images GS→T(xs) and the pseudo-
source images GT→S(xt) to be similar to that of the target domain and the source domain
respectively by applying adversarial learning (see Figure 2 blue portion). The discriminator
DS discriminates between the source images and the pseudo-source images while the
discriminator DT distinguishes the pseudo-target images from the target domain. We train
the generators to fool the discriminators while the discriminators DT and DS attempt to
classify the images from the target domain and the source domain. The adversarial loss
for the target generator GS→T and the discriminator DT in the source-to-target direction is
as follows:

LS→T
adv (DT , GS→T) = Ext∼XT [log DT(xt)] +Exs∼XS [log(1− DT(GS→T(xs)))] (1)

where Exs∼XS , Ext∼XT are the expectation over xs and xt drawn by the distribution described
by XS and XT respectively. GS→T tries to generate the pseudo-target images GS→T(xs)
which have data distributions similar to the that of the target images xt, while DT learns to
discriminate the pseudo-target images from the target domain.

Figure 2. BiFDANet, training: The top row (black solid arrow) shows the source-to-target direction
while the bottom row (black dashed arrow) shows the target-to-source direction. The colored dashed
arrows correspond to different losses. The generator Gs→T transfers the images to the pseudo-target
images while the generator GT→S transfers the images to the source domain. DS and DT discriminate
the images from the source domain and the target domain. FS and FT segment the images which are
drawn from source domain and target domain, respectively.



Remote Sens. 2022, 14, 190 7 of 27

This objective ensures that the pseudo-target images GS→T(xs) will resemble the
images drawn from the target domain XT . We use a similar adversarial loss in the target-to-
source direction:

LT→S
adv (DS, GT→S) = Exs∼XS [log DS(xs)] +Ext∼XT [log(1− DS(GT→S(xt)))] (2)

This objective ensures that the pseudo-source images GT→S(xt) will resemble the
images drawn from the source domain XS. We compute the overall adversarial loss for the
generators and the discriminators as:

Ladv(DS, DT , GS→T , GT→S) = LS→T
adv (DT , GS→T) + LT→S

adv (DS, GT→S) (3)

Another purpose is to maintain the original images and transformed images semanti-
cally consistent. Otherwise, the transformed images won’t match the labels of the original
images, and the performance of the classifiers would significantly decrease. To keep the
semantic consistency between the transformed images and the original images, we define
three constraints.

Firstly, we introduce a cycle-consistency constraint [17] to preserve the semantic
contents during the translation process (see Figure 2 red portion). We encourage that
transferring the source images from source to target and back reproduces the original
contents. At the same time, transferring the target images from target to source and back
to the target domain reproduces the original contents. These constraints are satisfied by
imposing the cycle-consistency loss defined in the following equation:

Lcyc(GS→T ,GT→S) =

Exs∼XS [‖GT→S(GS→T(xs))− xs‖1] +Ext∼XT [‖GS→T(GT→S(xt))− xt‖1]
(4)

Secondly, we require that GT→S(xs) for the source images xs and GS→T(xt) for the
target images xt will reproduce the original images, thereby enforcing identity consistency
(see Figure 2 orange portion). Such constraint is implemented by the identity loss defined
as follows:

Lidt(GS→T , GT→S) =

Ext∼XT [‖GS→T(xt)− xt‖1] +Exs∼XS [‖GT→S(xs)− xs‖1]
(5)

The identity loss Lidt can be divided into two parts: the source-to- target identity
loss Equation (6) and the target-to-source identity loss Equation (7). These two parts are
as follows:

LS→T
idt (GS→T) = Ext∼XT [‖GS→T(xt)− xt‖1] (6)

LT→S
idt (GT→S) = Exs∼XS [‖GT→S(xs)− xs‖1] (7)

Thirdly, we enforce the transformed images to be semantically consistent with the orig-
inal images. CyCADA [14] proposed the semantic consistency loss to maintain the semantic
contents. The source images xs and the transformed images GS→T(xs) are fed into the
source classifier FS pretrained on labeled source domain. However, since the transformed
images GS→T(xs) are drawn from the target domain, the classifier trained on the source
domain could not extract the semantic contents from the transformed images effectively.
As a result, computing the semantic consistency loss in this way is not conducive to the
image generation. In ideal conditions, the transformed images GS→T(xs) should be input
to the target classifier FT . However, it is impractical because the labels of the target domain
aren’t available. Instead of using the source classifier FS to segment the transformed images
GS→T(xs), MADAN [45] proposed to dynamically adapt the source classifier FS to the
target domain by taking the transformed images GS→T(xs) and the source labels as input.
And then, they employed the classifier trained on the transformed domain as FT , which
performs better than the original classifier. The semantic consistency loss computed by
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FT would promote the generator GS→T to generate images that preserve more semantic
contents of the original images. However, MADAN only considers the generator GS→T
but ignores the generator GT→S which is crucial to the bidirectional image translation. For
bidirectional domain adaptation, we expect both source generator GT→S and target gener-
ator GS→T to maintain semantic consistency during image-to-image translation process.
Therefore, we propose a new bidirectional semantic consistency loss (see Figure 2 green
portion). The proposed bidirectional semantic consistency loss is:

Lsem(GS→T , GT→S, FS, FT) =

Exs∼XS KL(FS(xs)‖FT(GS→T(xs))) +Ext∼XT KL(FT(xt)‖FS(GT→S(xt)))
(8)

where KL(·‖·) is the KL divergence.
Our proposed bidirectional semantic consistency loss can be divided into two parts:

source-to-target semantic consistency loss Equation (9) and target-to-source semantic con-
sistency loss Equation (10). These two parts are as follows:

LS→T
sem (GS→T , FT) = Exs∼XS KL(FS(xs)‖FT(GS→T(xs))) (9)

LT→S
sem (GT→S, FS) = Ext∼XT KL(FT(xt)‖FS(GT→S(xt))) (10)

3.2. Bidirectional Segmentation Adaptation

Our adaptation includes the source-to-target direction and the target-to-source direc-
tion as shown in Figure 2.

3.2.1. Source-to-Target Adaptation

To reduce the domain gap, we train the generator GS→T with LS→T
adv Equation (1), Lcyc

Equation (4), LS→T
idt Equation (6) and LS→T

sem Equation (9) to map the source images xs to the
pseudo-target images (see Figure 2, top row). Note that the labels of the transformed images
GS→T(xs) won’t be changed by the generator GS→T . Therefore, we can train the target
classifier FT with the transformed images GS→T(xs) and the ground truth segmentation
labels of the original source images xs (see Figure 2 gray portion). For C-way semantic
segmentation, the classifier loss is defined as:

LFT (GS→T(xs), FT) =

−EGS→T(xs)∼GS→T(XS)

C

∑
c=1

I[c=ys ] log(so f tmax(F(c)
T (GS→T(xs))))

(11)

where C denotes the category number of categories and I[c=ys ] represents the corresponding
loss only for class c.

Above all, the framework optimizes the objective function in the source-to-target
direction as follows:

min
GS→T

FT

max
DT

λ1Ladv(GS→T , DT) + λ2Lcyc(GS→T , GT→S)

+ λ3LS→T
idt (GS→T) + λ4LS→T

sem (GS→T , FT) + λ5LFT (GS→T(xs), FT)

(12)

3.2.2. Target-to-Source Adaptation

We take into account the opposite target-to-source direction and employ a symmet-
rical framework (Figure 2, black dashed arrow). In this direction, we optimize the gen-
erator GT→S with LT→S

adv Equation (2), Lcyc Equation (4), LT→S
idt Equation (7) and LT→S

sem
Equation (10) to map the target images xt to the pseudo-source images GT→S(xt) (see
Figure 2, bottom row). Then, we use the source classifier FS to segment the pseudo-source
images GT→S(xt) to compute the semantic consistency loss Equation (10) instead of the
classifier loss because the ground truth segmentation labels for the target images are not
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available. The segmentation model FS are trained using the labeled source images xs with
following classifier loss (see Figure 2 gray portion):

LFS(XS, FS) = −Exs∼XS

C

∑
c=1

I[c=ys ] log(so f tmax(F(c)
S (xs))) (13)

Collecting the above components, the target-to-source part of the framework optimizes
the objective function as follows:

min
GT→S

FS

max
DS

λ1Ladv(GT→S, DS) + λ2Lcyc(GT→S, GS→T)

+ λ3LT→S
idt (GT→S) + λ4LT→S

sem (GT→S, FS) + λ6LFS(XS, FS)

(14)

3.3. Bidirectional Domain Adaptation

Combining above two directions, we conclude with the complete loss function of BiFDANet:

LBiFDANet(GS→T , GT→S,DS, DT , FS, FT) =

λ1Ladv + λ2Lcyc + λ3Lidt + λ4Lsem + λ5LFT + λ6LFS

(15)

where λ1, λ2, λ3, λ4, λ5 and λ6 control the interaction of the six objectives.
The training process corresponds to solving for the generators GS→T and GT→S, the

source classifier FS and the target classifier FT according to the optimization:

G∗S→T , G∗T→S, FS
∗, FT

∗ = arg min
FS ,FT

min
GS→T
GT→S

max
DS ,DT

LBiFDANet (16)

3.4. Linear Combination Method

The target classifier FT is trained on the pseudo-target domain which have data
distributions similar to the target domain and segment the target images. The source
segmentation model FS is optimized on the source domain and segment the pseudo-
source images GT→S(xt). These two classifiers make different types of mistakes and assign
different confidence ranks to the predicted labels. All in all, the predicted labels of the
two classifiers are complementary instead of alternative. When addressing fusion, it is
important to stress that we should remove the wrong objects from both predicted labels as
much as possible and preserve the correct objects at the same time. For this purpose, we
design a simple method which linearly combines their probability output as follows:

output = λFS(GT→S(xt)) + (1− λ)FT(xt) (17)

where λ is a hyperparameter in the range (0, 1).
Then, we convert the probability output to the predicted labels. A schematic illustra-

tion of the linear combination method is shown in Figure 3.

3.5. Network Architecture

Our proposed BiFDANet consists of two generators, two discriminators and two classifiers.
We choose DeeplabV3+ [7] as the segmentation model and use ResNet34 [59] as

the DeeplabV3+ backbone. The encoder applies atrous convolution at multiple scales to
acquire multi-scale features. The decoder module which is simple yet effective provides
the predicted results. We use dropout in the decoder module to avoid overfitting. Figure 4
shows the architecture of the classifier.

As shown in Figure 5, we use nine residual blocks for the generators which are
used in [17]. Four convolutional layers are used to downsample the features, while four
deconvolutional layers are applied to upsample the features. We use instance normalization
rather than batch normalization and we apply ReLU to activate all layers.
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Figure 3. BiFDANet, test: the target classifier FT and the source classifier FS are used to segment the
target images and the pseudo-source images respectively. And then the probability outputs are fused
with a linear combination method and converted to the predicted labels.

Figure 4. The architecture of the classifier (DeeplabV3+ [7]). The encoder acquires multi-scale features
from the images while the decoder provides the predicted results from the multi-scale features and
low-level features.

Similar to the discriminator in [17], we use five convolution layers for discriminators
as shown in Figure 6. The discriminators encode the input images into a feature vector.
Then, we compute the mean squared error loss instead of using Sigmoid to convert the
feature vector into a binary output (real or fake). We use instance normalization rather than
batch normalization. Unlike the generator, leaky ReLU is applied to activate the layers of
the discriminator.
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Figure 5. The architecture of the generator. ks, s, p and op correspond to kernel size, stride, padding
and output padding parameters of the convolution and deconvolution respectively. ReLU and IN
stand for rectified linear unit and instance normalization. The generator uses nine residual blocks.

Figure 6. The architecture of the discriminator. LReLU and IN correspond to leaky rectified linear
unit and instance normalization respectively. We use mean squared error loss instead of Sigmoid.

4. Results

In this section, we introduce the two datasets, illustrate the experimental settings, and
analyse the obtained results both quantitatively and qualitatively.

4.1. Data Set

To conduct our experiments, we employ the Gaofen Satellite dataset and the ISPRS
(WGII/4) 2D semantic segmentation benchmark dataset [60]. In the rest of this paper, we
abbreviate the Gaofen Satellite data and the ISPRS (WGII/4) 2D semantic segmentation
benchmark dataset to the Gaofen dataset and the ISPRS data set to simplify the description.

4.1.1. Gaofen Data Set

The Gaofen dataset consists of the Gaofen-1 (GF-1) satellite images and the Gaofen-1B
(GF-1B) satellite images, which are civilian optical satellites of China and equipped with two
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sets of multi-spectral and panchromatic cameras. We reduce spatial resolution of the images
to 2 m and convert the images to 10 bit. The images from both satellites contain 4 channels
(i.e., red, green, blue and near-infrared). The labels of buildings are provided. We assume that
only the labels of the source domain can be accessed. We cut the images and their labels into
512 × 512 patches. Table 1 reports the number of patches and the class percentages belonging
to each satellite. Figure 7a,b show samples from the GF-1 satellite and the GF-1B satellite.

Table 1. Statistics For Data Set.

Image # of Patches Patch Size Class Percentages

GF-1 2039 512 × 512 12.6%
GF-1B 4221 512 × 512 5.4%

Potsdam 4598 512 × 512 28.1%
Vaihingen 459 512 × 512 26.8%

(a) (b)

(c) (d)

Figure 7. Example patches from two datasets. (a) GF-1 satellite image of the Gaofen dataset. (b) GF-1B
satellite image of the Gaofen dataset. (c) Potsdam image of ISPRS dataset. (d) Vaihingen image of the
ISPRS dataset.

4.1.2. ISPRS Data Set

This ISPRS dataset includes aerial images acquired from [61,62], which have been
publicly available to the community. The Vaihingen dataset consists of images with a spatial
resolution of 0.09 m and the spatial resolution of Potsdam dataset is 0.05 m. The Potsdam
images contain red, green and blue channels while the Vaihingen images have 3 different
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channels (i.e., red, green and infrared). All images in both datasets are converted to 8 bit. Some
images are manually labeled with land cover maps and the labels of impervious surfaces,
buildings, trees, low vegetations and cars are provided. We cut the images and their labels
into 512 × 512 patches. Table 1 reports the number of patches and the class percentages for
the ISPRS dataset. Figure 7c,d show samples from each city.

4.1.3. Domain Gap Analysis

The domain shift between different domains is caused by many factors such as illumi-
nation conditions, camera angle, imaging sensors and so on.

In terms of the Gaofen data set, the same objects (e.g., buildings) have similar struc-
tures, but the colors of the GF-1 satellite images are different from the colors of the GF-1B
satellite images as shown in Figure 7a,b. What’s more, we depict the histograms to represent
the data distributions of the two datasets. There are some differences between the his-
tograms of the GF-1 satellite images and the GF-1B satellite images as shown in Figure 8a,b.

Figure 8. Color histograms of the Ganfen data set and the ISPRS data set. Different colors represent
the histograms for different channels. (a) GF-1 images. (b) GF-1B images. (c) Potsdam images.
(d) Vaihingen images.

In terms of the ISPRS dataset, the Potsdam images and the Vaihingen images have
many differences, such as imaging sensors, spatial resolutions and structural represen-
tations of the classes. The Potsdam images and the Vaihingen images contain different
kinds of channels due to the different imaging sensors, which results in the same objects
in the two datasets being of different colors. For example, the vegetations and trees are
green in the Potsdam dataset while the vegetations and trees are red color because of
the infrared band. Besides, the Potsdam images and the Vaihingen images are captured
using various spatial resolutions, which leads to the same objects being of different sizes.
What’s more, the structural representations of the same objects in the Potsdam dataset and
Vaihingen dataset might be different. For example, there may be some differences between
the buildings in different cities. At the same time, we depict the histograms to represent
the data distributions of the Potsdam dataset and Vaihingen dataset as well. As shown in
Figure 8c,d, the histograms of the Potsdam images are quite different from the histograms
of the Vaihingen images.
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4.2. Experimental Settings

We train BiFDANet in two stages. First, the training process minimizes the overall
objective LBiFDANet(GS→T , GT→S, DS, DT , FS, FT) without the bidirectional semantic con-
sistency loss by setting λ4 parameters in Equation (15) to 0. This is because, without a
trained target segmentation model, the bidirectional semantic consistency loss would not
be helpful in training process. The λ1, λ2, λ3, λ5 and λ6 parameters in Equation (15) are
set to 1, 10, 5, 10 and 10, respectively. We have found these values through repeated exper-
iments. We train the framework for 100 epochs in this step. Second, after we obtain the
well-trained target classifier, we add the bidirectional semantic consistency loss by setting
λ4 to 10 and the λ1, λ2, λ3, λ5 and λ6 parameters in Equation (15) are the same as in the first
step. We then optimize the network for 200 epochs. For all the methods, the networks are
implemented in the PyTorch framework. We trained the models with Adam optimizer [63],
using a batch size of 12. The learning rates for the generators, the discriminators and the
classifiers are all set to 10−4. At test time, the parameters to combine the segmentation
models are λ ∈ [0, 0.05, 0.1, 0.15, 0.2, ..., 0.95, 1] chosen on the validation set of 20% patches
from the target domain.

4.3. Methods Used for Comparison

(1) DeeplabV3+ [7]: We do not apply any domain adaptation methods and directly seg-
ment the unlabeled target images with a DeeplabV3+ trained on the labeled source domain.

(2) Color Matching: For each channel of the images, we adjust the average bright-
ness values of the source images to that of the target images. Then, we train the target
segmentation model on the transformed domain.

(3) CycleGAN [17]: This method uses two generators G and F to perform image
translation. The generator G learns to transfer the source images to the target domain
while F learns to transfer the target images to the source domain. This method forces the
transferring from source to target and back and transferring from target to source and back
reproduce the original contents. Then the generated target-like images are used to train the
target classifier.

(4) For BiFDANet, besides the full approach, we also give the results obtained by the
segmentation models FS and FT before the linear combination method. At the same time, to
show the effectiveness of the linear combination method, we also show the results obtained
by simply taking the intersection or union of the two results.

For the above approaches, we use the same training parameters and architecture to
make a fair comparison.

4.4. Evaluation Metrics

To evaluate all the methods quantitatively and comprehensively, we use scalar metrics
included Precision, Recall, F1-score (F1) and IoU [64] defined as follows:

Precision =
TPb

TPb + FPb
(18)

Recall =
TPb

TPb + FNb
(19)

F1 =
2× Precision× Recall

Precision + Recall
(20)

IoU =
TPb

TPb + FNb + FPb
(21)

where b denotes the category. FP (false positive) is the number of pixels which are classified
as category b but do not belong to category b. FN (false negative) corresponds to the
number of pixels which are category b but classified as other categories. TP (true positive)
is the number of pixels which are correctly classified as category b and TN (true negative)
corresponds to the number of pixels which are classified as other categories and belong to
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other categories. The aforementioned evaluation metrics are computed for each category
(except the background). Especially, because we only segment buildings in our experiments,
all the evaluation results we reported in tables are corresponding to the building (category).

4.5. Quantitative Results

To report fair and reliable results, we repeat training our framework and the compari-
son methods with the same parameters and architecture five times and depict the average
precision, recall, F1-score and IoU values in Tables 2 and 3. Tables 2 and 3 show the com-
parison results on the Gaofen dataset and the ISPRS dataset, respectively. The DeeplabV3+
row includes results are corresponding to the no-adaptation case. For BiFDANet, we report
the results obtained by the source classifier FS and the target classifier FT separately before
the linear combination method and obtained by simply taking the intersection or union of
the predicted results of the two classifiers FS and FT .

Table 2. Comparison results on Gaofen dataset. The best values are in bold.

Method
Source: GF-1, Target: GF-1B Source: GF-1B, Target: GF-1

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

DeeplabV3+ 74.78 16.60 27.16 15.72 2.14 70.07 4.17 2.13
Color matching 53.82 55.65 54.72 37.66 49.00 83.64 61.80 44.71

CycleGAN 54.72 67.31 60.37 43.24 60.74 75.12 67.17 50.57

BiFDANet FS 58.56 69.34 63.50 46.52 71.65 72.21 71.93 56.17
BiFDANet FT 61.82 67.00 64.31 47.39 71.81 73.69 72.74 57.16

FS ∩ FT 57.12 70.99 63.31 46.31 67.90 75.77 71.62 55.79
FS ∪ FT 60.92 68.11 64.32 47.40 71.94 73.88 72.90 57.36

BiFDANet 63.31 65.70 64.48 47.58 75.57 70.58 72.99 57.47

Table 3. Comparison results on ISPRS dataset. The best values are in bold.

Method
Source: Vaihingen, Target: Potsdam Source: Potsdam, Target: Vaihingen

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

DeeplabV3+ 30.10 17.81 22.37 12.59 29.64 33.16 31.30 18.55
Color matching 39.27 54.28 45.57 29.51 42.61 36.13 39.11 24.30

CycleGAN 61.13 55.86 58.38 41.22 49.75 66.44 56.90 39.76

BiFDANet FS 68.82 61.62 65.02 48.17 59.00 75.39 66.20 49.47
BiFDANet FT 56.90 62.39 59.52 42.37 60.44 76.70 67.60 51.06

FS ∩ FT 52.35 69.27 59.63 42.48 53.60 79.67 64.09 47.15
FS ∪ FT 73.37 57.63 64.55 47.66 59.95 77.12 67.46 50.90

BiFDANet 66.37 64.03 65.18 48.35 65.83 73.33 69.38 53.12

4.6. Visualization Results

Figures 9–12 depict the predicted results for DeeplabV3+, CycleGAN, color match-
ing and BiFDANet. Our proposed BiFDANet which considers distribution alignment
and bidirectional semantic consistency obtains the best predicted results, and the con-
tours of the predicted buildings are more accurate than those acquired by color matching
and CycleGAN.
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Figure 9. Segmentation results in GF-1 → GF-1B experiment. White and black pixels represent
buildings and background. (a) GF-1B. (b) Label. (c) DeeplabV3+. (d) Color matching. (e) CycleGAN.
(f) BiFDANet.

Figure 10. Segmentation results in GF-1B → GF-1 experiment. White and black pixels represent
buildings and background. (a) GF-1. (b) Label. (c) DeeplabV3+. (d) Color matching. (e) CycleGAN.
(f) BiFDANet.

Figure 11. Segmentation results in Potsdam → Vaihingen experiment. White and black pixels
represent buildings and background. (a) Vaihingen. (b) Label. (c) DeeplabV3+. (d) Color matching.
(e) CycleGAN. (f) BiFDANet.
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Figure 12. Segmentation results in Vaihingen → Potsdam experiment. White and black pixels
represent buildings and background. (a) Potsdam. (b) Label. (c) DeeplabV3+. (d) Color matching.
(e) CycleGAN. (f) BiFDANet.

5. Discussion

In this section, we compare our results with the compared methods in detail, and
discuss the effect of our proposed bidirectional semantic consistency (BSC) loss and the
roles of each component in our BiFDANet.

5.1. Comparisons with Other Methods

As shown in Tables 2 and 3, the DeeplabV3+ method which directly apply the source
segmentation model to classify the target images performs worst in all settings. Color
matching obtains a better performance than the DeeplabV3+ method, which indicates the
effectiveness of domain adaptation for semantic segmentation of remote sensing images.
CycleGAN perform better than both DeeplabV3+ and Color matching. Among all the
compared methods, BiFDANet achieves the highest F1-score and IoU score in all settings.
And the separate segmentation models FS and FT also significantly outperform the other
adaptation methods. When combing the two segmentation models with the linear combina-
tion method, the performance of BiFDANet is further enhanced. Moreover, in the Vaihingen
→ Potsdam experiment, BiFDANet FS performs much better than BiFDANet FT . Because
transferring from Vaihingen to Potsdam is more difficult than transferring from Potsdam
to Vaihingen. There are far more Potsdam images than Vaihingen images, in some ways,
the widely variable target domain (Potsdam) contains more variety of shapes and textures,
and therefore it is more difficult to adapt the classifier from Vaihingen to Potsdam. Thanks
to its bidirectionality which is disregarded in previous methods, BiFDANet achieves a
performance gain of +7 percentage points while the gain in performance of BiFDANet FT is
only +1 percentage points. In this experiment, our proposed method makes full use of the
information from the inverse target-to-source translation to produce much better results.

5.1.1. BiFDANet versus DeeplabV3+

There is no doubt that BiFDANet performs much better than DeeplabV3+ for all four
cases. Because of the domain gap, there are some significant differences between the source
domain and target domain. Without domain adaptation, the segmentation model cannot
deal with the domain gap.

5.1.2. BiFDANet versus CycleGAN

In order to reduce the domain gap, CycleGAN and BiFDANet perform image-to-image
translation to align data distribution of different domains. Figures 13–16 show some original
images and the corresponding transformed images generated by color matching, CycleGAN
and BiFDANet. As shown in Figures 13 and 14, it is obvious that the semantic contents of the
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images are changed by CycleGAN because there are no constraints for CycleGAN to enforce
the semantic consistency during the image generation process. For instance, during the
translation, CycleGAN replaces the buildings with bare land as shown in Figures 13 and 14
yellow rectangles. Besides, when generating transformed images, CycleGAN produces
some buildings which do not exist before, as indicated in Figures 13 and 14 green rectangles.
By contrast, the pseudo images transformed by BiFDANet and their corresponding original
images have the same semantic contents and the data distributions of the pseudo images are
similar to the data distributions of the target images. Similarly, as shown in Figure 15, we
observe that there are some objects which look like red trees on the rooftops of the buildings
as highlighted by green rectangles. At the same time, the pseudo images transformed
by CycleGAN generates a few artificial objects in the outlined areas in Figure 15. What’s
more, in Figure 16, the pseudo images transformed by CycleGAN transfer the gray ground
to the orange buildings, as highlighted by cyan rectangles. On the contrary, we do not
observe aforementioned artificial objects and semantic inconsistency in the transformed
images generated by BiFDANet in the vast majority of cases. Because the bidirectional
semantic consistency loss enforces the classifiers to maintain semantic consistency during
the image-to-image translation process. For CycleGAN, because the transformed images
do not match the labels of the original images, the segmentation model FT learns wrong
information in training progress. Such wrong information may affect the performances
of classifiers significantly. As a result, the domain adaptation methods with CycleGAN
performs worse than our proposed method at test time, as confirmed by Figures 13–16.

5.1.3. BiFDANet versus Color Matching

Figures 13 and 14 illustrate that color matching can efficiently reduce the color differ-
ence between different domains. At the first sight, color matching works well. It preserves
the semantic contents of the original source images in the transformed images, and the color
of the target images is transferred to the transformed images. Besides, the transformed
images generated by color matching look similar to the images generated by BiFDANet in
Figure 14. However, in Tables 2 and 3, we can see that there are relatively big gaps between
the performances of BiFDANet and color matching. The quantitative results for color
matching are worse than the results for CycleGAN which can not keep semantic contents
well. To better understand why there is such a difference in performance, we further
analyse the differences between BiFDANet and color matching. The main problem of color
matching is that it only tries to match the color of the images instead of considering the
differences in features and data distributions. On the contrary, BiFDANet learns high-level
features of the target images by using the discriminators to distinguish the features and
data distributions of the pseudo-target transformed images from that of the original target
images. In other word, the generators of BiFDANet generate pseudo-target transformed im-
ages whose high-level features and data distributions are similar to that of the target images.
For this reason, our proposed BiFDANet outperforms color matching substantially.

Furthermore, to prove our point, we show color histograms of the GF-1 images, the
pseudo GF-1 images generated by color matching and BiFDANet, and the GF-1B images,
the pseudo GF-1B images generated by color matching and BiFDANet in Figure 17. And
we depict color histograms of the Potsdam images, the pseudo Potsdam images generated
by color matching and BiFDANet, and the Vaihingen images, the pseudo Vaihingen images
generated by color matching and BiFDANet in Figure 18. Since the source domain and the
target domain are drawn from different data distributions, the histograms of the pseudo-
target images and the target images can’t be exactly the same. However, we want them to
be as similar as possible. Although color matching tries to match the color of the source
images with the color of the target images, it doesn’t learn the data distributions so that the
histograms of the pseudo-target images are quite different from that of the target images.
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Figure 13. GF-1 to GF-1B: Original GF-1 images and the transformed images which are used
to train the classifier for GF-1B images. (a) GF-1 images. (b) Color matching. (c) CycleGAN.
(d) BiFDANet (ours).

Figure 14. GF-1B to GF-1: Original GF-1B images and the transformed images which are used
to train the classifier for GF-1 images. (a) GF-1B images. (b) Color matching. (c) CycleGAN.
(d) BiFDANet (ours).
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Figure 15. Potsdam to Vaihingen: Original Potsdam images and the transformed images which
are used to train the classifier for Vaihingen images. (a) Potsdam images. (b) Color matching.
(c) CycleGAN. (d) BiFDANet (ours).

Figure 16. Vaihingen to Potsdam: Original Vaihingen images and the transformed images which
are used to train the classifier for Potsdam images. (a) Vaihingen images. (b) Color matching.
(c) CycleGAN. (d) BiFDANet (ours).
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Figure 17. Color histograms of the Gaofen dataset. (a) GF-1. (b) Pseudo GF-1 transformed by color
matching. (c) Pseudo GF-1 transformed by BiFDANet. (d) GF-1B. (e) Pseudo GF-1B transformed by
color matching. (f) Pseudo GF-1B transformed by BiFDANet.

Figure 18. Color histograms of the ISPRS dataset. It is worth noting that Potsdam and Vaihingen
have different kinds of bands. (a) Potsdam. (b) Pseudo Potsdam transformed by color matching.
(c) Pseudo Potsdam transformed by BiFDANet. (d) Vaihingen. (e) Pseudo Vaihingen transformed by
color matching. (f) Pseudo Vaihingen transformed by BiFDANet.

As shown in Figures 17 and 18, color matching does not match the data distributions
of the pseudo-target images with the data distributions of the target images. For Gaofen
dataset, there are still some differences between the histograms of the pseudo-target images
generated by color matching and the real target images as shown in Figure 17. In contrast,
the histograms of the pseudo-target images transformed by BiFDANet are similar to that
of the real target images as shown in Figure 17. Thus the performances of BiFDANet are
better than color matching. For ISPRS dataset, the histograms of the pseudo-target images
generated by color matching are much different from the histograms of the target images
as shown in Figure 18. In comparison, BiFDANet effectively matches the histograms of
pseudo-target images with the histograms of the real target images, as shown in Figure 18.
Therefore, the performance gap between BiFDANet and color matching becomes larger as
confirmed by Figures 13–16.
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5.1.4. Linear Combination Method versus Intersection and Union

In the GF-1→ GF-1B, Vaihingen→ Potsdam and Potsdam→ Vaihingen experiments,
simply taking the intersection or union of the results of the two classifiers FS and FT obtains
the highest precision values or recall values, these results prove that the two opposite
directions are complementary instead of alternative. However, the F1-score values and IoU
values can’t achieve the highest by the intersection and union operation. In the Vaihingen
→ Potsdam and Potsdam → Vaihingen experiments, simply taking the intersection or
union of the outputs of the two classifiers FS and FT results in performance degradation.
It shows that the intersection operation and union operation of the two predicted results
aren’t always stable, because these methods may leave out some correct objects or introduce
some wrong objects during the combination process. In comparison, the linear combination
method leads to further improvements for all four experiments because the combination of
probability output is more reliable.

5.2. Bidirectional Semantic Consistency Loss

We replace the bidirectional semantic consistency (BSC) loss in BiFDANet with seman-
tic consistency (SC) loss [14] and dynamic semantic consistency (DSC) loss [45], and report
the evaluation results in Tables 4 and 5.

As shown in Tables 4 and 5, we can see that for all adaptations in both directions
on Gaofen data set and ISPRS data set, our proposed bidirectional semantic consistency
loss achieves better results. It is worth noting that our framework with SC loss [14] and
DSC loss [45] also performs well in the source-to-target direction, but the performance
of BiFDANet FS degrades. This illustrates the necessity of the proposed bidirectional
semantic consistency loss when optimizing the classifier FS in the target-to-source direction.
What’s more, our framework with the proposed bidirectional semantic consistency (BSC)
loss outperforms our framework with the dynamic semantic consistency (DSC) loss in the
source-to-target direction even if the semantic constraints are the same in this direction.
It shows that keeping semantic consistency in the target-to-source direction is helpful to
maintain the semantic consistency in the source-to-target direction. At the same time, the
source classifier FS in our framework with semantic consistency loss [14] and dynamic
semantic consistency loss [45] perform better than the source classifier FS in our framework
without semantic consistency loss even though there are no semantic constraints for these
methods in the target-to-source direction. It means that the semantic consistency constraints
in the source-to-target direction are also beneficial to preserve the semantic contents in the
target-to-source direction. In conclusion, these two transferring directions promote each
other to keep the semantic consistency.

5.3. Loss Functions

We study the roles of each part in BiFDANet in the Vaihingen→ Potsdam experiment.
We start from the base source-to-target GAN model with the adversarial loss Ladv and
the classification loss LFT . Then we test the symmetric target-to-source GAN model with
the adversarial loss Ladv and the classification loss LFS . We combine the two symmetric
models that form a closed loop. In the next steps, we add the cycle consistency loss Lcyc
and the identity loss Lidt in turn. Finally, the framework is completed by introducing the
bidirectional semantic consistency loss Lsem. The results are shown in Table 6. We can
observe that all components help our framework to achieve better IoU and F1 scores, and the
proposed bidirectional semantic consistency loss could further improve the performance of
the models, which demonstrates the effectiveness of our bidirectional semantic consistency
loss again.



Remote Sens. 2022, 14, 190 23 of 27

Table 4. Evaluation results of different semantic consistency loss on Gaofen dataset. The best values
are in bold.

Method
Source: GF-1, Target: GF-1B Source: GF-1B, Target: GF-1

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

BiFDANet w/o
FS 55.68 62.07 58.70 41.55 65.36 67.21 66.27 49.68
FT 52.97 70.69 60.56 43.43 65.80 70.63 68.13 51.53

BiFDANet 54.83 68.83 61.04 43.92 67.10 69.86 68.45 51.87

BiFDANet w/SC
FS 50.84 73.68 60.16 43.02 69.43 68.36 68.89 52.33
FT 57.76 68.39 62.63 45.59 65.28 74.48 69.58 53.35

BiFDANet 56.10 71.21 62.76 45.73 66.67 73.20 69.78 53.59

BiFDANet w/DSC
FS 53.66 69.36 60.51 43.38 68.14 70.36 69.23 52.84
FT 59.90 66.69 63.11 46.11 70.44 73.24 71.81 56.02

BiFDANet 58.47 70.23 63.81 46.86 72.34 71.93 72.13 56.41

BiFDANet w/BSC
FS 58.56 69.34 63.50 46.52 71.65 72.21 71.93 56.17
FT 61.82 67.00 64.31 47.39 71.81 73.69 72.74 57.16

BiFDANet 63.31 65.70 64.48 47.58 75.57 70.58 72.99 57.47

Table 5. Evaluation results of different semantic consistency loss on ISPRS dataset. The best values
are in bold.

Method
Source: Vaihingen, Target: Potsdam Source: Potsdam, Target: Vaihingen

Recall (%) Precision (%) F1 (%) IoU (%) Recall (%) Precision (%) F1 (%) IoU (%)

BiFDANet w/o
FS 49.37 72.12 58.62 41.46 45.81 71.71 55.91 38.80
FT 44.60 73.89 55.63 38.53 47.30 72.32 57.19 40.05

BiFDANet 51.39 68.75 58.81 41.66 48.41 72.67 58.11 40.96

BiFDANet w/SC
FS 52.72 72.96 61.21 44.10 53.69 69.82 60.70 43.58
FT 49.71 72.20 58.88 41.73 56.05 72.89 63.37 46.38

BiFDANet 53.83 71.97 61.59 44.50 60.35 67.40 63.68 46.71

BiFDANet w/DSC
FS 58.93 67.35 62.86 45.84 58.01 68.30 62.74 45.70
FT 50.66 70.76 59.05 41.89 60.53 74.44 66.77 50.11

BiFDANet 53.03 77.84 63.08 46.07 62.75 73.13 67.54 50.99

BiFDANet w/BSC
FS 68.82 61.62 65.02 48.17 59.00 75.39 66.20 49.47
FT 56.90 62.39 59.52 42.37 60.44 76.70 67.60 51.06

BiFDANet 66.37 64.03 65.18 48.35 65.83 73.33 69.38 53.12

Table 6. Evaluation results of each component on ISPRS dataset.

Source: Vaihingen, Target: Potsdam

S → T T → S
F1 (%) IoU (%)

LFT Ladv Lcyc Lidt Lsem LFS Ladv Lcyc Lidt Lsem

X X 35.67 18.65
X X 39.84 23.63

X X X X 40.17 24.08

X X X 55.24 38.16
X X X 56.73 39.64

X X X X X X 57.04 40.06

X X X X 54.36 37.83
X X X X 57.74 40.12

X X X X X X X X 58.81 41.66

X X X X X 58.44 41.54
X X X X X 63.96 47.08

X X X X X X X X X X 65.18 48.35
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6. Conclusions

In this article, we present a novel unsupervised bidirectional domain adaptation
framework to overcome the limitations of the unidirectional methods for semantic segmen-
tation in remote sensing. First, while the unidirectional domain adaptation methods do
not consider the inverse adaptation, we take full advantage of the information from both
domains by performing bidirectional image-to-image translation to minimize the domain
shift and optimizing the source and target classifiers in two opposite directions. Second,
the unidirectional domain adaptation methods may perform badly when transferring from
one domain to the other domain is difficult. In order to make the framework more general
and robust, we employ a linear combination method at test time, which linearly merge
the softmax output of two segmentation models, providing a further gain in performance.
Finally, to keep the semantic contents in the target-to-source direction which was neglected
by the existing methods, we propose a novel bidirectional semantic consistency loss and
supervise the translation in both directions. We validate our framework on two remote
sensing datasets, consisting of the satellite images and the aerial images, where we perform
a one-to-one domain adaptation in each dataset in two opposite directions. The experimen-
tal results confirm the effectiveness of our BiFDANet. Furthermore, the analysis reveals
the proposed bidirectional semantic consistency loss performs better than other semantic
consistency losses used in the previous approaches. In our future work, we will redesign
the combination method to make our framework more robust and further improve the
segmentation accuracy. What’s more, in practical terms, the huge number of remote sensing
images usually contain several domains, we will extend our approach to multi-source and
multi-target domain adaptation.
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