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Abstract: With the development of wireless communication technology, indoor tracking technology
has been rapidly developed. Wits presents a new indoor positioning and tracking algorithm with
channel state information of Wi-Fi signals. Wits tracks using motion speed. Firstly, it eliminates static
path interference and calibrates the phase information. Then, the maximum likelihood of the phase
is used to estimate the radial Doppler velocity of the target. Experiments were conducted, and two
sets of receiving antennas were used to determine the velocity of a human. Finally, speed and time
intervals were used to track the target. Experimental results show that Wits can achieve the mean
error of 0.235 m in two different environments with a known starting point. If the starting point is
unknown, the mean error is 0.410 m. Wits has good accuracy and efficiency for practical applications.

Keywords: Wi-Fi; channel state information; Doppler velocity; maximum likelihood estimation; trajectory

1. Introduction

Indoor technology can play a very important role in how we work and live. For
example, when there is an accident in a chemical plant, the specific locations of the work-
ers is critical information for the search and rescue operations. Another example is the
monitoring of the elderlies’ status in a nursing home for possible falls in their rooms or
bathrooms so that the decision to help can be made quickly.

A variety of indoor positioning technologies have been proposed or developed. For
instance, video-based indoor positioning technologies are presented in [1–3]. However,
they are too direct and offer too much private and personal information. The radar-based
indoor positioning systems are presented in [4–7], but they are not widely used due to the
relatively high cost of the radar and operational complexity.

Therefore, is there a way to develop a system for indoor positioning and tracking
cheaply and without compromising one’s privacy? Fortunately, technologies based on a
Wi-Fi signal appear to provide the solutions. Wireless networks for cellular and internet
communications have become prevalent in recent years. Wi-Fi routers and signals are
available in most homes and offices. Wi-Fi signals exist almost everywhere, and they are
reflected or scattered by objects and human bodies. Therefore, they carry information about
people and their surroundings, and they can be utilized for sensing and detecting human
behaviors and activities. For example, they can be used to recognize different human
postures and gestures [8–11], identify people [12,13], detect the keystrokes [14], find the
locations of humans and animals [15,16], and count a crowd [17]. They can also be used to
estimate the respiratory rate of a person [18–22].

The main tracking technologies based on Wi-Fi signals can be divided into two types.
The first is active tracking, which requires people to carry devices. Its examples include
SpotFi [23], Wicapture [24], and Milliback [25]. The drawback of such a system is the
inconvenience for people carrying devices around in their daily lives.

The second technology is passive tracking. There are two main passive tracking
algorithms: (1) fingerprint-based tracking algorithms [26–39] and (2) parameter-based
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indoor tracking algorithms. The fingerprint-based tracking algorithms collect a large
number of samples in advance and use them for training an algorithm. Table 1 is the
parameter-based vs. fingerprinting-based algorithm comparison. Although fingerprint-
based location methods have made great strides in recent years, they require a lot of energy
and resources. In addition, they are highly dependent on the environments: the algorithms
need to be calibrated and retrained once the environments change.

Table 1. The parameter-based vs. fingerprinting-based algorithm comparison.

Parameter-Based Fingerprinting-Based

System Accuracy System Accuracy

ArrayTrack 23 cm CiFi [31] 100 cm
SpotFi [23] 40 cm DS-3DCNN [32] 98.4 cm

LiFS 70 cm PhaseFi [33] 108 cm
Widar 2.0 75 cm BLS-location [34] 250 cm

Therefore, more attention is paid to the parameter-based passive tracking algorithms
proposed in [40–45]. IndoTrack [40] proposes the Multiple Signal Classification Algorithm
(MUSIC), which realizes trajectory tracking by utilizing two antennas and the Angle of
Arrival (AOA). This algorithm can estimate the speed more accurately, but it needs a
traversal search and has poor real-time performance. Dynamic Music [41] uses the MUSIC
algorithm for joint estimation of AOA and TOF (time of flight), reducing estimated paths
by considering that static paths are coherent and can be merged into one. However, the
real-time performance is also poor because it needs a two-dimensional search. Wideo [42]
simultaneously tracks multiple targets (up to five people) and utilizes the multimodal
recognition method of Wi-Fi and light source devices. The algorithm uses one link in a
set of Rx-Tx (four receiving antennas per receiver) to estimate AOA and TOF. A median
error of 0.07 m is achieved over a tracking range of 10 m. Widar [43] uses the amplitude
information to extract the Doppler velocity of a moving object to realize tracking. Six links
(three receiving antennas at each receiving end) in two groups of Rx-Tx are used for the
tracking. A median error of 0.35 m is achieved within a range of 4 m. Widar 2.0 [44] is a
multi-parameter estimation algorithm. A link in a set of Rx-Tx (three receiving antennas at
each receiver) can simultaneously estimate the moving object signal (as shown in Figure 1),
TOF information, AOA information, and Doppler velocity. A median error of 0.75 m is
achieved within a range of 8 m. The expectation-maximization algorithm can be used to
reduce searches. However, the performance is very dependent on the selection of initial
values. LiFS [45] selects subcarriers with low multipath fading and uses an amplitude
attenuation model to determine the distance. This algorithm uses 34 links in 11 groups of
Rx-Tx (three receiving antennas at each receiver) to distinguish two targets. However, they
use too many antennas, which is complex and inconvenient in practical applications.

Figure 1. CSI signal transmission scattered human (DFS—Doppler frequency shift; TOF—time of
flight; AOA—angle of arrival; LOS—line of sight; Tx—transmitter; Rx—receiver).
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The shortcomings of the current indoor tracking technologies are: (1) there are only
three antennas at the receiving end of that ordinary equipment (e.g., Wi-Fi Link 5300
that supports 802.11 a/b/g/n), so the positioning accuracy is low; (2) there is not a strict
synchronization clock for CSI signals, so the phase information received is very inaccurate;
(3) performances are sensitive to multipath interferences that always exist in an indoor
environment; and (4) a common MUSIC algorithm requires traversal search, which takes a
lot of time.

Aiming at the problems mentioned above, we propose a new velocity and TOF estima-
tion algorithm; Wits is simple, real-time, and accurate. It is completely different from Widar
2.0. It can effectively extract velocity information from noise/interference contaminated
signals. It does not need a traversal search and has good real-time performances. It uses
two sets of receiving antennas to realize trajectory tracking.

In short, the main contributions of this paper are:

(1) Aiming at the problem of phase information loss caused by the phase calibration
method in literature [15,19], this paper made improvements. The phase information
of all antennas is retained after modification. Moreover, the algorithm reduces the
random phase error;

(2) According to the normal distribution of noise satisfying the mean value of 0 under
normal circumstances, a velocity maximum likelihood estimation algorithm is pro-
posed. This algorithm is completely different from Widar 2.0. No search is required.
The estimation results are efficient and accurate;

(3) TOF maximum likelihood estimation algorithm is proposed. Then, the TOF is used to
determine the initial position;

(4) Efficient and accurate position estimation and trajectory tracking are realized.

2. Materials and Methods

Wits uses 2 links in 2 groups of Rx-Tx (each receiver has 3 receiving antennas). First,
the phase calibration and static path elimination are carried out at the receiving end. Then,
the maximum likelihood estimation algorithm is used to estimate the radial velocity of
each link. The data of the two links are finally synthesized to estimate the actual human

speed. The trajectory tracking is realized using ∆t×
→

Vtall, where ∆t is the time interval and
→

Vtall is the speed. The specific process is shown in Figure 2.

Figure 2. Flow chart of Wits.

As shown in the previous section, Wits involves CSI modeling, phase calibration, static
path elimination, and velocity estimation based on the maximum likelihood algorithm. The
section describes the mathematical principle of each part of the operations.
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2.1. CSI Modeling

As described before, the Wi-Fi signals propagate in space and are scattered by any
object they encounter in an indoor environment. Therefore, the Wi-Fi signals’ channel state
information (CSI) embodies the information about static and dynamic objects (and thus
paths) in the environment. It can be expressed mathematically as:

H(t) =
L

∑
l=1

hl(t) + N(t)=
L

∑
l=1

αl(t)e−j2πfτl + N(t) (1)

where L represents the total number of dynamic and static paths in the environment.
hl(t) represents the time domain signal of path l. N(t) represents noise in the path. αl(t)
represents the magnitude of the signal along path l. τl represents the signal flight time of
path l. f represents the carrier frequency.

Each receiver has an antenna array, as shown in Figure 3. If the phase of the 0th
subcarrier signal H(0, 0, 0) of the 0th packet received by the 0th antenna is taken as the
reference phase (K0 in Figure 3), the phase difference of the jth subcarrier H(i, j, k) of the
ith packet received by the kth antenna with respect to H(0, 0, 0) can be expressed as:

2πfτl(i, j, k) = 2π

(
∆fjτl + fc∆sk·

sin(Φl)

c
− fD∆ti

)
(2)

where ∆fj refers to the frequency difference between the subcarrier j and the reference
carrier; ∆sk refers to the distance between the kth antenna and the reference antenna; Φl
refers to the arrival angle of the path l; c refers to the speed of light; fD refers to the Doppler
speed of the path l; fc refers to the central frequency of the signal; and ∆ti refers to the time
interval between the ith packet and the reference data packet.

Figure 3. Array signal diagram.

The phase difference between the jth subcarrier of the (i − 1)th packet of the kth
antenna and H(0, 0, 0) can be expressed as:

2πfτl(i− 1, j, k) = 2π

(
∆fjτl + fc∆sk·

sin(Φl)

c
− fD∆ti−1

)
(3)

Subtracting (2) from (3), we can get:

fτl(i,j,k)− fτl(i− 1, j, k) = −fD(∆ti − ∆ti−1) (4)

Based on the above analysis, the phase difference of adjacent packets carries Doppler
speed information. However, the phase information received is not accurate due to im-
perfect hardware clock synchronization. Therefore, the corresponding phase alignment
technique must be used as described below.
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2.2. Phase Calibration and Static Path Elimination

Since there is no strict clock synchronization in the receiving process of CSI signal,
there will be an error between the measured CSI signal H̃(t) and the actual CSI signal H(t),
which can be specifically expressed as:

H̃(t) = H(t)e−2πj(∆fjεti+∆tiεf)+ξsk+n(t) (5)

where εti is time offset, εf is the frequency offset, and ξsk is the initial phase offset. Since the
time offset and frequency offset are the same in different sensors, they can be removed by
conjugate multiplication [14,18]. However, if one of the antennas is selected as the reference
antenna, the phase of the antenna after alignment will be 0 by directly multiplying all
antennas by the conjugate of the reference antenna. If calibrated information is used for
motion recognition, useful phase information is reduced by 1/3, wasting the hardware
resources. In addition to the three kinds of linear noise εti , εf, and ξsk , random noise n(t)
cannot be ignored. The phase calibration method in literature [14,18] causes a waste of
hardware resources and cannot remove random noise. Therefore, this paper improves the
algorithm in literature [14,18]. The specific process is as follows:

Hm0(t) =
1
K

K

∑
k=1

Hk(t) (6)

Here, k stands for the kth antenna. K is the total number of antennas. Because common
random noise can be approximated as Gaussian white noise with a mean of 0, the method
of finding the mean can remove part of random noise by Equation (6).

S(t) = exp
(

j·ϕ
(

H̃m(t)
))
∗ H̃m0

∗(t) = exp(j·ϕ(Hm(t)))·Hm0
∗(t) (7)

where m stands for all antennas. Hm(t) and Hm0(t) are expressed as follows:

Hm(t) = ∑
n∈ps

pm,n(t) + ∑
l∈pd

pm,l(t) (8)

Hm0(t) = ∑
n∈ps

pm0,n(t) + ∑
l∈pd

pm0,l(t) (9)

where pn represents the static path and pl represents the dynamic path.
Substitution of (8) and (9) into (7) reads:

S(t) = ∑
n∈ps

exp
(

j.ϕ
(

pm,n(t)
))
∗ p∗m0,n(t)

+ ∑
l∈pd,n∈ps

exp
(

j.ϕ
(

pm,l(t)
))
∗ p∗m0,n(t) + exp

(
j.ϕ
(

pm,n(t)
))
∗ p∗m0,l(t))

+ ∑
l∈pd

exp
(

j.ϕ
(

pm,l(t)
))
∗ p∗m0,l(t)

(10)

The ∑
n∈ps

exp
(

j.ϕ
(

pm,n(t)
))
∗ p∗m0,n(t) is caused by the static path and is of low

frequency. ∑
l∈pd

exp
(

j.ϕ
(

pm,l(t)
))
∗ p∗m0,l(t) is caused by the dynamic path and is of high

frequency. The above two terms can be removed with a bandpass filter. The remaining two
terms are expanded as follows:

exp
(

j.ϕ
(

pm,l(t)
))
∗ p∗m0,n(t) = αn

∗exp
(
−j2π

(
∆fj(τl − τn) + fc∆sk·(sin(Φl)− sin(Φn)

)
/c− fD∆ti

))
(11)

exp
(

j.ϕ
(

pm,n(t)
))
∗ p∗m0,l(t) = αl

∗exp
(
−j2π

(
∆fj(τn − τl) + fc∆sk·(sin(Φn)− (sin(Φl))/c + fD∆ti

))
(12)
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By comparing (11) and (12), we can get:∣∣∣exp
(

j.ϕ
(

pm,l(t)
))
∗ p∗m0,n(t)

∣∣∣ = |αn|�|αl| =
∣∣∣exp

(
j.ϕ
(

pm,n(t)
))
∗ p∗m0,l(t)

∣∣∣ (13)

Since the amplitude of the static path signal |αn| is far greater than that of the dynamic
path signal |αl|, the latter can be neglected. We conducted an experiment where a person
moves quickly away from an antenna and then slows down to a stop and vice versa. The
results of short-time Fourier transform (STFT) before and after static elimination are shown
in Figure 4a,b: in the absence of static cancellation, noise, dynamic path signal, and static
path signal are mixed together and cannot be distinguished. After static elimination, there
is little noise and dynamic path signal. This is very helpful for extracting accurate speed
information later.

Figure 4. The measured time–frequency chart comparison.

With the more accurate measurement of phase information and the dynamic path, the
maximum likelihood estimation algorithm can be used to estimate the velocity, as described
in the subsections below.

2.3. Radial Velocity Estimation Based on the Maximum Likelihood Algorithm

This algorithm is fundamentally different from Widar 2.0. Widar 2.0 mainly constructs
the optimization function, traverses the amplitude, AOA, TOF, Doppler speed, and finds
the minimum square error between the estimated CSI and the measured CSI. The algorithm
in this paper mainly meets the requirement that the mean value is normally distributed
according to the velocity estimation deviation. We divide the CSI signals collected from the
network card into many segments of short window, in which the velocity is approximated
considered as a constant vt, and t = 1, 2, 3, . . . T is the number of a sliding window.

The Doppler velocity after segmentation is:

Vi,j,k = vt + εt, t = 1, 2, 3, . . . T (14)

Here, εt is the noise and εt~N(0, σt) follows a Gaussian distribution with the mean of
0, and variance σt. A series of Doppler velocities fD in a short time window can be obtained
by Equation (4). Vi,j,k can be obtained by the following formula:

Vi,j,k = fD,(i,j,k) ∗ fj/c (15)
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Here, fj is the frequency of jth subcarrier. The probability density function of Doppler
velocity is:

P
(
Vi,j,k

∣∣vt
)
=

1
σ
√

2π
exp

[
−

1
2
(
Vi,j,k − vt

)2

σt2

]
(16)

The joint probability distribution function of all observed values is

P(V|vt ) =
i=I,j=J,k=K

∏
i=1,j=1,k=1

(
1

σ
√

2π
exp

[
−

1
2
(
Vi,j,k − vt

)2

σt2

]
(17)

Vi,j,k represents the speed of the ith packet of the jth subcarrier of the kth antenna. V is
the observed value of all velocities in segment t. I represents the total number of packets. J
represents the number of total subcarriers of each antenna. K represents the total number
of antennas.

The maximum likelihood estimation of velocity, namely, the logarithm, is taken to
obtain the maximum probability:

In P(V|vt ) = (I + J + K) ∗ In
(

1
σt
√

2π

)
+

(
−

2
σ2

i=I,j=J,k=K

∑
i=1,j=1,k=1

(
Vi,j,k − vt

)2
)

(18)

The maximum likelihood estimate is obtained by taking the derivative of vt.

vt =
1

I + J + K

i=I,j=J,k=K

∑
i=1,j=1,k=1

Vi,j,k (19)

We can get rid of linear noise error caused by εti , εf, and ξsk using conjugate multiplica-
tion. n(t) is caused by random noise. Because common random noise can be approximated
as Gaussian white noise with a mean of 0, the velocity obtained by formula 19 can remove
the random phase noise. This is why the speed calculated by the algorithm in this paper is
more accurate. We can see that the algorithm in this paper is completely different from the
speed estimation algorithm in Widar 2.0. No optimal-value search is required. The algo-
rithm proposed only needs addition and division. Therefore, the algorithm’s complexity
decreases significantly, and the algorithm’s efficiency increases significantly.

Using the maximum likelihood estimation algorithm, we get the magnitude of the
radial velocity of a set of antennas; however, then we are faced with the problem of how to
determine its direction. We treat the sender and the receiver as the two focal points of the
ellipse (Ptx and Prx), respectively, and the person (Ph) is on the ellipse. The radial velocity
direction of human motion can be calculated with a set of RX-TX [15].

The specific calculation method of radial velocity
→
vt1 is shown in Equation (20):

→
rt1·
(→

Ph−
→

Ptx

)
∣∣∣∣→Ph−

→
Ptx

∣∣∣∣ = 1/2·
∣∣∣ →vt1

∣∣∣
→
rt1·
(→

Ph−
→

Prx1

)
∣∣∣∣→Ph−

→
Prx1

∣∣∣∣ = 1
2 ·
∣∣∣ →vt1

∣∣∣
→
vt1 =

→
rt1∣∣∣→rt1

∣∣∣ ·
∣∣∣ →vt1

∣∣∣
(20)

where
→
Ph represents the current position vector of the moving target.

→
Ptx represents the

vector where the transmitting antenna is located.
→

Prx1 represents the position vector of
receiving antenna RX1.

→
vt1 represents the magnitude of the radial velocity of the ellipse
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consisting of TX and RX1 calculated by the maximum likelihood estimation algorithm, and
→
rt1 represents its direction.

If only one pair of transmitting and receiving antennas can measure the radial velocity
→
vt1 of a moving object, as shown in Figure 5, how can the actual velocity be obtained? The
answer is that two sets of antennas need to be used. Another set of velocities

→
vt2 can be

obtained by the same method.

→
rt2·
(→

Ph−
→

Ptx

)
∣∣∣∣→Ph−

→
Ptx

∣∣∣∣ = 1/2·
∣∣∣ →vt2

∣∣∣
→
rt2·
(→

Ph−
→

Prx2

)
∣∣∣∣→Ph−

→
Prx2

∣∣∣∣ = 1
2 ·
∣∣∣ →vt2

∣∣∣
→
vt2 =

→
rt2∣∣∣→rt2

∣∣∣ ·
∣∣∣ →vt2

∣∣∣
(21)

where
→

Prx2 represents the so-called position vector of receiving antenna rx1. vt2 represents
the magnitude of the radial velocity of the ellipse consisting of tx and rx2 calculated by the
maximum likelihood estimation algorithm, and

→
rt2 represents its direction.

The total velocities
→

Vtall can be expressed as:

→
Vtall =

→
vt1 +

→
vt2 (22)

Using speed and previous time position, accurate positioning can be achieved:

→
Pt =

→
Pt−1 + ∆t×

→
Vtall (23)

→
Pt represents the coordinates of the current position.

→
Pt−1 represents the position of the

previous time. ∆t represents the time interval between adjacent moments.

Figure 5. Velocity direction calculation model.

2.4. Initial Position Estimation Based on Maximum Likelihood Algorithm

With only speed information but no initial position, it is still impossible to locate and
track. Therefore, this paper proposes TOF estimation based on maximum likelihood. Based
on the previous information, the phase difference of the (j − 1)th subcarrier H(i, j− 1, k) of
the ith packet received by the kth antenna with respect to H(0, 0, 0) can be expressed as:

2πfτl(i, j− 1, k) = 2π

(
∆fj−1τl + fc∆sk·

sin(Φl)

c
− fD∆ti

)
(24)
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Subtracting (2) from (24), we can get:

fτl(i, j, k)− fτl(i, j− 1, k) = τl(fj − fj−1 (25)

It can be concluded from Equation (25) that the phase difference between adjacent
subcarriers carries TOF information. We take the CSI signal collected from the network card
as a piece of data at its starting time. TOF in a short time can be regarded as constant τt.

τi,j,k = τt + ε (26)

Here, ε is the noise and ε~N(0, σ) follows a Gaussian distribution with the mean of 0,
and variance σ. The probability density function of TOF is:

P
(
τi,j,k

∣∣τt
)
=

1
σ
√

2π
exp

[
−

1
2
(
τi,j,k − τt

)2

σ2

]
(27)

The joint probability distribution function of all observed values is:

P
(
τt
∣∣τi,j,k

)
=

i=I,j=J,k=K

∏
i=1,j=1,k=1

1
σ
√

2π
exp

(
−1

2
(
τi,j,k − τt

)2/σ2
)

(28)

τi,j,k represents the TOF of the ith packet of the jth subcarrier of the kth antenna. τt is TOF.
I represents the total number of packets. J represents the number of total subcarriers of
each antenna. K represents the total number of antennas.

The maximum likelihood estimation of TOF, namely, the logarithm, is taken to get the
maximum probability:

In P(τ|τt ) = (I + J + K) ∗ In
(

1
σ
√

2π

)
+

(
−1

2
σ2

i=I,j=J,k=K

∑
i=1,j=1,k=1

(
τi,j,k − τt

)2
)

(29)

The maximum likelihood estimate is obtained by taking the derivative of τt.
The unique location cannot be determined by only one TOF of a single set of transceiver

antennas. Two groups of receiving antennas are used, and their positions are as shown
in Figure 6: Ptx is the transmitting antenna. Prx1 and Prx2 stand for different groups of
receiving antennas. TOF1 is the time required for the signal to travel from the transmitting
device Ptx to the moving target and then to Prx1. TOF2 is the time required by the signal
from the transmitting device Ptx to the moving target and then to Prx2.

Figure 6. Schematic diagram of starting position determination.
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The intersection of the ellipses determined by the two sets of receiving antennas is
unique in the detection area.

3. Results
3.1. Experiments Settings

We used two pairs of transceiver antennas, two receivers, and one transmitter. Two
laptops were connected to the receivers for data processing and one desktop to the trans-
mitter. Every receiver had three sets of antennas, forming a linear antenna array with an
element spacing of 0.026 m (half wavelength). The signal was on channel 165, and the
center frequency was 5.825 GHz.

In order to verify the accuracy of the algorithm, we chose two different experimen-
tal environments: a complex environment (Environment 1) with a lot of experimental
equipment, tables, and chairs, and Environment 2, an empty hall. They are shown in
Figure 7a,b below.
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Figure 9 is the error accumulation function. The maximum Doppler velocity error is
24 Hz less than the other two algorithms. It can be seen that the algorithm in this paper
has good stability. The mean error of Doppler velocity is 9.34 Hz with Wits, 10.06 Hz with
IndoTrack, and 10.32 Hz with Widar 2.0. The mean error of Wits in this paper is the smallest.
In addition, Wits estimated a maximum Doppler velocity error of 24 Hz, Widar 2.0, and
Indo track of 30 Hz and 35 Hz, respectively. Therefore, the stability and accuracy of the
proposed algorithm are slightly better than existing algorithms.

Figure 9. Error accumulation diagram of different algorithms.

In addition, we compared the computing time of three different algorithms, as shown
in Table 2. Wits is advantageous in terms of computing time and real-time performance.
The reasons are as follows: IndoTrack uses the MUSIC algorithm and needs to conduct
a one-dimensional search, so it takes a long time. Widar 2.0 estimates four parameters
simultaneously, requiring a four-dimensional search. Although expectation-maximization
is used to reduce the computation time, multiple parameters need to be estimated, so the
computation time is relatively long. Especially when the number of packets is relatively
large, Wits has obvious advantages. As shown in the table below, when the number of
packets is 7000, Wits only needs 355 ms, while IndoTrack requires 6061 ms. IndoTrack takes
17 times more computational time than Wits. Widar 2.0 requires 7366 ms, which is 21 times
as much as that by Wits.

Table 2. The computational time of different algorithms.

Number of Packets 500 Packets 1000 Packets 3000 Packets 7000 Packets

Wits 101 ms 120 ms 207 ms 355 ms

IndoTrack 504 ms 1002 ms 2671 ms 6061 ms

Widar 2.0 308 ms 1790 ms 4296 ms 7366 ms

3.3. Estimation of Trajectory Accuracy

(1) Tracking with the known starting position.

In order to verify the positioning accuracy of this algorithm, we collected a large
number of tracking data in the two environments.

The heights of the volunteers range from 158 to 178 cm. There are horizontal line
track, vertical line track, U-shaped track, rectangular track, V-shaped track, and other tracks.
Figure 10a,b is the trajectory prediction of a person walking along the U-shaped track and the
vertical line track in Environment 1. The mean error of different trajectories in Environment
1 is 0.27 m. The maximum error of different trajectories in Environment 1 is 1 m.
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Figure 10. The trajectory prediction of a person walking in Environment 1.

Figure 11a,b is the measured trajectories of a person walking along with the circular
and the vertical line tracks in Environment 2. The mean error of different trajectories in
Environment 2 is 0.20 m. The maximum error of different trajectories in Environment 2
is 0.50 m. Environment 2 does not have any furniture. Compared with Environment 1,
Environment 2 has much less multipath, so the average error is smaller.

Figure 11. The trajectory prediction of a person walking in Environment 2.

Figure 12 is the cumulative distribution function (CDF) of the tracking error in the two
environments. Environment 2 is an empty and simple environment while Environment 1 is
a complex environment. Experimental results show that the algorithm proposed in this
paper can achieve good tracking and location results in both environments.
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Figure 12. Error accumulation diagram of the trajectory errors in Environment 1 and Environment 2.

(2) Tracking with unknown the starting position.

The previous analysis is of the errors in two different environments with a known
starting point. Then, the results were obtained with the unknown starting point. Figure 13
shows the track results in the case of Environment 1: the path is a vertical line in Figure 13a,
and its average error is 0.4663 m. The path is U-shaped in Figure 13b, and its average error
is 0.4652 m.

Figure 13. The trajectory prediction of a person walking in Environment 1.

Figure 14 shows the track results in the case of Environment 2 with unknown origin:
the path is a vertical line in Figure 13a, and its average error is 0.4447 m. The path is
round-shaped in Figure 13b, and its average error is 0.4397 m.
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Figure 14. The trajectory prediction of a person walking in Environment 2.

In order to verify the positioning and tracking estimation of Wits in the case of complex
multi-warp and occlusion, experimental scenes are added as shown in Figure 15a. This
scenario is a small laboratory. The lab was packed with lab equipment and sundries, as well
as a large iron locker. In addition, a barrier of 1.3 m (high) × 0.8 m (wide) was added. The
experiment shows that the error of locating and tracking increases obviously when there are
obstacles in Figure 15b. On the left track in the figure below, the average error of positioning
is 0.13 m, as the obstacle does not directly block the visual range of receiving and receiving
signals. In the remaining part of the track with occlusion, the average positioning error
is 0.59 m.

Figure 15. The experimental environment with barrier and trajectory tracking result in this environment.

Figure 16 is the error accumulation diagram of all paths in two environments. It can
be seen from the figure that the error is smaller in the environment with fewer multipath,
which is consistent with the previous conclusion. The blue line is in an empty experimental
environment without any furniture, so the multipath phenomenon is less, and the experi-
mental results are more accurate. The average positioning error is 0.3452 m. The red line
is the cumulative function of positioning error in a complex multipath environment. The
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mean positioning error in this environment is 0.4723 m. By comparison, it can be concluded
that the positioning error is larger in a multipath complex environment.

Figure 16. Error accumulation diagram of the trajectory errors in Environment 1 and Environment 2.

Figure 17 is the CDF of the trajectory errors with different trajectory shapes. The blue
line is the cumulative error of the vertical trajectory, the red line is the cumulative error of
the U-shaped trajectory, and the orange line is the cumulative error of the circular trajectory.
It can be seen from the figure that the trajectory error is related to the number of turns of
the trajectory. When the trajectory is circular, the number of turns is largest. Therefore, the
cumulative error is the largest. The errors are minimal when the trajectory is straight.

Figure 17. Error accumulation diagram of the trajectory errors with different trajectory shapes.

Figure 18 shows the positioning error comparison between Wits and the speed-based
dual-receiver antenna. The comparisons were made at an unknown starting point. The
green dots and lines are the positioning error accumulation diagram of IndoTrack. The
red dots and lines are the positioning error accumulation diagram of DFT-JVAE [46]. By
comparison, it can be seen that the algorithm in this paper is superior to the existing system
in precision.
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Figure 18. Tracking error compared with different algorithm.

4. Conclusions and Discussion

In this paper, a new indoor tracking algorithm based on channel state information
Wits is proposed. This algorithm mainly realizes the location by the target’s velocity. Firstly,
improved algorithms were used to eliminate the interference of static paths, and to calibrate
the phase information. Then, the maximum likelihood of the phase was used to estimate
the velocity of the target. Experimental results show that Wits can achieve the mean error
of 0.235 m in two different environments. If the starting point is unknown, the average
positioning error is 0.41 m. Because the velocity is easier to obtain and more accurate
than AOA and TOF detection, the tracking accuracy is higher than Widar 2.0 by Tsinghua
University and IndoTrack by Peking University. In addition, Wits can remove part of the
random phase noise and obtain more accurate phase information. The velocity information
estimated from the phase information is also more accurate. The maximum likelihood
estimation is used which can obtain accurate results in a multipath environment. The
algorithm can also eliminate linear phase error and random phase error. Using a static
path elimination algorithm, the interference of multipath can be reduced. If the starting
point was known, the average positioning error of FDT-JVAE was 0.0.32 m, IndoTrack was
0.39 m, and Widar was 0.47 m. Compared with FDT-JVAE, the accuracy of the proposed
method is improved by 26.5%. The accuracy of the proposed algorithm is 39.7% higher
than that of IndoTrack. Compared with Widar, the accuracy of the proposed algorithm is
improved by 50%.

It is worth mentioning that Wits essentially determines the next position based on
the previous position, so there is an accumulation error. Therefore, it is necessary to
continuously calibrate the system. If there are many people, and only one person moves,
the others can be removed by a static elimination algorithm. If more than one person is
moving, the speeds of multiple people add up, making it impossible to distinguish the
movements of different people. Therefore, the situation of multi-person movement cannot
be solved in this paper, temporarily. These issues are under study and the results will be
reported in the future.
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