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Abstract: This article addresses the scarcity of labeled data in multitemporal remote sensing image
analysis, and especially in the context of Chlorophyll-a (Chl-a) estimation for inland water quality
assessment. We propose a multitask CNN architecture that can exploit unlabeled satellite imagery
and that can be generalized to other multitemporal remote sensing image analysis contexts where the
target parameter exhibits seasonal fluctuations. Specifically, Chl-a estimation is set as the main task,
and an unlabeled sample’s month classification is set as an auxiliary network task. The proposed
approach is validated with multitemporal/spectral Sentinel-2 images of Lake Balik in Turkey using
in situ measurements acquired during 2017–2019. We show that harnessing unlabeled data through
multitask learning improves water quality estimation performance.

Keywords: time series analysis; water quality; convolutional neural network; regression; semisuper-
vised learning

1. Introduction

Besides containing invaluable aquatic habitats and rich biodiversity, lake water also
constitutes a significant resource with a wide range of civil and industrial purposes, ranging
from urban water supply and agricultural irrigation to fishery and recreation. Consequently,
monitoring its quality is of paramount importance, especially given the growing threat from
uncontrolled farming practices (e.g., excessive fertilizer and pesticide use) and industrial
pollution [1].

Chlorophyll-a (Chl-a) concentration is one of the most commonly used water qual-
ity parameters. Its high levels indicate a state of eutrophication, most often due to an
abundance of nutrients [2]. It is known to not only cause the death of aquatic life but also
constitutes a threat to public health [3]. The traditional measurement of Chl-a concentration
is a prolonged and labor-intensive process. It involves arduous and repeated sample acqui-
sitions from the field and their subsequent laboratory analysis. The end results, in addition,
only reflect the water quality of a handful of measurement sites at most, at often large
temporal intervals, or even fewer, in cases where the lake is geographically inaccessible [4].
Therefore, developing a computer model that employs as input remote sensing images
acquired over the area of interest, and that outputs pixel-level Chl-a estimations, constitutes
a highly attractive and efficient alternative solution, capable of the systematic monitoring
of an entire water body, rendering both field visits and laboratory analysis redundant.

The research question underlying this study is how to develop such a computer model,
capable of exploiting the scarce labels as well as abundant unlabeled data.

1.1. Related Work

The assessment of water quality from remote sensing images in terms of Chl-a concen-
tration constitutes a long-standing challenge, with an abundance of published approaches
spanning open oceans [5], and coastal [6] and inland waters [7]. Chl-a retrieval algorithms
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can be aggregated into two broad categories: semianalytical and semiempirical [8]; for a
comprehensive survey, the reader is referred to [9].

Semianalytical approaches rely on radiative transfer theory and modeling the prop-
agation of light in water, through the radiative transfer equation that connects inherent
optical properties of lake water with its radiance levels [10]. Solving this equation via either
look-up tables or inversion methods can lead to the estimation of Chl-a concentration. Even
though they can be developed with no available field samples, and are broadly applicable
thanks to their physical foundation [11], they still require ample prior information about the
lake’s optically active water constituents. However, their main disadvantage is their high
sensitivity to atmospheric effects, as the models rely heavily on precise radiance readings,
thus limiting their operational capacity [12].

Semi-empirical approaches, on the other hand, are more robust against atmospheric
effects and do not require prior information about a lake’s physical characteristics [9]. They
rely on feature engineering; in other words, each pixel of an often-optical remote sensing
image is described through a numerical feature vector that is subsequently provided to
a statistical/machine learning algorithm with the end goal of developing a regression
model for Chl-a estimation. Notable examples include Gaussian processes [13], multilayer
perceptron [14], and support vector regression [15]. Comprehensive comparative studies of
such features have been provided in [16]. As features, various linear and nonlinear band
combinations can be encountered in the state-of-the-art [17], involving mostly blue–green
and red–near-infrared bands [18], as well as various expertly derived band ratios and
indices [19]. Naturally, they require extensive in situ measurements of Chl-a in order to
produce models with high estimation accuracy.

The advent of satellites such as Sentinel-2, with shorter revisit times and higher spatial
and radiometric resolutions, has not only paved the way for new advances, but has also
rendered necessary the use of more elaborate methods, to deal with the greater level of
image detail [20]. More precisely, the results of an extensive comparative study across
various band ratios, using Sentinel-2 multispectral images with multiple atmospheric
correction processors, has been presented in [16]. Jadidi et al. [21] explored spectra-derived
features through color space and coordinate transforms, from images belonging to three
sources while working on data collected from Central European lakes. The combined
use of spectral–spatial features obtained through connected morphological operators has
also been investigated [22]. One of the most extensive studies is due to Neil et al. [23],
who explored 185 inland and coastal aquatic systems at a global level, through which the
performances of 48 distinct Chl-a estimation algorithms were tested.

However, the Chl-a estimation performance of semiempirical approaches depends
heavily on the effectiveness of the underlying machine learning method. Consequently,
the paradigm-shift that has occurred in the field of machine learning through the advent of
deep learning (DL) [24] is of paramount importance in this context. More specifically, DL
has led to groundbreaking performances in various highly challenging computer vision
tasks, especially via convolutional neural networks (CNNs) [25]. This new family of
algorithms enabling the design and efficient training of deep neural networks has rendered,
de facto, the process of feature engineering redundant, as it is now delegated to the network
itself. Depending on the quality of the provided data, the deep networks often compute
features outperforming handcrafted alternatives. For a survey of DL applications in remote
sensing, the reader is referred to [26].

It is thus not surprising that DL methods have been already applied to Chl-a estimation.
In particular, Peterson et al. [27] have developed an artificial neural network (ANN) with
six hidden layers, operating on spectral signatures of Landsat-8 and Sentinel-2 images
at 30 m resolution, and applied it to the water quality estimation of lakes in the United
States. It constitutes one of the first studies that assesses the suitability of DL for this
context, and their results show increased accuracy and robustness with respect to alternative
methods. In addition, Pu et al. [28] reported the first application of CNNs to this problem,
where small patches of Landsat-8 images, centered on the pixel under study, were used as
network input, with the end goal of classifying the water quality of Chinese lakes. Since,
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however, Chl-a estimation is inherently a regression problem, such networks estimating the
direct Chl-a level of its input have appeared as well [29,30]. Moreover, in an effort to exploit
temporal correlations across multitemporal data, long short-term memory networks have
also been studied, both individually [31] and together with CNNs [32]. Lastly, a highly
comprehensive study was presented in [8], on lakes across four continents, using a relatively
large dataset of 2943 samples. They proposed a single cross-mission solution for both
Sentinel-2 and Sentinel-3 sensors, based upon a five-layer mixture density network, and
obtained remarkable results.

1.2. Aim and Contribution

As with many remote sensing applications (e.g., semantic segmentation), overfitting
due to labeled data shortage is a critical problem in this context as well. In fact, even more
so, as, for each Chl-a sample of the ground truth, a rigorous in situ sample collection and
laboratory analysis workflow is required (as opposed to an expert labeling pixels on a
screen), and as such, labeled datasets are often relatively small. This problem is further
exacerbated by the notorious labeled data need of contemporary deep networks. Conse-
quently, it is imperative to exploit, to the maximum extent possible, whatever precious little
amount of data is available.

To this end, this article’s main contribution is a new network structure that learns to
estimate Chl-a concentration levels while exploiting both labeled image locations, as well
as unlabeled portions of the same visual content. We propose to achieve this via a multitask
double-branch CNN, whose main task is Chl-a level regression via training with labeled
input, and whose auxiliary task is the classification of unlabeled samples to its month of
acquisition. The proposed approach was tested with multispectral Sentinel-2 images of
Lake Balik in North Turkey, using samples collected over 3 years. The ablation studies
conducted show that the inclusion of unlabeled data improves the correlation coefficient of
the resulting model by multiple percentile points.

In the sequel of this article, following an overview of the collected dataset and study
area (Section 2.1), we elaborate on the proposed method of Chl-a concentration estimation
(Section 2.2), present the results of our regression experiments (Section 3), and discuss our
findings, while Section 4 is devoted to concluding remarks.

2. Materials and Methods
2.1. Study Area and Data

The study area for our water quality experiments is Lake Balik, located in the northern
part of Turkey, at the Kizilirmak Delta (Figure 1a). It has an area of 13.9 km2 and an
average depth of 1.5 m. Maximum depth reaches 2.5 m in summer and 3.5 m in winter.
Lake Balik has been a designated Ramsar site since 1998 and is home to 74% of the bird
species encountered in Turkey. It is surrounded by agricultural areas, and unfortunately is
under significant threat from uncontrolled fertilizer and pesticide use. Surface vegetation
is present only at the shallows and extends to, at most, 3 m from the shore [33].

In situ measurements were conducted on 32 distinct dates from April 2017 until June
2019 (7 during 2017, 14 during 2018, and 11 during 2019), once, or at most twice, a month,
depending on weather conditions. At each field visit, samples were collected from 10
measurement sites, approximately 500 m apart and 250–300 m from the shore (shown in
Figure 1a), with no surface vegetation and minimal water movement. Sample collection
was arranged to coincide with the satellites’ visits over the lake, and lasted at most 3 h.
Thus, the resulting dataset contains 10× 32 = 320 samples.
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Figure 1. (a) The study area in North Turkey at the Kizilirmak Delta (36◦04′23′′ N, 41◦34′11′′ E); red
dots denote measurement positions. (b) The Chl-a concentration distribution of our dataset across
time. Each point in the plot denotes the average of 10 measurement sites, while the vertical bar
represents the value range across locations; mean = 35.82 µg/L, standard deviation = 19.43 µg/L,
minimum = 11.04 µg/L, and maximum = 108.35 µg/L.

Sample analysis was conducted according to EPA-445 [34]. In particular, 1-liter water
samples were collected from a depth of 0.2–0.3 m below the lake surface and filtered on
0.7 µm Whatman GF/F filter pads, and then stored in the dark at−20 ◦C pending laboratory
analysis. Filtering was performed under subdued light, soon after sampling, since algal
populations, and thus Chl-a concentration, are susceptible to change in relatively short
periods of time. Chl-a was extracted using 6 mL of 90% acetone for 24 h [34]. The Chl-a
concentration was corrected for pheophytin and measured fluorometrically using a TD-7210
Fluorometer (Turner Designs, CA, USA) fitted with a daylight white lamp and properly
calibrated chlorophyll optical kit.

Laboratory analysis of the samples shows that the lake is in hypereutrophic state [35],
with an annual average Chl-a concentration of 35.82 µg/L; the distribution of concentrations
across time and measurements sites are shown in Figure 1b.

Atmospheric correction was conducted on the Level 1C Sentinel-2 images with the
Polymer method v.4.6 [36], using default parameters. Polymer is an atmospheric correc-
tion algorithm for processing oceanic waters with and without sun-glint presence [37],
and has been reported to show good performance [8]. Finally, all bands were resampled
to 10 m/pixel spatial resolution via bilinear interpolation. After removing noisy pixels
close to the shore and the in situ sampling locations, approximately 74 thousand lake
surface pixels remain (Figure 2c) for which Chl-a estimation values are unknown, forming
an unlabeled dataset of approximately 2.3 million samples across all acquisition dates
(Table 1).

Table 1. The number of samples per month for labeled and unlabeled datasets.

Month

1 2 3 4 5 6 7 8 9 10 11 12 Total

Unlabeled 148 K 222 K 222 K 222 K 222 K 296 K 222 K 148 K 148 K 296 K 148 K 74 K 2365 K
Labeled 20 30 30 30 30 40 30 20 20 40 20 10 320

2.2. Proposed Method

Chl-a levels of inland waters are known to be positively correlated with water tem-
perature and fertilizer inflow often resulting from rainfall, among other meteorological
parameters [38]. In other words, one can expect a certain level of correlation between
Chl-a levels and the months of a year, as regular seasonal fluctuations occur (i.e., higher
concentrations during sunnier seasons and after rains). Based on this observation, we
hypothesize that a network trained to guess the month of a given remote sensing spectral
or spectral/spatial sample (with no associated Chl-a information/label) will be able to
indirectly learn features helpful for Chl-a level estimation.
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(a) (b) (c)

Figure 2. The pink regions denote the unlabeled samples used in our ablation experiments; centered
on each of the in situ sampling positions with (a) a disk of diameter 11 pixels, (b) a disk of diameter
45 pixels, and (c) the entire lake surface, yielding 28,160, and 503,040, and 2,364,928 unlabeled samples
in 32 images, respectively.

To avoid any confusion, we assume that the date of acquisition is always available for
the remote sensing images under study, and in the rest of this article “labeled dataset” will
refer to the limited image samples of the water body for which the Chl-a concentration
levels are known, and “unlabeled dataset” will refer to the rest of the image samples of the
water body.

The aforementioned concepts can be implemented in various ways. For instance, one
could first train a convolutional network with unlabeled image locations, to learn the month
of acquisition until a reasonable level of performance, and then switch the loss function to
regression with a smaller learning rate and continue training with the labeled samples as a
form of “forward” transfer learning. However, despite its simplicity, this approach risks
directing the network to search space regions too far from the optima of the main task of
Chl-a estimation, to which the network is only afterwards introduced.

Instead, a superior alternative is to train the network’s feature extractor for both
tasks simultaneously as a multitasking network (Figure 3), where the main task is Chl-a
regression and the auxiliary task is month classification. The two tasks form the two
branches following the feature extraction layers, and direct the network to learn features
useful for both tasks, thus reinforcing each other. Moreover, being able to benefit from the
often far greater amount of unlabeled data in this way can have a strong regularization
effect, thus avoiding overfitting.

2.2.1. Input Shape

Since the availability of spatial information has been shown to enable networks to
exploit correlations among neighboring pixels [28,29], it was chosen to provide the input as
a 3D tensor of the shape b× k× k. It is formed by stacking b multispectral image patches
of size k× k pixels centered on the pixel under study.

2.2.2. Network Architecture

We adapted the 2D CNN architecture presented in [29] as the feature extractor shared
across tasks. It consists of four convolutional layers without pooling, as the input patches
are already small, and two fully connected (FC) layers. Before the convolutional layers,
1-pixel wide padding is applied to be able to use them with 3 × 3 kernel sizes. Each
convolutional layer is followed by a tanh activation function. Then, the feature map
generated by the 4th convolutional layer is fed into each of the two task-specific branches,
each consisting of two FC layers. These task-specific branches are identical except for the
number of neurons in the second FC layer. In this layer, the regression branch has 1 neuron
to estimate the continuous Chl-a values, while the classification branch has 12 neurons
to predict the sample acquisition month. The number of shared layers (four) and the
learning rate of each branch were determined through ablation studies (presented in the
next section). The overall network architecture is shown in Figure 3.
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Figure 3. The outline of the proposed multitask learning CNN architecture where Conv and FC
denote convolutional layer and fully connected layer, respectively.

2.2.3. Loss Functions

More formally, consider a Chl-a estimation dataset DL = {(xi, yi, mi)}i=1,...,|DL |, called
the labeled dataset, where each patch xi has Chl-a concentration level yi and is labeled with
the acquisition month mi for xi ∈ Rb×k×k, yi ∈ R, and mi ∈ {1, 2, . . . 12}. We also have an
unlabeled dataset DU = {(xi, mi)}i=1,...,|DU | where each patch xi is labeled only with the
acquisition month mi. The labeled dataset DL is further split into a training set T and a test
set H with |T| and |H| samples, respectively, where |T|+ |H| = |DL|.

The goal is to learn a model Φθ with parameters θ to correctly estimate the Chl-a con-
centration of a given sample x as y = Φθ(x). Contrary to existing approaches [28–32,39] that
rely on a single network architecture for the task of Chl-a retrieval, our approach consists
of a feature extractor Φθ

f e shared between two task-specific branches, namely Φθ,FC
reg and

Φθ,FC
cls , such that the model produces an estimation for the main task, Φθ

reg = (Φθ
f e, Φθ,FC

reg ),

and a prediction for the auxiliary task, Φθ
cls = (Φ f e, Φθ,FC

cls ).
MSE loss: Following the standard approach in Chl-a estimation studies [29,30,32],

the MSE (mean squared error) loss is used for the main regression task. The loss is evaluated
only for the training set T of the labeled dataset DL,

LReg(x(i), y(i); Φθ
reg) =

1
|Breg|∑i

(y(i) −Φθ
reg(x(i)))

2 (1)

where (i) represents the ith batch of the training set T, |Breg| is the batch size of the
regression task, and Φθ

reg(x(i)) and y(i) denote, respectively, the estimated and target Chl-
a concentrations.

Cross-entropy loss: As far as the auxiliary task is concerned, a “standard” classifica-
tion loss is used to exploit the unlabeled image samples by predicting their acquisition
months. It is evaluated for both the training set T of the labeled dataset DL and the un-
labeled dataset DU , since the samples of both datasets are labeled with the acquisition
month:

LCls(x(i), m(i); Φθ
cls) = −

1
|Bcls|∑i

m(i) log(Φθ
cls(x(i))) (2)

where D = T ∪DU, and (x(i), m(i)) ∈ D, (i) represents the ith batch of D, |Bcls| is the batch
size of the classification task, and Φθ

cls(x(i)) and m(i) denote, respectively, the predicted and
target months.

2.2.4. Multitask Loss

The design of the multitask loss function is of critical importance. A naive multitask
loss LMT could be written as a simple addition of the respective task losses, LMT =
LReg +LCls. However, the range of values produced by LReg and LCls can vary strongly,
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especially considering that they belong to different loss families, thus possibly leading the
network to ignore one of the tasks. A better alternative is instead to express the total network
loss LMT as a weighted combination of the task-specific losses LMT = cRegLReg + cClsLCls.
It is observed in [40] that by adjusting appropriate values for cReg and cCls, the optimization
of LMT ensures that no task is left behind when the other one is being learned. This can
be achieved by manually computing the coefficient cτ of each task Lτ , where τ ∈ T and
T = {Reg, Cls}, but this is a tedious and error-prone process that also does not take into
account changes in loss during the training phase. Instead, these loss coefficients cτ can be
learned by the model by adding them to the trainable network parameters θ as ωτ = (θ, cτ).
To define the multitask objective function with the aforementioned loss coefficients, we used
an implementation (https://github.com/Mikoto10032/AutomaticWeightedLoss, accessed
on 16 December 2021) of Liebel and Körner’s approach [41]:

LMT(x, yτ ; ωτ) = ∑
τ∈T

1
2c2

τ
Lτ(x, yτ ; ωτ) + ln(1 + c2

τ) (3)

where τ ∈ T and T = {Reg, Cls}, yτ = y for τ = Reg and yτ = m for τ = Cls.
In the next section, we report our numerical results and detail the effects of mul-

titask learning, patch size, length of the shared feature extractor, number of unlabeled
samples, and task loss weighting scheme on the Chl-a estimation performance through
ablation studies.

3. Results and Discussion

The experiments presented in this section aimed to test our hypothesis of whether
unlabeled data can contribute to the Chl-a estimation performance via multitask learning.

3.1. Data Split

Contrary to the state-of-the-art, where single random splits are common [16,21,27,31,32,42],
a 10-fold cross-validation strategy was adopted to avoid overfitting. Subsequently, the train-
ing data is further split in order to produce a validation set with the same size as the test
set to be used for hyperparameter tuning. Consequently, in each fold we have 256 samples
(80%) for training, 32 samples (10%) for validation, and 32 samples (10%) for testing. Af-
ter the hyperparameters are tuned, the model is trained without generating the validation
set, since the size of the dataset is relatively small. Thus, the final split has 288 samples
(90%) for training and 32 samples (10%) for testing.

3.2. Setup

The proposed multitask learning model was compared against several alternative
approaches from the state-of-the-art, including its single-task regression version [29],
support vector regression (SVR) [15] as a traditional machine learning method using
a radial basis function kernel, multilayer perceptrons (MLP) with various numbers of
hidden layers [30] as nonconvolutional neural networks, where the total number of
trainable parameters was adjusted to be equal to the proposed model, a recently intro-
duced morphology-based spectral–spatial approach (EFAL) [22], a convolutional neural
network (CNN), as proposed in [28] adapted for regression, and of course a statistical
spectral band characteristic known to be effective for Chl-a description [16] (band ratio):
R705/R665, (R−1

665 − R−1
705)× R740, R490/R443.

3.3. Training

Since the sizes of the labeled and unlabeled training sets differ by several orders of
magnitude, it was not a plausible approach to set the batch sizes to have the same number of
iterations. Instead, batches of the labeled training set are reused to ensure the same number
of iterations on both tasks. The learning rate is chosen to be 10−4. To optimize the multitask
network, the root mean square propagation (RMSProp) algorithm is used. Training lasts
for 200 epochs as determined through experimentation. The batch size is chosen as 64 for

https://github.com/Mikoto10032/AutomaticWeightedLoss
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the labeled set and as 12,318 for the unlabeled set. The same parameters/hyperparameters
determined by the validation set were used in all experiments to ensure consistency. Finally,
the coefficient of determination (R2), root mean square error (RMSE), and mean absolute
error (MAE) were used for performance measurement.

3.4. Results

According to the results presented in Table 2, the band ratio approach [16] provides
results close to those of the DL models, as it was expertly derived to obtain Chl-a values in
water bodies from Sentinel-2 images. As expected, all deep learning models outperformed
SVR [15], confirming the reported superiority of deep learning with respect to classic ma-
chine learning. EFAL [22] provides the second-best result thanks to its ability to represent
pixels with a hierarchy of connected components, which makes it suitable for Chl-a estima-
tion, since it provides a multiscale pixel description and adaptability in the spatial domain.
CNN [28] performs similarly to MLP and single-task CNN models in that its performance
is limited with the samples of the labeled dataset. For the MLP models [30], even though
they have approximately the same number of trainable parameters with the proposed archi-
tecture, the estimation performance increases up to four layers and then decreases, possibly
due to the model starting to overfit. The multitask learning model trained on both labeled
and unlabeled data outperforms the single-task regression approach [29]. Despite the lack
of Chl-a measurements in the unlabeled data, capturing seasonal appearances through
the auxiliary task’s month classification appears to help Chl-a estimation performance by
almost 8 percentile points.

Table 2. Mean Chl-a estimation results across 10 folds of cross-validation with the best results in bold,
where R2, MAE, and RMSE denote the coefficient of determination, mean absolute error, and root
mean square error, respectively.

Method Dataset R2 × 100 MAE RMSE Model Parameters

Band ratio [16] Labeled 71.37 0.147 0.199 -
SVR [15] Labeled 51.82 0.193 0.27 -
EFAL [22] Labeled 77.12 0.151 0.221 -
CNN [28] Labeled 73.06 0.146 0.197 340 K
MLP (2 layers) [30] Labeled 64.99 0.176 0.233 267 K
MLP (3 layers) [30] Labeled 72.47 0.152 0.204 267 K
MLP (4 layers) [30] Labeled 75.18 0.139 0.194 267 K
MLP (5 layers) [30] Labeled 72.11 0.144 0.206 267 K
Single-task CNN [29] Labeled 76.09 0.142 0.19 192 K
Multitask CNN (ours) Labeled+unlabeled 83.89 0.107 0.154 267 K

In addition to the quantitative results, Chl-a estimation maps were generated via
the proposed method for four dates in 2017 (one from each season) by training with the
remaining years’ data (Figure 4).

Figure 4. Chl-a estimation maps (µg/L) for spring, summer, fall, and winter 2017, respectively. They
were generated using the proposed multitask model.
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3.5. Ablation Study

Furthermore, the effects on performance of crucial design parameters were studied
and are reported in this section: the number of shared layers within the architecture,
the size of the input image patch, the number of unlabeled samples, and the task loss
weighting scheme.

Since the number of layers in the proposed architecture is six, we experimented
with the number of shared layers ranging from one to five by training five multitask
models, starting with the first layer. The results obtained are reported in Table 3. The best
performance is obtained by splitting the architecture into two task-specific branches after
the fourth layer. This suggests that the multitask model benefits from sharing all of its
convolutional features between the main regression task and the auxiliary classification task.

Table 3. Chl-a estimation levels of the proposed multitask model across 10-fold cross-validation with
different number of shared layers among the two task branches, with the best results in bold, where
R2, MAE, and RMSE denote the coefficient of determination, mean absolute error, and root mean
square error, respectively (patch size = 3× 3).

Shared Layers 1 2 3 4 5

R2 × 100 83.57 82.81 83.38 83.89 83
RMSE 0.156 0.159 0.158 0.154 0.16
MAE 0.108 0.11 0.109 0.107 0.113

For the sample patch size, experiments were conducted with sizes ranging from 1 × 1
to 9 × 9 pixels. Based on the results of Table 4, one can observe the contribution of spatial
information with respect to pixelwise analysis. However, as the spatial resolution is low,
larger patch sizes hardly improve it.

Table 4. Chl-a estimation levels of the proposed multitask model across 10-fold cross-validation with
various patch sizes, with the best results in bold, where R2, MAE, and RMSE denote coefficient of
determination, mean absolute error, and root mean square error, respectively (number of shared
layers = 4).

Patch Size 1 × 11 × 11 × 1 3 × 33 × 33 × 3 5 × 55 × 55 × 5 7 × 77 × 77 × 7 9 × 99 × 99 × 9

R2 × 100 75.44 83.89 81.48 82.19 83.45
RMSE 0.194 0.154 0.167 0.163 0.158
MAE 0.134 0.107 0.114 0.112 0.105

In addition, to measure the effect of the number of unlabeled samples on performance,
four multitask learning models were trained with progressively more unlabeled samples,
ranging from none all the way to the entire lake surface. The intermediate lake masks
with the employed unlabeled image locations are shown in Figure 2a–c, and the results are
reported in Table 5. As expected, training the model with the utmost possible number of
unlabeled samples by using the entire lake surface achieves the best performance. This is a
promising result for lakes that are geographically difficult to access, and it obtains a large
number of in situ samples.

The effect of the number of unlabeled samples on the auxiliary classification task was
also examined. Similarly to the previous ablation for Chl-a estimation, four models were
trained with an increasing number of unlabeled samples using the same lake intermediate
masks as in Figure 2a–c. Likewise, the multitask learning model trained using all possible
samples achieved the best performance, and their confusion matrices are shown in Figure 5.
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Table 5. Chl-a estimation results of the proposed multitask model across 10-fold cross-validation
with different number of unlabeled samples used for its auxiliary task, with the best results in bold,
where R2, MAE, and RMSE denote coefficient of determination, mean absolute error, and root mean
square error, respectively.

Unlabeled Samples 0 28160 503040 2364928

R2 × 100 76.63 82.41 83.03 83.89
RMSE 0.187 0.161 0.159 0.154
MAE 0.137 0.118 0.118 0.107

Figure 5. The confusion matrices devoted to the prediction of months.

Finally, a couple of experiments focusing on task-loss weighting were conducted, where
a direct sum of task-specific losses was compared against a task-weighting scheme learned
by the model. According to Table 6, the latter is superior, but with only a small margin.

Table 6. Chl-a estimation scores of the proposed multitask model across 10-fold cross-validation with
two task loss weighting schemes: direct sum and the weighting learned by the model during training,
with the best results in bold.

Task Loss Weight Sum Weight Learning [41]

R2 × 100 83.45 83.89
RMSE 0.156 0.154
MAE 0.113 0.107

3.6. Discussion and Limitations

The results presented so far provide relatively clear indications of the proposed
method’s practical interest with respect to its counterparts. The multitask network outper-
formed its single-task-regression-oriented alternative with a significant margin, and ex-
hibited increasing performance as the number of unlabeled samples increased. Moreover,
one can also safely presume that the large unlabeled dataset probably has an additional
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regularization effect. In other words, using such a large dataset helps the model learn a
better representation of the data. Thus, the auxiliary task satisfies the notorious data hunger
of the deep learning model. However, neither the method nor the undertaken study are
without limitations.

First of all, even though utmost care was taken to ensure the reliability of the estima-
tion results and to avoid overfitting, this still does not change the fact that all of the samples
originate from a single water body. Hence, it is unknown whether the estimation perfor-
mance of the method under study can be reproduced with samples of a geographically
distinct lake.

Furthermore, even though the samples acquired from Lake Balik demonstrated a
significant deviation (from 11.04 µg/L to 108.35 µg/L), the lake is still in overall hypereu-
trophic state. Consequently, the validity of the results obtained, across distinct mesotrophic
or oligotrophic lakes, remains uncertain.

It is planned to rectify both limitations in the future, via studies in new lakes, pending
financial support.

4. Conclusions

In this article, we proposed the first neural network architecture for water quality
estimation that can exploit unlabeled satellite imagery. We addressed the scarcity of labeled
data with a multitask CNN, where the main task is Chl-a regression and the auxiliary task
is month classification for the unlabeled samples. We thus aimed to exploit the semiregular
seasonal fluctuations of Chl-a in order to improve the computed features.

The experiments that were conducted on Lake Balik showed that the proposed mul-
titask learning model increased the coefficient of determination by 7.8 percentile points
compared to the single-task model, asserting the contribution potential of unlabeled data
via the proposed technique. In fact, the progressive improvement of performance relative
to the amount of employed unlabeled data was also shown.

Consequently, the proposed method renders possible the development of a Chl-a
estimation model with a modest amount of labeled data, thus minimizing the effort required
in terms of the number in situ samples, while enabling the exploitation of unlabeled remote
sensing images that are abundantly available.

Moreover, since the only assumption was the semiregular seasonal fluctuations of
Chl-a levels, the auxiliary month classification task, in our opinion, holds the potential
of benefiting other multitemporal remote sensing analysis contexts with similarly behav-
ing variables.

Nevertheless, despite the strong potential of these findings, and the rigorous experi-
mental protocol to avoid overfitting, this study is limited all the same by the use of a single
water body. Future work will concentrate on the validation of this approach with water
bodies of distinct trophic indexes at alternative geographical locations. Furthermore, we
will also focus on how to exploit multitemporal unlabeled data via month classification for
land-cover/land-use map estimation.
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