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Abstract: Quantitatively mapping forest aboveground biomass (AGB) is of great significance for
the study of terrestrial carbon storage and global carbon cycles, and remote sensing-based data are
a valuable source of estimating forest AGB. In this study, we evaluated the potential of machine
learning algorithms (MLAs) by integrating Gaofen-1 (GF1) images, Sentinel-1 (S1) images, and
topographic data for AGB estimation in the Dabie Mountain region, China. Variables extracted from
GF1 and S1 images and digital elevation model data from sample plots were used to explain the field
AGB value variations. The prediction capability of stepwise multiple regression and three MLAs,
i.e., support vector machine (SVM), random forest (RF), and backpropagation neural network were
compared. The results showed that the RF model achieved the highest prediction accuracy (R2 = 0.70,
RMSE = 16.26 t/ha), followed by the SVM model (R2 = 0.66, RMSE = 18.03 t/ha) for the testing
datasets. Some variables extracted from the GF1 images (e.g., normalized differential vegetation
index, band 1-blue, the mean texture feature of band 3-red with windows of 3 × 3), S1 images (e.g.,
vertical transmit-horizontal receive and vertical transmit-vertical receive backscatter coefficient), and
altitude had strong correlations with field AGB values (p < 0.01). Among the explanatory variables in
MLAs, variables extracted from GF1 made a greater contribution to estimating forest AGB than those
derived from S1 images. These results indicate the potential of the RF model for evaluating forest
AGB by combining GF1 and S1, and that it could provide a reference for biomass estimation using
multi-source images.

Keywords: forest aboveground biomass; multi-source remote sensing; machine learning algorithms;
random forest; Dabie Mountain region

1. Introduction

The terrestrial ecosystem carbon cycle is an important part of the global carbon budget
and plays an effective role in reducing atmospheric CO2 concentration [1]. As the main
body of terrestrial ecosystems, forest play a vital role in protecting regional ecological
environment and promoting sustainable development [2–4]. Forest aboveground biomass
(AGB) stores a substantial portion of forest carbon and is a key biophysical parameter to
characterize surface forest growth and conditions [5–9].

The main approaches used to estimate forest AGB include process-based ecosystem
models, traditional field measurement, combinations of allometric equation and forest
inventory, and remote sensing retrieval [5,10–12]. Process-based ecosystem models pro-
duce metrics with coarse spatial resolution, and the results are limited for finer and higher
precision research [12]. Traditional field measurement is the most accurate approach for
measuring AGB. However, this the method is time consuming, laborious, and destructive.
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The combination of the allometric equation and the measured forest parameters (e.g., diam-
eter at breast height, height, and stock volume) is commonly used to complete the forest
AGB estimation of sample plots, thus avoiding the destruction of trees. However, the above
methods are to in small-scale areas, as collecting sufficient sample plots for large-scale areas
is difficult. The development of remote sensing satellites provides support for the timely
and effective estimation of AGB with various spatial and temporal resolutions [13–15].
Passive optical remote sensors can obtain a considerable amount of spectral information
related to AGB from the forest canopy. However, they ignore spectral information of tree
branches and trunks that possibly contain more than 60% of AGB [4,16–18]. Compared
with optical remote sensors, synthetic aperture radar (SAR) images have the advantage
of penetrating the forest canopy to obtain tree trunk information, thus achieving higher
accuracy with the support of SAR data. Moreover, unlike other remote sensing images, SAR
data are protected from weather, cloud, or lighting conditions and show great potential in
forest AGB estimation. However, both optical and SAR images are confronted with data
saturation, i.e., pixel spectral reflectance values are not sensitive to the change in biomass
of dense and multilayer canopy forests, which results in low accuracy of AGB estima-
tion [4,19,20]. Light Detection and Ranging (LiDAR) is not affected by saturation [21–23]
and can obtain forest vertical structure information due to its capability of penetrating forest
canopies and recording reflected signal from the top of canopy to the ground. However,
the disadvantages of LiDAR include costly capture, lack of historical data to achieve multi-
temporal dynamic monitoring of forest AGB, and limited spectral resolution to generate
wall-to-wall AGB in large-scale areas [24–29]. The fusion of multi-source remote sensing
data can reduce the shortcomings of a single data source and improve the accuracy of forest
biomass estimation, which is a promising method that many scholars have been attempting
to use continuously over the last decade [3,12,15,30].

The Chinese Gaofen-1 (GF1) satellite, which was launched in 2013, is a breakthrough
in optical remote sensing technology, combining high spatial resolution, multi-spectrum
and high temporal resolution to obtain fine observation information, and is has been
increasingly used in various fields over recent years [31,32]. However, the potential of
GF1 data for AGB estimation has not yet been fully explored in practice, especially when
integrated with other remote sensing data in large areas. The potential of the Gaofen series
satellite data in estimating vegetation parameters needs to be evaluated. In addition, the
Earth observation satellite Sentinel-1 (S1) of the Global Monitoring for Environment and
Security provides an ideal source for monitoring the Earth’s environment. S1 is equipped
with a C-band SAR which is not restricted by light or weather conditions and provides
continuous images. S1 has been actively applied in estimating biomass, especially in
combination with other remotely sensed data to retrieve forest biomass. Wang et al. [12]
found that the fusion of SAR and optical data can improve the accuracy of vegetation
biomass estimation. The same operation was introduced in previous studies [20,33,34].

Forest AGB has often been assessed by multiple modeling algorithms, and the selection
of optimal ones can directly affect the accuracy and reliability of AGB estimation [4,9,14].
Both parametric and nonparametric models are relatively popular methods of AGB es-
timation through field AGB samples and variables derived from remotely sensed data.
Parametric linear models perform better in biomass estimation at fewer sample points, and
among them, with stepwise multiple regression (SMR) being commonly adopted [35]. In
fact, a simple linear relationship may not exist between forest biomass and variables due
to multiple factors. Unlike linear models, machine learning algorithms (MLAs) can learn
highly complex nonlinear relationships, integrate multiple factors, and obtain better simu-
lation results. Among the machine learning models, the K-nearest neighbor (KNN) [36–38],
artificial neural network (ANN) [39,40], random forest (RF) [38,41–45], and support vector
machine (SVM) [15,46] models are frequently utilized to evaluate biomass. A majority of
research uses a variety of models for comparative analysis because of the different model
characteristics. Combining RF and KNN models improved the efficiency of estimating
regional forest AGB in the Qilian mountains by using high-dimensional, multisource re-
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motely sensed data [38]. However, the optimal model algorithm for forest AGB estimation
using multisource high–resolution remote sensing data needs more comparative analysis.

The Dabie Mountains are located in the watershed between the Yangtze River and the
Huaihe River system, and are regarded as an important ecological barrier in the middle
and lower reaches of the Yangtze River and the Huaihe River. Estimating forest AGB in the
Dabie Mountains can offer an understanding of the spatial distribution characteristics of
the carbon source and carbon sink of forest ecosystems, thus providing a scientific basis
for designing forest management and protection measures to protect the Yangtze River
shelterbelt ecosystem and important ecological space.

In this study, we assess the capability of using GF1, S1, topographic data, and model
algorithms to obtain fine forest aboveground biomass in the Dabie Mountains region
of Anhui Province, China. The specific objectives of this study are (1) to evaluate the
potential of variables extracted from high spatial resolution GF1 and S1 remotely sensed
data in AGB estimation; (2) to select the optimal variable combination; (3) to choose the
most accurate modeling methods for estimating AGB using integrated S1 images, GF1
images, topographic metrics, and forest inventory data; and (4) to develop an accurate and
finer-resolution (16 m) forest AGB map in mountains.

2. Materials and Methods
2.1. Study Area

The Dabie Mountains are located at the junction of Anhui, Hubei, and Henan provinces
in China. The study area is the core component of the key ecological functional area of
the Dabie Mountains (between 29.8◦N–32.7◦N and 115.4◦E–117.8◦E) (Figure 1) with an
altitude of about 1000 m in general and some peaks exceeding 1500 m. The study area is
located in the humid monsoon climate transitioning from the northern subtropical to the
warm temperate zone, and it has a multi-year average temperature of 14.6–17.6 ◦C and an
average annual precipitation of 1833 mm. The terrain of this region is complex, and can be
roughly divided into middle mountains, low mountains, hills, and plains. The vegetation
types mainly include broad-leaved forest, coniferous forest, coniferous and broad-leaved
mixed forest, bamboo, and shrub, and the forest coverage is about 43.86%. Vegetation
differentiation showed obvious vertical zonal characteristics because of the obvious vertical
gradient change of habitat factors such as hydrothermal conditions. Cunninghamia lanceolata
and Pinus massoniana forests are distributed below 400 to 600 m above sea level, while pine
and broad-leaved species such as Pinus taiwanensis and Alnus trabeculosa are found mainly
at 600 to 1200 m above sea level.

2.2. Data
2.2.1. Forest Inventory Data

This study utilized the forest inventory conducted at the county level by the Forest
Management Inventory (FMI) in 2018. According to the technical regulations of FMI, the
basic unit is the sub-compartment, which has basically the same internal characteristics and
is significantly different from the adjacent units. In the assigned sub-compartment, setting
up sample plots, recording the positions by GPS, and obtaining various survey factors in
the sample plots are necessary. Each tree with the diameter at breast height (DBH) greater
than 5 cm was measured, and indexes such as class number, ground class, dominant tree
species, composition of tree species, forest age, tree height, and volume stock were recorded.
The two-variable tree volume tables were looked up based on DBH and tree height, and
all individual volume stocks were added up to form the total volume of stock in the plot.
The sub-compartment area was determined according to the forest species, topographic
map scale and management intensity used to draw the basic map. We pre-processed the
collected forest inventory data, including information normalization, polygon removal,
geographic registration, and small patch fusion. Sample plots were randomly generated
from all sub-compartments, and the plots of non-forest land and plots with incomplete
information were eliminated to form 326 sample plots (16 m × 16 m) (Figure 1).
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Figure 1. Location of the study area and the distribution of sampling points.

This study used allometric equations [47,48] with the tree stock volume measured
in field plots to map the AGB of broad-leaved forest, coniferous forest, and broad-leaved
mixed forest. The allometric equation that describes the relationship between total volumes
and the forest AGB of each sample plots is shown below:

B = a × V + b (1)

where B is the aboveground biomass, measured in units of tons (t) per hectare (ha) (unit:
t/ha); V is the average volume stock in each plot, measured in units of cubic meters (m3)
per hectare (ha); and a, b are the function parameters (Table 1).

Table 1. Parameters a and b for calculating forest aboveground biomass [48].

Forest Type a b Sample Size (ind) R2

Picea, Abies 0.4642 47.4990 13 0.98
Hemlock, Cryptomeria, Keteleeria 0.4158 41.3318 21 0.94

Betula 0.9644 0.8485 4 0.98
Poplar 0.4754 30.6034 10 0.93

Camphor forest, Phoebe 1.0357 8.0591 17 0.91
Cunninghamia Lanceolata 0.3999 22.5410 56 0.97

Cypress 0.6129 26.1451 11 0.98
Quercus 1.1453 8.5473 12 0.98

Eucalyptus 0.8873 4.5539 20 0.80
Larix 0.6096 33.8060 34 0.82

Pinus armandii Franch 0.5856 18.7435 9 0.91
Pinus massoniana 0.5034 20.547 52 0.87

Chinese pine 0.7554 5.0928 82 0.98
Other pinus 0.5168 33.2378 19 0.86

Hard broadleaf forest 1.1783 2.5585 17 0.95
Soft broadleaf forest 0.4754 30.603 16 0.92

Coniferous and broadleaf mixed forest 0.8136 18.466 10 0.99
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The AGB of the forest samples ranged from 9.23 t/ha to 205.54 t/ha, with average,
median, and standard deviation (Std) values of 72.37, 80.64, and 28.52 t/ha, respectively,
almost all of which were below 200 t/ha (Table 2). A total of 260 sample plots out of the
326 (80%) were randomly selected for training, and the remaining 66 plots (20%) were
employed as validation datasets for the machine learning model.

Table 2. The statistics of AGB in training, testing, and total sample datasets.

Sample Size (ind) Min (t/ha) Max(t/ha) Mean(t/ha) Median(t/ha) Std(t/ha)

Training 260 12.33 205.54 72.57 78.75 28.21
Testing 66 9.23 153.20 71.57 67.57 29.72
Total 326 9.23 205.54 72.37 80.64 28.52

2.2.2. Gaofen-1 WFV Image Pre-Processing and Variable Calculation

The GF1 optical satellite carries four wide-field-of-view (WFV) multispectral cameras,
which provide a revisiting period of 4 days because of their wide field of view (800 km) [31].
GF1 WFV images from 3 May 2019, were downloaded from the China Centre for Re-
sources Satellite Data and Application (http://36.112.130.153:7777/DSSPlatform/index.
html (accessed on 10 December 2020)). The multispectral data with the spatial resolution
of 16 m contains 4 spectral bands, namely, the band 1-blue (b1: 0.45–0.52 µm), band 2-
green (b2: 0.52–0.59 µm), band 3-red (b3: 0.63–0.69 µm), and band 4-near-infrared (b4:
0.77–0.89 µm) spectra.

The GF1 images were pre-processed in ENVI software. The pre-processing steps
mainly included radiation correction, atmospheric correction, orthorectification, mosaic,
and clipping operation. Multispectral bands, including b1, b2, b3, and b4, and vegetation
indexes (VI) (Table 3) were used as candidate factors to predict AGB. The gray level co-
occurrence matrix (GLCM) was used to calculate the texture features, including the mean,
variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation
features of b3 and b4 for each pixel with 3 × 3, 5 × 5, and 7 × 7 windows (e.g., b3_3Mean
indicates the mean texture feature of band 3–red with a 3 × 3 window; the rest of the
indicators were marked in the same way). A total of 59 variables were extracted from
the high-resolution images (GF1) and used as input variables to participate in forest AGB
estimation (Appendix A).

Table 3. Vegetation indices and their calculation formula.

Vegetation Indices Formula

NDVI NIR − R
NIR + R

RVI NIR
R

EVI 2.5 × (NIR − R)
1 + NIR + 6 × R − 7.5 × B

ARVI NIR − (2 × R − B)
NIR + (2 × R − B)

SAVI (1 + 0.5) NIR − R
NIR + R + 0.5

MSAVI NIR + 0.5 − ((NIR + 0.5)2 − 2 × (NIR − R))
1
2

OSAVI (1 + 0.16 ) (NIR − R)
(NIR + R + 0.16 )

2.2.3. Sentinel-1 Data Pre-Processing and Variable Calculation

This research used the Sentinel-1 C-band SAR data of September 2019 downloaded
from the Copernicus Open Access Hub of ESA (https://scihub.copernicus.eu/dhus/
(accessed on 15 June 2020)). The SAR data are available as high-resolution Level-1 Interfer-
ometric Wide Swath ground range detected processing level vertical transmit-horizontal
receive (VH) and vertical transmit-vertical receive (VV) imagery with a pixel size of 10 m.
The SNAP software was employed for pre-processing the S1 images. The pre-processing
steps mainly included Thermal Noise Removal, Apply Orbit File, Calibration, Speckle

http://36.112.130.153:7777/DSSPlatform/index.html
http://36.112.130.153:7777/DSSPlatform/index.html
https://scihub.copernicus.eu/dhus/
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Filter, Terrain Correction and Linear to Form dB. The processed images were resampled
to 16 m pixel sizes to match with GF1 images. We extracted the VH and VV backscatter
coefficients from the SAR images and calculated VH divided by VV as three variables. The
GLCM was used to calculate the texture features of the VH and VV backscatter coefficients
with a 3 × 3 window to develop the mapping of the AGB model parameters. A total of
19 variables were extracted from S1 images and further used as input variables to predict
forest AGB (Appendix A).

2.2.4. Topographic Data and Preprocessing

The digital elevation model (DEM) reflects the abundant terrain information of the
mountain region and provided great assistance to AGB estimation. DEM data with the
resolution of 30 m were collected from USGS (https://earthexplorer.usgs.gov/ (accessed
on 3 March 2021)). To ensure consistency with remote sensing-based data, the DEM data
were resampled to 16 m resolution. Then, the altitude, slope, and aspect variables were
extracted from the resampled results (Appendix A).

2.3. Methods
2.3.1. Stepwise Multiple Regression Algorithm

SMR is a type of multiple linear model. Through iteratively eliminating or adding vari-
ables to the regression model according to the partial regression square sum (significance)
to obtain the optimal or appropriate fitting model, the SMR model helps analyze the linear
relationships between multiple variables. In each iteration of selecting significant candidate
variables or removing non-significant ones, the regression equation was evaluated by a
significance test according to the p-value of an F statistic [35]. In the present study, the SMR
model was implemented in SPSS software. During the operation, we set the AGB of the
sample sites as the dependent variable and 81 variables extracted from remote sensing
images and topographic data as the independent variables, and we selected the stepwise
method. For “Probability of using F,” we set 0.05 and 0.1 to enter and remove, respectively.

2.3.2. Machine Learning Algorithms

Three types of MLAs, namely, SVM, RF, and backpropagation neural network (BPNN),
were used to estimate forest AGB.

SVM has advantages in solving limited sample points and nonlinear and high-dimensional
pattern problems. SVM identifies the optimum hyperplanes by using kernel functions to
separate groups of input data with similar responses to predict a target variable [23]. We
finally selected the radial basis function as the kernel function by 10-fold cross validation.
To find the best parameters (e.g., gamma and C) for the model, we determined parameters
within a certain range by performing a grid search 300 times. Here, the best parameters
were gamma with 0.01 and C with 100.

RF is a non-parametric ensemble learning method based on bagging used for classifi-
cation, regression, and other fields, and it has the capacity to efficiently process massive
data and complex nonlinear relationships [45]. The RF algorithm is safe from information
redundancy and over-fitting, and it has been successfully applied in AGB mapping. The RF
model has two important parameters: the number of random trees (ntree) and the number
of variables at the node (mtry). We posed 300 parameter sets and selected the ones with
the highest accuracy. In this research, the ntree and mtry parameters were set as 232 and
4, respectively.

BPNN has a strong ability to fit the input data and provides a robust solution for
complex and nonlinear problems between inputs and outputs metrics effectively [49].
BPNN includes an input layer, one or multiple hidden layers, and an output layer. The
number of hidden layers and neurons are the two important parameters for building a
neural network structure, which are examined repeatedly until the minimum root mean
square error is achieved [50]. The number of hidden layers was set as 2, the neurons of
the first layer was set as 4, and the neuron of the second layer was set as 2. BPNN is

https://earthexplorer.usgs.gov/
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based on samples to achieve parameter estimation, and the accuracy also depends on the
sample size.

We utilized the scikit-learn package in Python to develop and validate the above
three machine learning models (http://scikit-learn.org/stable/ accessed on 26 October
2021) [51].

2.3.3. Performance Metrics

On the basis of the determination coefficient (R2), root mean square error (RMSE),
mean absolute error (MAE), and mean error (ME), we evaluated the performance of the
model in estimating AGB on the training and testing datasets.

RMSE =

√
∑n

1
(yi − ŷi)

2

n
(2)

R2 = 1− ∑n
1 (yi − ŷi)

2

∑n
1 (yi − yi)

2 (3)

MAE = ∑n
1
| yi − ŷi |

n
(4)

ME = ∑n
1
(yi − ŷi)

n
(5)

where yi is the sample point AGB values in the testing datasets, yi is the mean of yi, ŷi is
the predicted AGB values, i is the same index, and n is the number of testing samples.

2.3.4. Variable Selection

In this study, different variables were selected as input variables of the MLAs in
multiple trials on the basis of correlation analysis. The performance of MLAs was evaluated
based on R2, RMSE, MAE, and ME. Similar trials were conducted continuously, and a group
of variables with the highest performance was eventually selected for AGB prediction in
the study region.

3. Results
3.1. Relationships between Sample Point AGB and Variables

Pearson correlation analysis was used to analyze the relationships between 81 can-
didate variables derived from GF1, S1, and DEM data with sample point AGB values
(Appendix A). Among the GF1 spectral variables, 47 were significantly related to field AGB
values (p < 0.01), including multispectral bands (b1, b2, b3, b4), all the texture features
of b3 with 3 × 3, 5 × 5, and 7 × 7 windows excluding b3_5Cor, all the texture features
of b4 with the 7 × 7 window except for b4_7Cor, all the vegetation indices that had a
positive correlation with AGB, and b4_3Hom, b4_3Mean, b4_5Con, b4_5Dis, b4_5Hom,
and b4_5Mean (Table 4). Among them, NDVI, b1, b3_3Mean, b3, and b3_5Mean had the
highest correlation with AGB (R = 0.674, −0.647, −0.615, −0.611, and −0.602, respectively).
As for the S1 imagery, 4 candidate variables were significantly related to sample point AGB
(p < 0.01), including two backscatter values (VH, VV), the 3 × 3 window size of VH_Mean
and VV_Mean with R of 0.24, 0.188, 0.218, and 0.163. Among the variables extracted from
DEM data, only altitude had a significantly positive correlation with field AGB.

http://scikit-learn.org/stable/
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Table 4. Variables significantly associated with forest aboveground biomass.

Variables Correlation
Coefficients Variables Correlation

Coefficients Variables Correlation
Coefficients Variables Correlation

Coefficients

NDVI +0.674 ** MSAVI +0.544 ** b4_3Mean +0.387 ** b3_3Cor +0.209 **
b1 −0.647 ** altitude +0.544 ** b4_5Mean +0.383 ** b4_7Hom +0.193 **

b3_3Mean −0.615 ** ARVI +0.537 ** b4_7Mean +0.378 ** b4_7Dis −0.188 **
b3 −0.611 ** b3_5Hom +0.486 ** b2 −0.339 ** VV +0.188 **

b3_5Mean −0.602 ** b3_7Hom +0.485 ** b3_3Con −0.288 ** b4_7Ent −0.179 **
b3_7Mean −0.579 ** b3_3Hom +0.478 ** b3_7Cor −0.275 ** b4_5Hom +0.175 **

b3_5SM +0.566 ** RVI +0.441 ** b3_7Var −0.27 ** b4_7Var −0.173 **
b3_3SM +0.56 ** EVI +0.441 ** b3_7Con −0.26 ** b4_5Dis −0.168 **
b3_5Ent −0.56 ** b3_3Dis −0.416 ** b3_5Con −0.259 ** b4_7Con −0.168 **
b3_7SM +0.554 ** OSAVI +0.404 ** VH +0.24 ** VV_3Mean +0.163 **

SAVI +0.553 ** b3_5Dis −0.403 ** b3_5Var −0.235 ** b4_3Hom +0.152 **
b3_7Ent −0.551 ** b3_7Dis −0.402 ** VH_3Mean +0.218 ** b4_5Con −0.15 **
b3_3Ent −0.55 ** b4 +0.388 ** b3_3Var −0.211 ** b4_7SM +0.146 **

b3_3Con, b3_3Cor, b3_3Dis, b3_3Ent, b3_3Hom, b3_3Mean, b3_3SM, and b3_3Var indicate the contrast, correlation,
dissimilarity, entropy, homogeneity, mean, second moment, and variance texture features of band 3-red with the 3
× 3 window, respectively. The rest of the indicators can be marked in the same way. ** indicates a significance
level of 0.01.

3.2. Variable Combination and Model Construction

For the SMR model, the variable combination with the best performance (R2 = 0.56)
for all sample plots included NDVI, altitude, b3_5SM, VH_3Mean, b3_7Ent, and b3_7Mean.
The formula is summarized in Equation (6).

AGB= − 126.802 + 197.216 × NDVI + 0.019 × altitude + 38.411 × b3_5SM +

0.954 × VH_3Mean +10.445 × b3_7Ent − 2.303 × b3_7Mean (R2 = 0.564)
(6)

In this study, a series of trial results based on different variable permutations and
combinations is listed in Table 5. Three MLAs produced different results under different
combinations of variables with R2 ranging from 0.37 to 0.70, RMSE ranging from 16.26 t/ha
to 23.60 t/ha, and MAE ranging from 12.80 t/ha to 17.47 t/ha. Considering the highest
accuracy and the fewest variables, all MLAs achieved the highest accuracy under the
variable combination of NDVI, MSAVI, b3_3Mean, b3_3Ent and altitude.

Table 5. Trial results of variable combinations.

Variables Model R2 RMSE MAE ME

NDVI, b1, b3, b3_3Mean,
b3_5Mean, b3_7Mean, altitude

SVM 0.58 19.20 14.50 1.69
RF 0.65 17.51 13.93 −0.98

BPNN 0.48 21.33 15.74 2.34

NDVI, b1, b3, b3_3Mean,
b3_5Mean, b3_7Mean

SVM 0.53 20.40 14.92 2.22
RF 0.61 18.59 14.55 −1.10

BPNN 0.42 22.60 16.87 1.91

NDVI, ARVI, MSAVI, b1, b3
SVM 0.56 19.66 14.33 2.06
RF 0.61 18.58 14.36 −1.22

BPNN 0.37 23.60 17.47 5.75

NDVI, MSAVI, b3, b3_3Mean,
b3_3Ent, altitude, VV_3Mean

SVM 0.60 18.81 14.21 1.33
RF 0.67 17.16 13.15 −0.38

BPNN 0.46 21.83 16.26 4.61

NDVI, MSAVI, b3, b3_3Mean,
b3_3Ent, altitude

SVM 0.62 18.29 13.76 1.42
RF 0.70 16.37 12.81 −0.24

BPNN 0.51 20.79 15.51 3.56
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Table 5. Cont.

Variables Model R2 RMSE MAE ME

NDVI, MSAVI, b3, b3_3Mean,
altitude

SVM 0.58 19.16 14.48 2.39
RF 0.68 16.83 13.31 −0.50

BPNN 0.48 21.45 15.85 3.22

NDVI, MSAVI, b3_3Mean,
b3_3Ent, altitude

SVM 0.66 18.03 13.65 1.60
RF 0.70 16.26 12.80 −0.24

BPNN 0.49 21.30 15.86 3.66

NDVI, MSAVI, b3_5Con,
b3_5Dis, altitude

SVM 0.61 18.34 14.09 0.04
RF 0.66 17.24 13.21 0.30

BPNN 0.48 21.44 15.87 3.00

NDVI, MSAVI, b3_3Mean,
b3_5Con, altitude

SVM 0.58 19.18 14.23 2.24
RF 0.69 16.67 12.90 0.10

BPNN 0.49 21.30 15.72 3.42

NDVI, MSAVI, b3_7Mean,
b3_7Ent, altitude

SVM 0.62 18.21 13.84 1.84
RF 0.66 17.44 13.70 −0.49

BPNN 0.47 21.61 16.09 4.61

. . . . . .

3.3. Comparison of the Estimated AGB Values among the Modeling Algorithms and
Wall-to-Wall Predictions

The performance metrics of the SMR showed that the R2, RMSE, MAE and ME values
were 0.64, 17.86, 13.53, and 0.39 t/ha in the training datasets, respectively, and the same
values were 0.54, 19.08, 12.98, and 0.17 t/ha in the testing datasets, respectively (Figure 2).
Among the MLAs, RF performed the best, with R2, RMSE, MAE, and ME of 0.67, 16.17,
10.63 and −0.08 t/ha, respectively, in the training datasets and R2 RMSE, MAE and ME of
0.70, 16.26, 12.80, and −0.24 t/ha, respectively, in the testing datasets. The performance of
SVM was the second best, and the simulation result of BPNN in the two types of datasets
was relatively poor. According to the ME values, the SMR, SVM, and BPNN models
underestimated the forest AGB values.

Figure 3 shows the scatter plots of the SMR, SVM, RF, and BPNN algorithms for both
the training and testing datasets. The results of the four models in the testing datasets were
better than the accuracy of the training datasets, and the RF had the greatest accuracies (R2

is 0.68 in the training datasets; R2 is 0.70 in the testing datasets). Among the testing datasets,
RF could explain 70% of the variance in the forest AGB, with the slope of 0.65. When the
AGB was less than 39 t/ha, the RF model overestimated the values, and when the biomass
is higher than 120 t/ha, the values were underestimated. A comparison of the results of the
training datasets and the testing datasets shows that the accuracy of the RF model varied
slightly, indicating the overfitting problem was not significant. The estimation result of
SVM (R2 is 0.55 in the training datasets; R2 is 0.66 in the testing datasets) was lower than
that of the RF model. In the testing datasets, the SVM model performed overestimation
when AGB was less than 41 t/ha, and it underestimated AGB values above 100 t/ha. No
major difference was found between the accuracies of SMR and SVM (R2 is 0.54 in the
training datasets; R2 is 0.64 in the testing datasets), and the range of overestimation and
underestimation was also similar. The BPNN model had a narrow estimation range of
biomass with a flat slope (slope = 0.33). If the biomass was higher than 80 t/ha, then an
underestimation is obtained, and the biomass was overestimated with low AGB values.
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To compare the results of the modeling algorithms, different estimation results were
divided into different numbers of categories to ensure the comparability of results in the
same range (Figure 4). The minimum AGB values retrieved by the MLAs was about
38–49 t/ha, which was higher than the minimum value of the sample site (9.23 t/ha) and
mainly distributed in the northern and southern towns, farmland, waters, and other nearby
flat areas; the minimum values of the SMR were distributed at low values in the west. The
high values retrieved by the four models were about 81–109 t/ha, which was lower than the
highest biomass values of the sample site (205.54 t/ha). The high values were concentrated
in the central, western, and southeast mountainous areas, forming a distinct distribution
along the mountain range. A comparison of the results of forest biomass retrieval by
different models showed that the average AGB values retrieved by the SVM, RF, BPNN,
and SMR algorithms were 74.79, 78.17, 70.26, and 48.37 t/ha, respectively; the standard
deviations were 7.55, 8.31, 4.95, and 19.56 t/ha, respectively. The mean biomass of SVM
and RF was slightly higher than the mean biomass of the sample point (72.37 t/ha), and the
SMR was much lower than the mean biomass of the sample point. Figure 4 indicates that
the four modeling algorithms estimated forest AGB values with similar spatial patterns;
that is, larger AGB values were spatially distributed in the west, central, and southeast parts
of the study area, corresponding to the mountain region; smaller values were distributed
in the south and southeast parts, and the values were scattered in the central part.
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4. Discussion
4.1. Predictors of Forest AGB Mapping

The proper selection of predictors could improve the model performance and help
understand the processes that resulted in the observed data. In this paper, the correlations
between the extracted factors from GF1, S1 images, and topographic data with observed
AGB values were examined, and numerous spectral variables have significant correlations
with AGB. However, only a limited number of the remote sensing variables are selected for
modeling AGB because of the high collinearity of spectral variables, and redundant input
variables may introduce more errors that reduce the universality of the models [49,50].
To a certain extent, correlation analysis is helpful in eliminating the variables that cannot
significantly improve AGB modeling accuracy. The random combination introduced in this
article can help in adjusting the input variables, selecting the best combination of variables,
and improving the AGB estimation accuracy.

Among the variables extracted by the GF1 imagery, NDVI is an important input predic-
tor in both SMR and MLAs in the process of predicting AGB, which was also supported in
previous research [23,52,53], and MSAVI is also widely used in AGB estimation in research.
The performance of VIs can reflect green vegetation characteristics and improve biomass
estimation accuracy. In addition, textural information refers to the pattern of intensity
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variations in remote sensing images, and it is efficient and effective in describing the spatial
distribution and structure information of a forest [54,55]. Gao et al. [50] found that texture
features may perform better than spectral factors in biomass estimation, especially in areas
with multiple layers and complex forest stand structures. In this study, texture features
calculated by spectral b3 were also applied in the modeling algorithm, where b3_3Mean
and b3_3Ent were used in the MLAs, while b3_7Mean and b3_7Ent were used in the SMR
model. As a result of the different features between the textural features and pixel-level
spectral information, combinations of these variables can effectively capture the informa-
tion of complex forest stand structures and can help improve AGB estimation. This finding
is also consistent with previous studies [56].

The backscattering coefficient of the S1 imagery did not play a remarkably significant
role in the model construction, which was similarly confirmed by Gao et al. [50], who found
that ALOS PALSAR data performed more poorly than optical remote sensing data in AGB
estimation for any applied modeling algorithms. This condition occurred because SAR data
indicate the roughness of the forest canopy, which has a minimal impact on AGB prediction,
while AGB was not directly related to the forest surface roughness [56]. Another study
showed that SAR data make varying contributions to biomass in different quantity ranges,
and when forest AGB values are lower than 130 t/ha, the SAR data have a weak effect [3]. In
addition, S1 data are affected by interference of forest stand structures, underlying surface,
and topography, thus producing inaccurate information for AGB estimation [57]. The
topography and forest structures of the Dabie Mountain area are complex, thus causing the
backscatter coefficient of SAR to be less sensitive to forest biomass than other interferences,
resulting in the poor performance of AGB estimation.

Topographic features affect the composition of forest types and environmental con-
ditions of growth (e.g., hydrothermal conditions, human disturbance), which could be
indicated by the predicted AGB values in the Dabie Mountains. The AGB level was low in
low-altitude areas such as towns, waters and other surrounding areas with high human
accessibility. In contrast, the forest AGB values were high in high-altitude areas with low
human accessibility. This finding indicates that topographic features were beneficial to
AGB prediction.

4.2. Performance of Modeling Algorithms

The RF model is commonly applied and performs well in AGB prediction [45,58,59].
In this research, according to the performance metrics of the SMR and three MLAs, the RF
model showed the best performance, with an R2 of 0.7, especially when the AGB values fell
within 38–109 t/ha. As for the RF model, the fitting slope was close to 1, and the scattered
points were more evenly distributed around the 1:1 line. Furthermore, the data range of
the RF estimated values was the largest among the four models. The robust predicting
capability of the RF model was also reported by Chen et al. [8]. The SVM model performed
slightly more poorly than the RF model, followed by the SMR and BPNN models. The
estimated AGB values of BPNN were mainly between 60 and 81 t/ha, and the values of the
SMR model were generally less than 60 t/ha. With reference to the sample point data, the
simulation result of the extreme values estimated by the four models was biased. There was
underestimation in the high-value areas and overestimation in the low-value areas, which
was mainly due to the limitations of optical and radar data saturation. For example, Gao
et al. [50] found that models overestimated low AGB values and underestimated high AGB
values because of the saturation problem when using Landsat TM and ALOS PALSAR data.

The biased AGB estimation with regards to extreme values could also be attributed
to insufficient training samples. The average estimated AGB values of the modeling
algorithms were close to the average measured AGB values of the sample points, with
distinct overestimation and underestimation when it came to extreme high and low values.
This situation may be related to the insufficient observations of sample point AGB values
in the low and high ranges. Gao et al. [50] also indicated that extreme AGB values were the
major factors that affected AGB modeling performance, and that collecting sufficient AGB
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sample plots with low or high value ranges could significantly improve AGB estimation
accuracy. Selecting points from different levels of biomass sample points is particularly
important to improving the prediction of very high or very low AGB values.

4.3. Limitations of Mapping AGB

The accuracy of assessing forest AGB may be subject to uncertain factors related to
forest canopy structures, vegetation, topographic features, saturation problems, remote
sensing images, and modeling algorithms [4,50,60]. Relevant studies confirmed that AGB
estimation accuracy can be improved by optimizing the input model variables [8,11]. The
present study considered textural features produced from GF1 images to participate in AGB
prediction, and the finding was similar to the result of a previous study [56]. Li et al. [11]
incorporated crown density with optical images to predict AGB values and increased
the estimation accuracy. Zhu and Liu [53] used time series NDVI to improve the input
parameters of AGB estimation. Gao et al. [50] found that using multi-source remote
sensing images and model algorithms to evaluate different forest types could improve the
accuracy of forest AGB estimation. The saturation problem of optical and radar images
is unavoidable in the retrieval of biomass. A similar study also found that the saturation
problem is a common issue in the estimation of the forest stock volume or biomass using
multispectral remote sensing data [49]. At present, the problem of data saturation can
be addressed by improving the spectral resolution and combining the data with LiDAR
data. LiDAR data are more effective and robust in estimating biomass than hyperspectral
data [22].

The uncertainty analysis of biomass estimation should be given more attention in
the study of forest biomass estimation [3,58,61–64]. Su et al. [58] considered the impact of
sample position offset on the uncertainty of biomass prediction. The representativeness of
AGB values in sample plots is fundamental to AGB modeling, while sample plot data may
be uncertain due to the sampling approach, plot size, allometric equations for AGB calcula-
tion, and measurements of tree attributes during fieldwork [50,56]. Zhang et al. [65] also
reported the error caused by unrepresentative sample points in the uncertainty analysis of
biomass retrieval, which produced uncertain factors for the retrieval of forest biomass [65].
Ahmed et al. [61] found that several allometric equations generally have estimation errors.
In addition, plot size affects the biomass measurement accuracy of the sample points,
and a large sample plot size indicates less error of the biomass measured at the sample
points [66,67].

The RF model has the advantages of simpler operation, faster running speed, and
ability to automatically assess and measure the importance of variables [68]. However,
it also has obvious portability issues, which are affected by factors such as the quality of
measured data, model algorithms, specific vegetation types, and environmental conditions.
In this research, the RF model tended to generate a deviation within a low or high forest
AGB value range.

In this study, the sample data did not match the time of the remote sensing images,
and the influence of forest growth on the AGB estimation values was not considered. In
a relatively short period of time, forest growth may not have a significant impact on the
prediction of AGB in the whole study region, but for certain sample plots, the increase to
AGB values within two years may not be negligible, resulting in the inability to accurately
establish an AGB prediction model. Future work is necessary to supplement the inventory
data of ground sample points on the time scale and to consider the influence of forest
stratification to improve the current work of biomass estimation in the Dabie Mountains.

5. Conclusions

In this research, we selected the Dabie Mountain region in China as a case to explore
the performance of MLAs and multi-source remote sensing-based data in estimating forest
AGB. Through the trial comparison, five variables were selected as the input variables of the
three MLAs to predict forest AGB, namely, remote sensing VIs (NDVI and MSAVI), texture
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features (b3_3Mean and b3_3Ent), and topographic variables (altitude). The conclusions
include the following: (1) GF1 provided important spectral reflectance information for
AGB estimation, especially for VIs and texture features; (2) the backscatter coefficient from
the S1 images did not perform as well as input variables in constructing models, which
may be due to SAR data being less sensitive to AGB than to the complexity of forest stand
structures, underlying surface interference, and saturation problems; (3) among the four
algorithms, RF was relatively the best and generally consistent with the AGB distribution
of field plots in this study, indicating that nonparametric machine learning models have
advantages in improving AGB estimation accuracy; and (4) the four modeling algorithms
all have limited capability to estimate extremely high and low AGB values due to the
saturation effect, limited training sample data, algorithm parameters, specific vegetation
type, and environmental conditions. In sum, variable selection and model construction
are the key factors for biomass estimation. Sufficient and representative sample points
have positive effects on improving AGB estimation accuracy. Furthermore, the accuracy of
forest AGB retrieved by remote sensing data still cannot fully meet the needs of accurate
estimation of the carbon balance. The assimilation of multiple models and results estimated
by remote sensing data is needed in future work.
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Appendix A

The correlation between 81 explanatory variables extracted from remote sensing
images and topographic data and the response variable (forest AGB) is shown in Figure A1.
Full names of the abbreviated variables involved in the manuscript are listed in Table A1.

Table A1. Variable abbreviation in correlation analysis.

Variable Abbreviation Description

AGB forest aboveground biomass
b1 band 1-blue
b2 band 2-green
b3 band 3-red
b4 band 4 near-infrared

NDVI Normalized Difference Vegetation Index
EVI Enhance Vegetation Index
RVI Ratio Vegetation Index

ARVI Atmospherically Resistant Vegetation Index
SAVI Soil Adjust Vegetation Index

MSAVI Modified Soil Adjust Vegetation Index
OSAVI Optimized Soil Adjusted Vegetation Index

b3_3Con contrast of b3 with the 3 × 3 window
b3_3Cor correlation of b3 with the 3 × 3 window
b3_3Dis dissimilarity of b3 with the 3 × 3 window
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Table A1. Cont.

Variable Abbreviation Description

b3_3Ent entropy of b3 with the 3 × 3 window
b3_3Hom homogeneity of b3 with the 3 × 3 window
b3_3Mean mean of b3 with the 3 × 3 window

b3_3SM second moment of b3 with the 3 × 3 window
b3_3Var variance of b3 with the 3×3 window
b3_5Con contrast of b3 with the 5 × 5 window
b3_5Cor correlation of b3 with the 5 × 5 window
b3_5Dis dissimilarity of b3 with the 5 × 5 window
b3_5Ent entropy of b3 with the 5 × 5 window

b3_5Hom homogeneity of b3 with the 5 × 5 window
b3_5Mean mean of b3 with the 5 × 5 window

b3_5SM second moment of b3 with the 5 × 5 window
b3_5Var variance of b3 with the 5 × 5 window
b3_7Con contrast of b3 with the 7 × 7 window
b3_7Cor correlation of b3 with the 7 × 7 window
b3_7Dis dissimilarity of b3 with the 7 × 7 window
b3_7Ent entropy of b3 with the 7 × 7 window

b3_7Hom homogeneity of b3 with the 7 × 7 window
b3_7Mean mean of b3 with the 7 × 7 window

b3_7SM second moment of b3 with the 7 × 7 window
b3_7Var variance of b3 with the 7 × 7 window
b4_3Con contrast of b4 with the 3 × 3 window
b4_3Cor correlation of b4 with the 3 × 3 window
b4_3Dis dissimilarity of b4 with the 3 × 3 window
b4_3Ent entropy of b4 with the 3 × 3 window

b4_3Hom homogeneity of b4 with the 3 × 3 window
b4_3Mean mean of b4 with the 3 × 3 window

b4_3SM second moment of b4 with the 3 × 3 window
b4_3Var variance of b4 with the 3 × 3 window
b4_5Con contrast of b4 with the 5 × 5 window
b4_5Cor correlation of b4 with the 5 × 5 window
b4_5Dis dissimilarity of b4 with the 5 × 5 window
b4_5Ent entropy of b4 with the 5 × 5 window

b4_5Hom homogeneity of b4 with the 5 × 5 window
b4_5Mean mean of b4 with the 5 × 5 window

b4_5SM second moment of b4 with the 5 × 5 window
b4_5Var variance of b4 with the 5 × 5 window
b4_7Con contrast of b4 with the 7 × 7 window
b4_7Cor correlation of b4 with the 7 × 7 window
b4_7Dis dissimilarity of b4 with the 7 × 7 window
b4_7Ent entropy of b4 with the 7 × 7 window

b4_7Hom homogeneity of b4 with the 7 × 7 window
b4_7Mean mean of b4 with the 7 × 7 window

b4_7SM second moment of b4 with the 7 × 7 window
b4_7Var variance of b4 with the 7 × 7 window

VH vertical transmit-horizontal receive
VV vertical transmit-vertical receive

VH/VV VH divided by VV
VH_3Con contrast of VH with the 3 × 3 window
VH_3Cor correlation of VH with the 3 × 3 window
VH_3Dis dissimilarity of VH with the 3 × 3 window
VH_3Ent entropy of VH with the 3 × 3 window

VH_3Hom homogeneity of VH with the 3 × 3 window
VH_3Mean mean of VH with the 3 × 3 window

VH_3SM second moment of VH with the 3 × 3 window
VH_3Var variance of VH with the 3 × 3 window
VV_3Con contrast of VV with the 3 × 3 window
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Table A1. Cont.

Variable Abbreviation Description

VV_3Cor correlation of VV with the 3 × 3 window
VV_3Dis dissimilarity of VV with the 3 × 3 window
VV_3Ent entropy of VV with the 3 × 3 window

VV_3Hom homogeneity of VV with the 3 × 3 window
VV_3Mean mean of VV with the 3 × 3 window

VV_3SM second moment of VV with the 3 × 3 window
VV_3Var variance of VV with the 3 × 3 window
altitude -

slope -
aspect -

Remote Sens. 2022, 13, x FOR PEER REVIEW 16 of 20 
 

 

Appendix A 
The correlation between 81 explanatory variables extracted from remote sensing im-

ages and topographic data and the response variable (forest AGB) is shown in Figure A1. 
Full names of the abbreviated variables involved in the manuscript are listed in Table A1. 

 
Figure A1. Correlation coefficients between the forest AGB and the explanatory variables. 

Table A1. Variable abbreviation in correlation analysis. 

Variable 
Abbreviation 

Description 

AGB forest aboveground biomass 
b1 band 1-blue 
b2 band 2-green 
b3 band 3-red 
b4 band 4 near-infrared 

NDVI Normalized Difference Vegetation Index 
EVI Enhance Vegetation Index 
RVI Ratio Vegetation Index 

ARVI Atmospherically Resistant Vegetation Index 
SAVI Soil Adjust Vegetation Index 

MSAVI Modified Soil Adjust Vegetation Index 
OSAVI Optimized Soil Adjusted Vegetation Index 

b3_3Con contrast of b3 with the 3 × 3 window  
b3_3Cor correlation of b3 with the 3 × 3 window 

Figure A1. Correlation coefficients between the forest AGB and the explanatory variables.

References
1. Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.

Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [CrossRef]
2. Achard, F.; Eva, H.D.; Stibig, H.J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.P. Determination of deforestation rates of the

world’s humid tropical forests. Science 2002, 297, 999–1002. [CrossRef]
3. Huang, H.; Liu, C.; Wang, X.; Zhou, X.; Gong, P. Integration of multi-resource remotely sensed data and allometric models for

forest aboveground biomass estimation in China. Remote Sens. Environ. 2019, 221, 225–234. [CrossRef]
4. Ou, G.; Lv, Y.; Xu, H.; Wang, G. Improving Forest Aboveground Biomass Estimation of Pinus densata Forest in Yunnan of

Southwest China by Spatial Regression using Landsat 8 Images. Remote Sens. 2019, 11, 2750. [CrossRef]
5. Paul, K.I.; Roxburgh, S.H.; Chave, J.; England, J.R.; Zerihun, A.; Specht, A.; Lewis, T.; Bennett, L.T.; Baker, T.G.; Adams, M.A.

Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Glob. Chang. Biol.
2016, 22, 2106–2124. [CrossRef] [PubMed]

http://doi.org/10.5194/essd-12-3269-2020
http://doi.org/10.1126/science.1070656
http://doi.org/10.1016/j.rse.2018.11.017
http://doi.org/10.3390/rs11232750
http://doi.org/10.1111/gcb.13201
http://www.ncbi.nlm.nih.gov/pubmed/26683241


Remote Sens. 2022, 14, 176 18 of 20

6. Paul, K.I.; Larmour, J.; Specht, A.; Zerihun, A.; Ritson, P.; Roxburgh, S.H.; Sochacki, S.; Lewis, T.; Barton, C.V.; England, J.R.
Testing the generality of below-ground biomass allometry across plant functional types. For. Ecol. Manag. 2019, 432, 102–114.
[CrossRef]

7. Yu, X.; Ge, H.; Lu, D.; Zhang, M.; Lai, Z.; Yao, R. Comparative study on variable selection approaches in establishment of remote
sensing model for forest biomass estimation. Remote Sens. 2019, 11, 1437. [CrossRef]

8. Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Optimal combination of predictors and algorithms for forest above-ground
biomass mapping from Sentinel and SRTM data. Remote Sens. 2019, 11, 414. [CrossRef]

9. Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods
in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [CrossRef]

10. Chave, J.; Davies, S.J.; Phillips, O.L.; Lewis, S.L.; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T.R.; Coomes, D.; Disney, M.
Ground data are essential for biomass remote sensing missions. Surv. Geophys. 2019, 40, 863–880. [CrossRef]

11. Li, C.; Li, Y.; Li, M. Improving forest aboveground biomass (AGB) estimation by incorporating crown density and using landsat 8
OLI images of a subtropical forest in Western Hunan in Central China. Forests 2019, 10, 104. [CrossRef]

12. Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass
of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201.
[CrossRef]

13. Chen, Q.; McRoberts, R.E.; Wang, C.; Radtke, P.J. Forest aboveground biomass mapping and estimation across multiple spatial
scales using model-based inference. Remote Sens. Environ. 2016, 184, 350–360. [CrossRef]

14. Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote sensing approaches for monitoring mangrove species, structure,
and biomass: Opportunities and challenges. Remote Sens. 2019, 11, 230. [CrossRef]

15. Zhang, C.; Denka, S.; Cooper, H.; Mishra, D.R. Quantification of sawgrass marsh aboveground biomass in the coastal Everglades
using object-based ensemble analysis and Landsat data. Remote Sens. Environ. 2018, 204, 366–379. [CrossRef]

16. Foody, G.M.; Cutler, M.E.; Mcmorrow, J.; Pelz, D.; Tangki, H.; Boyd, D.S.; Douglas, I. Mapping the Biomass of Bornean Tropical
Rain Forest from Remotely Sensed Data. Glob. Ecol. Biogeogr. 2001, 10, 379–387. [CrossRef]

17. Main-Knorn, M.; Cohen, W.; Kennedy, R.; Grodzki, W.; Pflugmacher, D.; Griffiths, P.; Hostert, P. Monitoring coniferous forest
biomass change using a Landsat trajectory-based approach. Remote Sens. Environ. 2013, 139, 277–290. [CrossRef]

18. Pham, L.T.; Brabyn, L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach
combined with machine learning algorithms. ISPRS J. Photogramm. Remote Sens. 2017, 128, 86–97. [CrossRef]

19. Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X-and L-band
SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [CrossRef]

20. Cutler, M.E.J.; Boyd, D.S.; Foody, G.M.; Vetrivel, A. Estimating tropical forest biomass with a combination of SAR image texture
and Landsat TM data: An assessment of predictions between regions. ISPRS J. Photogramm. Remote Sens. 2012, 70, 66–77.
[CrossRef]

21. Lefsky, M.A.; Cohen, W.B.; Harding, D.J.; Parker, G.G.; Acker, S.A.; Gower, S.T. Lidar remote sensing of above-ground biomass in
three biomes. Glob. Ecol. Biogeogr. 2002, 11, 393–399. [CrossRef]

22. Luo, S.; Wang, C.; Xi, X.; Pan, F.; Peng, D.; Zou, J.; Nie, S.; Qin, H. Fusion of airborne LiDAR data and hyperspectral imagery for
aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73, 378–387. [CrossRef]

23. Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and
landsat 8 data. Remote Sens. 2019, 11, 1459. [CrossRef]

24. Bortolot, Z.; Wynne, R. Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that
incorporates training data. J. Photogramm. Remote Sens. 2005, 59, 342–360. [CrossRef]

25. Cao, L.; Coops, N.; Innes, J.; Sheppard, S.; Fu, L.; Ruan, H.; She, G. Estimation of forest biomass dynamics in subtropical forests
using multi-temporal airborne LiDAR data. Remote Sens. Environ. 2016, 178, 158–171. [CrossRef]

26. Lin, Y.; West, G. Reflecting conifer phenology using mobile terrestrial LiDAR: A case study of Pinus sylvestris growing under the
Mediterranean climate in Perth, Australia. Ecol. Indic. 2016, 70, 1–9. [CrossRef]

27. Nie, S.; Wang, C.; Zeng, H.; Xi, X.; Li, G. Above-ground biomass estimation using airborne discrete-return and full-waveform
LiDAR data in a coniferous forest. Ecol. Indic. 2017, 78, 221–228. [CrossRef]

28. Qin, Y.; Li, S.; Vu, T.; Niu, Z.; Ban, Y. Synergistic application of geometric and radiometric features of LiDAR data for urban land
cover mapping. Opt. Express 2015, 23, 13761–13775. [CrossRef] [PubMed]

29. Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies.
Remote Sens. Environ. 2011, 115, 2906–2916. [CrossRef]

30. Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of lidar and Landsat ETM+ data for estimating and mapping
forest canopy height. Remote Sens. Environ. 2002, 82, 397–416. [CrossRef]

31. Feng, L.; Li, J.; Gong, W.; Zhao, X.; Chen, X.; Pang, X. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8
OLI images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [CrossRef]

32. Fu, B.; Wang, Y.; Campbell, A.; Li, Y.; Zhang, B.; Yin, S.; Xing, Z.; Jin, X. Comparison of object-based and pixel-based Random
Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecol. Indic. 2017, 73, 105–117.
[CrossRef]

http://doi.org/10.1016/j.foreco.2018.08.043
http://doi.org/10.3390/rs11121437
http://doi.org/10.3390/rs11040414
http://doi.org/10.1080/17538947.2014.990526
http://doi.org/10.1007/s10712-019-09528-w
http://doi.org/10.3390/f10020104
http://doi.org/10.1016/j.isprsjprs.2019.06.007
http://doi.org/10.1016/j.rse.2016.07.023
http://doi.org/10.3390/rs11030230
http://doi.org/10.1016/j.rse.2017.10.018
http://doi.org/10.1046/j.1466-822X.2001.00248.x
http://doi.org/10.1016/j.rse.2013.08.010
http://doi.org/10.1016/j.isprsjprs.2017.03.013
http://doi.org/10.1016/j.rse.2011.01.008
http://doi.org/10.1016/j.isprsjprs.2012.03.011
http://doi.org/10.1046/j.1466-822x.2002.00303.x
http://doi.org/10.1016/j.ecolind.2016.10.001
http://doi.org/10.3390/rs11121459
http://doi.org/10.1016/j.isprsjprs.2005.07.001
http://doi.org/10.1016/j.rse.2016.03.012
http://doi.org/10.1016/j.ecolind.2016.06.003
http://doi.org/10.1016/j.ecolind.2017.02.045
http://doi.org/10.1364/OE.23.013761
http://www.ncbi.nlm.nih.gov/pubmed/26072748
http://doi.org/10.1016/j.rse.2011.03.021
http://doi.org/10.1016/S0034-4257(02)00056-1
http://doi.org/10.1016/j.rse.2015.11.031
http://doi.org/10.1016/j.ecolind.2016.09.029


Remote Sens. 2022, 14, 176 19 of 20

33. Minh, D.H.T.; Ndikumana, E.; Vieilledent, G.; McKey, D.; Baghdadi, N. Potential value of combining ALOS PALSAR and
Landsat-derived tree cover data for forest biomass retrieval in Madagascar. Remote Sens. Environ. 2018, 213, 206–214. [CrossRef]

34. Zhang, L.; Shao, Z.; Diao, C. Synergistic retrieval model of forest biomass using the integration of optical and microwave remote
sensing. J. Appl. Remote Sens. 2015, 9, 096069. [CrossRef]

35. Li, L.; Zhou, X.; Chen, L.; Chen, L.; Zhang, Y.; Liu, Y. Estimating urban vegetation biomass from Sentinel-2A image data. Forests
2020, 11, 125. [CrossRef]

36. McRoberts, R.E. Estimating forest attribute parameters for small areas using nearest neighbors techniques. For. Ecol. Manag. 2012,
272, 3–12. [CrossRef]

37. Rodríguez-Veiga, P.; Quegan, S.; Carreiras, J.; Persson, H.J.; Fransson, J.E.; Hoscilo, A.; Ziółkowski, D.; Stereńczak, K.; Lohberger,
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