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Abstract: Hyperspectral image (HSI) data classification often faces the problem of the scarcity of
labeled samples, which is considered to be one of the major challenges in the field of remote sensing.
Although active deep networks have been successfully applied in semi-supervised classification tasks
to address this problem, their performance inevitably meets the bottleneck due to the limitation of
labeling cost. To address the aforementioned issue, this paper proposes a semi-supervised classifica-
tion method for hyperspectral images that improves active deep learning. Specifically, the proposed
model introduces the random multi-graph algorithm and replaces the expert mark in active learning
with the anchor graph algorithm, which can label a considerable amount of unlabeled data precisely
and automatically. In this way, a large number of pseudo-labeling samples would be added to the
training subsets such that the model could be fine-tuned and the generalization performance could be
improved without extra efforts for data manual labeling. Experiments based on three standard HSIs
demonstrate that the proposed model can get better performance than other conventional methods,
and they also outperform other studied algorithms in the case of a small training set.

Keywords: active deep learning; hyperspectral images; random multi-graph; small samples

1. Introduction

In the past decades, satellite remote sensing has provided advanced detection and
research tools for studying the Earth’s resources, for monitoring local and regional environ-
mental changes, and for exploring global environmental changes, given its macroscopic,
comprehensive, rapid, dynamic, and accurate measurements [1]. Hyperspectral images
(HSIs) can simultaneously obtain the two-dimensional spatial image information and the
three-dimensional spectral curve information of the ground material, which reflects the
characteristics and advantages of the “map integration” [2,3]. Hyperspectral images are
being increasingly used in many applications containing the field of fine recognition in
agriculture [4] and building target detection or recognition in cities [5,6]. All these appli-
cations require ground class labels for each hyperspectral pixel vector. Due to this, HSI
classification, as a fundamental and challenging task in hyperspectral remote sensing, has
recently attracted considerable attention from remote sensing-oriented researchers [7].

HSI classification is the process of assigning a unique tag to each pixel vector to be
uniquely represented by a certain class of the spectral and spatial characteristics of the image
via a certain discriminant function. As methods for the feature extraction of hyperspectral
data are being continuously improved, traditional classification methods, based on spectral
features alone [8,9], no longer meet requirements for high classification accuracy. As a result,
numerous scholars have successfully incorporated spatial information into classification
and have proven the ability to improve the classification performance [10–12]. However,
spatial-spectral features are commonly used as classification in only two ways: first, one
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can extract spectral and spatial features separately and input their stacked joint features
into the classifier for classification; second, joint spatial-spectral features can be extracted
simultaneously for classification.

The method for step-wise extraction of spectral and spatial features (for stacking
them into classification) can effectively use spatial information as an input to achieve
higher accuracy classification of ground features. In particular, Li et al. [13] proposed
the application of the recent regularized subspace of Gabor filtering to hyperspectral
image data classification, using two-dimensional Gabor filtering to extract spatial features
in image regions. With the emergence of machine learning approaches, deep learning
has been widely applied for HSI classification. The methods of simultaneous extraction
of joint spatial-spectral features are becoming increasingly popular and include stacked
auto-encoders [14], deep confidence networks [15] and convolutional neural networks
(CNN) [16–18]. However, the classification through deep learning models requires a large
number of labeled samples to train the classification model, but it suffers from the learning-
related deficiency when labeled samples are limited. Moreover, these labeled samples not
only require experts’ prior knowledge for labeling, but are also time-consuming, costly, and
difficult to obtain in practice.

To alleviate the problem of poor learning effect when samples are limited, active
learning (AL) methods with high labeling efficiency [19] were proposed. They have already
been successfully applied to HSI classification. The main idea of AL is to artificially label a
few unknown samples, by means of human-computer interaction, and expand the training
set [20]. A new hyperspectral image data classification method with semi-supervised
active learning has been proposed by previous studies [21,22], which took advantage of
AL to increase training samples and improved the machine generalization performance.
Although adoption of AL methods can improve the computational efficiency and classifi-
cation accuracy, AL is a cyclical process of human-computer interaction. This implies the
corresponding costs for human experts labeling samples and related time consumption.

Given the considerations above, we propose to add the idea of AL to the structure
of deep learning. In this way, the random multi-graphs semi-supervised algorithm [23]
can be utilized [23] to label unlabeled samples, thereby reducing the cost for human
experts to label samples. The HSI classification algorithm, proposed in this study, can be
summarized as follows. First, a finite dataset of labeled samples initializes the convolutional
neural network and performs category probability prediction on the unlabeled sample set.
This step is performed on the category probability output from the model, whereas the
most informative samples are queried using AL strategy. Second, a random multi-graphs
algorithm is introduced to label the unlabeled samples. In this way, one searches for
pseudo-labels, corresponding to the informative samples in the pseudo-label candidate
pool. Third, newly labeled samples are added to the training set to continuously fine-tune
the CNN model until the stopping condition is satisfied.

The new method aimed to improve the generalization ability of the machine by using
pseudo-labeled samples, which include robust and informative samples, automatically
and actively selected through semi-supervised learning. In this way, the cost problem of
manual labeling in traditional active learning is alleviated, thereby providing an efficient
“self-learning process of the machine”.

The rest of this paper is organized as follows. Section 2 provides the related intro-
duction of state-of-the-art HSI classification. An improved semi-supervised classification
framework for active deep learning is proposed in Section 3. Section 4 evaluates the
performance of the proposed approach on different datasets. Section 5 is the summary.

2. Related Work
2.1. Active Deep Learning Methods

Deep learning and active learning methods for the HSI classification have been ex-
tensively studied in the recent years. For instance, a previous study [24] introduced a
convolutional neural network model with Markov random field in a Bayesian framework
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for HSI classification, which effectively exploits the spatial information of hyperspectral im-
ages. The previous scholars [25] proposed an improved spectral spatial deep convolutional
neural network with 3D patch input. The AL query function, reported by [26], is based on
a tree-integrated classifier that combines sample uncertainty and diversity criteria to select
regions of interest for classification studies. Furthermore, spatial and spectral information
has been used to solve problems in different remote sensing contexts [27], which improved
the learning process of high-resolution remote sensing images.

Additionally, some scholars have successfully applied AL and deep learning in HSI
classification [28–30]. More specifically, Liu et al. [28] proposed an active learning algo-
rithm based on weighted incremental dictionary learning. Haunt et al. [29] introduced
an AL-guided classification model by using spectral and spatial context information from
hyperspectral data in a New Bayesian CNN. Furthermore, Cao et al. [30] have suggested
that high classification accuracy, of different landmarks in hyperspectral images, can be
achieved by applying the powerful feature extraction capability of CNNs, as well as the
effective labeling efficiency of AL.

Although the active deep learning framework has effectively solved the problem of the
scarcity of labeled samples in practical classification tasks, the samples were still manually
labeled to realize the use of unlabeled samples in this model. Therefore, in view of the
above issue, this paper considers utilizing a certain machine learning algorithm to replace
human experts to label unlabeled samples, as well as combining with active learning query
strategies, to establish an improved active deep semi-supervised classification model.

2.2. Random Multi-Graphs Algorithm

One of the challenges for the high-dimensional characteristics of hyperspectral remote
sensing data is that HSI classification has to face the so-called Hughes phenomenon [31]. A
new semi-supervised framework has been proposed to cope with high-dimensional and
large-scale data, which combined the randomness with anchor graphs [32]. The advantages
of random forest [33] include not over-fitting due to randomness and featuring good
generalization performance. Moreover, the advantage of the anchor graph algorithm [34] is
that it can linearly scale the size of the dataset, which is very suitable for HSI characteristics.
This idea led to the introduction of a semi-supervised classification framework of HSI,
based on random multi-graphs [23]. A graph was constructed in a randomly selected
feature space by using an anchor graph method, whereas the semi-supervised inference
was performed on the graph.

Although all these methods provide better results, they all have their own advantages
and disadvantages in processing HSI classification. When active deep learning methods
are used for HSI classification, the cost of labeling by human experts is yet inevitable and
imposes the corresponding burden. Therefore, this study combined the random multi-
graph algorithm to label a large number of the unlabeled samples using the spectral spatial
features of a limited label samples. The AL idea was then used to select informative samples
to join the training of CNN and continuously fine-tune the classification model. In this
way, our study benefitted from both the random forest and anchor graph algorithms for
processing large amounts of high-dimensional data and allowed combining the powerful
feature extraction capability of deep learning with AL methods.

3. The Proposed Method
3.1. The Proposed Model

Figure 1 shows the framework of the proposed classification method in this paper.
As seen, this framework combines active deep learning (ADL) and random multi-graphs
algorithm by completely removing the action of human experts in active learning. It also
combines self-learning and CNN iteration ideas to continuously fine-tune the classifica-
tion model.

Assume that the hyperspectral dataset is Data ∈ RH×W×B, where the size of the spatial
image is H ×W, B is the number of spectral channels. First, HSI dataset is divided into the
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labeled samples set and unlabeled samples set. Next, we expanded the labeled samples
set to get the extended dataset DA, which was used to initialize the CNN. Then, we input
the unlabeled samples into the CNN and actively queried the most informative or the
useful samples, according to the category probabilities provided by the CNN. Finally, these
valuable samples were labeled through the random multi-graphs algorithm. Thereafter, we
added pseudo-labeled samples to the labeled samples set, which was further used for the
next iteration round of CNN training. This process was repeated until the stop condition
was met. The following is a description of each part of this method.
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Figure 1. Proposed improved active deep learning semi-supervised classification framework.

3.2. The Introduction of Different Modules in Proposed Model
3.2.1. Active Deep Learning (ADL) Module

The paper proposes an improved ADL semi-supervised classification framework
based on the traditional ADL classification model shown in Figure 2, where the red rect-
angle indicates the deficiency of traditional ADL. The following is a detailed theoretical
introduction of the active deep learning module in Figure 1.
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Data augmentation (DA) is widely used in the field of hyperspectral image data
classification. It is often used as a means to expand the dataset and improve the accuracy. In
this paper, the DA method was utilized to expand training samples by flipping horizontally
or vertically in the literature [30], and the specific rotation angle can be adjusted according
to the characteristics of the actual training sample. DA will also refine the classification
accuracy by adding an appropriate number of samples to assist the training model during
each iteration.

The objective function of the CNN classification model is defined as shown in Equa-
tion (1):

L(Y, FΘ
∣∣Data, DA) = Lu(Y, FΘ

∣∣Data, DA) + Lp(Y
∣∣Data), (1)

where FΘ is a nonlinear function of the CNN using parameters Θ, Lu is the unary term
that predicts the samples by using CNN, and Lp can make adjacent samples to have the
similar label. Here, the detailed explanation of label Y and the parameter Θ refers to the
ADL classification method from [33]. The data input to the convolutional neural network
is provided in the form of a three-dimensional cubic block with a three-dimensional
convolutional kernel for convolution and pooling. Subsequently, the output of the network
is selected to be a Softmax function defined as:

Softmax(zi) =
ezi

C
∑

c=1
ezc

, (2)

where zi is the output value of the ith node, C is the number of output nodes (e.g., the
number of categories of the classification) The output value of the multiclassification is
converted into a probability distribution in the range of [0, 1], with a sum of 1, by the
Softmax function.

AL is a widely used strategy that selects the sample with the least confidence in an
iterative manner. As we can retrieve category membership probability estimates from
CNNs, this paper uses some AL metrics about the class probabilities as well (e.g., the
Entropy (EP) metric and the Best-versus-Second-Best (BVSB) metric in probability-based
heuristics). Both of these criteria can provide a basis for selecting the informative candidates
for querying annotations. These two learning strategies are introduced in details below.

(1) EP measure: EP measures the uncertainty of class membership, and the sample
has a higher EP value with the greater the uncertainty of class. Each unlabeled sample
corresponds to a variable z = (z1, z2, . . . , zC) ∈ RC, and we obtain z distribution of P with
the calculated estimated probability of class affiliation, that is P(zik) = P(yi = k|xi, FΘ) ,
where zik denotes the kth element of the variable zi. The specific calculation of EP value is
shown in Equation (3):

H(zi) = −
C

∑
k=1

P(zik) logP(zik) (3)

(2) BVSB measure: by calculating the difference between the most similar categories,
the information content of the sample is determined. If the BVSB value of the sample
is small, the sample has a large amount of information. The formula is shown in Equa-
tion (4) below:

BVSB(zi) = PB(zi)− PSB(zi) (4)

3.2.2. Spatial and Spectral Random Multi-Graph (SS-RMG) Module

This paper uses the SS-RMG module to improve the expert marking action in tra-
ditional ADL, shown in the red box in Figure 2. The following is a detailed theoretical
introduction of the Random multi-graph module in Figure 1.

Spectral features of finite labelled samples and the spatial features of hyperspectral
data, extracted by local binary patterns (LBP) [35], are extracted separately, according to
the Li et al. [36] methodology. Then, the spatial and spectral joint features are utilized as
the input into random multi-graphs (RMG) for classification. In this study, the graph was
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constructed by randomly selecting a subset of features by using the anchor graph algorithm.
Then, labels of unlabeled samples were predicted based on the objective function.

(1) Data feature extraction: spectral feature extraction is all spectral bands in HSI
data. After the principal component analysis, the spatial information of the spectral bands
was extracted using LBP. This was an operator for describing the local texture features of
an image. Here, we opted for the improvement of the original LBP, namely, equivalence
pattern. The improved equivalent mode of LBP implied that, when the cyclic binary
number, corresponding to certain LBP, changes from 0 to 1 or from 1 to 0, in at most two
transitions, the binary corresponding to the LBP became an equivalent mode.

For the center pixel tc, the center pixel was applied as the threshold, while the position
of the pixel was marked as “1” or “0”. This depends on whether the neighboring pixel value
is greater than the threshold or not. By assuming that p adjacent pixels were generated by a
circle with tc as the center and radius r, the LBP code of the central pixel can be expressed
by Equation (5):

LBPp,r(tc) =
p−1

∑
i=0

U(ti − tc)2i (5)

The LBP algorithm expresses the spatial information characteristics of the image
with a local region of size k× k, where the local area k is a custom parameter. Then, the
histogram of each area is calculated, and the statistical histogram is connected to a feature
vector, that is, the spatial feature vector. Schematic diagram of LBP is shown in Figure 3.
Such improvements greatly reduce the number of binary patterns from 2p to p(p− 1) + 2.
Subsequently, the information is preserved, while the dimensionality of the feature vector
is reduced.
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(2) Random multi-graph algorithm defined the following symbols: a weighted graph
can be obtained from a dataset consisting of labeled data DL = [x1, x2, . . . , xn] and unlabeled
data DU = [xn+1, xn+2, . . . , xN ]. Here, the vertices of the graph represent N data points, and
the edges of the graph are formalized by a matrix of weights W ∈ RN×N , which expresses
the similarity between the associated nodes, and if the weight wij is larger, the adjacent
vertices xi and xj are considered to have the same label.

The traditional graph-based semi-supervised learning approach is formulated as the
following quadratic optimization problem, whereas the objective function of C-classification
semi-supervised learning can be defined by Equation (6):

mintr( f −Y)TK( f −Y) + tr( f T L f ) (6)

where tr(•) is the tracking function, f ∈ RN×C is the label prediction matrix, Y =

(y1, . . . , yn, 0, . . . , 0)T ∈ RN×C, K ∈ RN×N is a diagonal matrix with the ith diagonal el-
ement. L ∈ RN×N is the regularization matrix, representing the Laplacian graph, defined
as L = D−W, where W is the weight matrix of the graph.



Remote Sens. 2022, 14, 171 7 of 19

The anchor graph algorithm was used according to the high dimensional character-
istics of hyperspectral data in this study to construct and to learn the graph. The anchor
graph algorithm makes the label prediction function a weighted average of the labels on a
subset of anchor point samples. Thus, the label prediction function can be represented by a
subset A =

{
aj
}m

j=1 ⊂ RB. The aj is an anchor point, and the label prediction function can
be formalized by Equation (7):

f (xi) =
N

∑
j=n+1

PijFA(aj) (7)

where Pij is the data adaptive weight, defining the vector f = [ f (x1), f (x2), . . . , f (xN)]
T and

the vector FA = [F(a1), F(a2), . . . , F(am)]
T , so that Equation (7) is rewritten to Equation (8):

f = PFA, P ∈ RN×m, m << N (8)

Equation (8) indicates that the solution space for the unknown labels is reduced from
f to FA, and these anchor points are used as K-means clustering centers to realistically
represent the data stream shape. The matrix P ∈ RN×m is the data-anchor mapping matrix
to be learned, and the matrix P is written in the paper, using the definition of kernel-based
functions from the Nadaraya–Watson kernel regression, as shown in Equation (9):

Pij =
Kσ(xi, aj)

∑
j′∈A<i>

Kσ(xi, uj′)
∀aj ∈ A < i >, (9)

where a Gaussian kernel function Kσ with bandwidth σ is used as the kernel regression,
A < i > is the r-nearest neighbor anchor point of xi. It is usually considered that Pij = 0
for ∀aj /∈ A < i >, where it is considered that Pij is larger if xi and aj are close to each other
and vice versa.

A previous study [31] applied the Local Anchor Embedding algorithm to retrieve
anchor points, and the data-anchor mapping problem can be formulated by Equation (10):

minP∈RN×m J(P) = 1
2

∣∣∣∣∣∣X− PA
∣∣∣∣∣∣

s.t.Pij ≥ 0, Pi1 = 1
(10)

where X ∈ RN×B is the data matrix, each row in the matrix is a data sample, A ∈ Rm×B is
the anchor matrix, each row in the matrix represents an anchor, P ∈ RN×m is the learnable
data-anchor mapping matrix.

According to the matrix P, its adjacency matrix W can be designed, as indicated by
Equation (11):

W = PΛ−1PT . (11)

The diagonal matrix Λ ∈ Rm×m is defined by Equation (12):

Λjj =
N

∑
i=1

Pij. (12)

According to the anchor’s label prediction model, the FA is solved first, and then, the
labels of other data points can be found using Equation (8), and the objective function of
FA is defined by Equation (13):

Q(FA) = tr
(
(Fl −Yl)

T(Fl −Yl)
)
+ γtr(FT LF)

=
∣∣∣∣∣∣Pl FA −Yl

∣∣∣|2F + γtr((PFA)
T L(PFA))

=
∣∣∣∣Pl FA −Yl

∣∣|2F + γtr(FA
T LrFA)

(13)
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where Pl is the submatrix of P, Yl is the label of the labeled data, ||•||F is the Frobenius
norm of the matrix, and γ is the regularization factor. If we let Lr = PT LP, according to
Equation (11), the graph Laplacian matrix is L = D−W = I − PΛ−1PT , then:

Lr = PT LP = PT(I − PΛ−1PT)P
= PT P− (PT P)Λ−1(PT P)

(14)

Letting the partial derivative w.r.t FA equal to 0, we obtain:

F∗A = (FT
l Fl + γLr)

−1
FT

l Y. (15)

The label of the unlabeled sample can be predicted by the following Equation (16):

yi = argmaxj∈1,...,CPiFAj, i = n + 1, . . . , N, (16)

where Pi represents the ith row of the P matrix and FAj represents the jth column of the FA
matrix. Figure 4 shows the SS-RMG module of classification model.
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4. Experiments and Result

This paper first introduces three available HIS datasets and then discusses the setting
of related parameters. Specifically, the method of selecting training samples is what
percentage is taken for each category, while the specific land cover types, training, and
test sets are shown in Tables 1–3. Then, we challenge the proposed model against other
methods, including Edge-Preserving Filtering (EPF) [37], Image Fusion and Recursive
Filtering (IFRF) [38], RP-Net [39], CNN-AL [30], and SS-RMG [23].

Table 1. Train-test distribution of samples for the Indian Pines dataset.

Class Name Train Test Total
1 Alfalfa 2 44 46
2 Corn-notill 48 1380 1428
3 Corn-mintill 28 802 830
4 Corn 8 229 237
5 Grass-pasture 16 467 483
6 Grass-trees 25 705 730
7 Grass-pasture-mowed 1 27 28
8 Hay-windrowed 16 462 478
9 Oats 1 19 20

10 Soybean-notill 33 939 972
11 Soybean-mintill 82 2373 2455
12 Soybean-clean 20 573 593
13 Wheat 7 198 205
14 Woods 42 1223 1265
15 Building-Grass-Trees-Drives 13 373 386
16 Stone-Steel-Towers 4 89 93

Total 346 9903 10,249
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Table 2. Train-test distribution of samples for the Pavia University dataset.

Class Name Train Test Total
1 Shadows 34 6597 6631
2 Bricks 94 18,555 18,649
3 Bitumen 11 2088 2099
4 Bare Soil 16 3048 3064
5 Metal sheets 7 1338 1345
6 Trees 26 5003 5029
7 Gravel 7 1323 1330
8 Meadows 19 3663 3682
9 Asphalt 5 942 947

Total 219 42,557 42,776

Table 3. Train-test distribution of samples for the Kennedy Space Center dataset.

Class Name Train Test Total
1 Scrub 26 735 761
2 Willow 9 234 243
3 CP hammock 9 247 256
4 CP/Oak 9 243 252
5 Slash pine 6 155 161
6 Oak/Broadleaf 8 221 229
7 Hardwood swamp 4 101 105
8 Graminoid marsh 15 416 431
9 Spartina marsh 18 502 520

10 Catiail marsh 14 390 404
11 Salt marsh 14 405 419
12 Mud flats 17 486 503
13 Water 31 896 927

Total 180 5031 5211

Numerical comparison of all methods was conducted by using the following criteria:
the Overall Accuracy (OA) refers to the ratio of the total number of the correctly classified
samples to that of all test samples. The Kappa coefficient is based on the confusion matrix.
We calculated the Kappa coefficient to indicate whether the model predictions agreed
with the actual classification results. Unlike the overall classification accuracy, which only
considers the number of correctly classified pixels in the diagonal direction, the Kappa
coefficient considers the missed and misclassified pixels. Class Accuracy (CA) allows for
evaluating the classification accuracy of each specific class of land cover. Hereafter, larger
values indicate better classification performance for all criteria in the paper.

4.1. Description of the Dataset

The first dataset is the Indian Pines dataset, and this scene was gathered by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in Indiana (U.S.). The
dataset contains 145 × 145 pixels and 220 spectral reflectance bands in the wavelength
range of 0.4–2.5 µm. The remaining 200 bands are studied by excluding 20 water absorption
bands. The existing features were classified into 16 classes, while the specific land cover
types, training, and test sets are shown in Table 1. Also, the different colors in the second
column from Tables 1–3 represent different feature categories, which are consistent with
the color marks in ground-truth map.

The second dataset was obtained from the Pavia University, retrieved from the Re-
flection Optical System Imaging Spectrometer sensor measurements. The number of
spectral bands for the Pavia University dataset was 103, and the wavelength range was
0.43–0.86 µm. The total number of pixel points for Pavia University were 610 × 610, after
removing the noise-affected bands and before analysis, changing the spatial dimensions of
Pavia University to 610 × 340. This scenario had nine land cover categories. The specific
land covers, training, and test sets are shown in Table 2.
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The third dataset is the Kennedy Space Center (KSC), which is data collected by
the NASA AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) instrument at the
Kennedy Space Center (KSC) in Florida. AVIRIS acquired 224 bands with wavelengths
between 0.40–2.50 µm. After removing the absorbance and low SNR bands, 176 bands were
used for analysis. The similarity of spectral characteristics of some vegetation types made
it difficult to distinguish land cover in this environment. Thirteen land cover categories
were defined for the site for classification purposes. The specific land covers, training, and
test sets are shown in Table 3.

4.2. Analysis of Experimental Parameters

At the ADL stage, the number of initialization samples is essential for the selection of
samples in subsequent AL. The number of iterations in our study was determined as 5, with
800, 200, 200, 200, and 200 epochs set for each round given the deep learning training time.
For the AL strategy, we opted the BVSB strategy that allows for efficiently determining the
information content of the samples, according to the common calculation formula.

It also makes use of the DA strategy by rotating the data patch by 180◦ and 270◦,
randomly, to increase the number of training samples in this paper. In order to verify the
performance of DA, the CNN model was used for the first round of training on the Indian
Pines dataset. It can be seen from Figure 5 that DA strategy has a good classification result
at the first round because more training samples are added to train CNN. More specifically,
from Figure 6, OA can first increase 7% with 346 training samples, which shows that DA
strategy can improve the classification performance greatly.
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Figure 5. Classification accuracy of each type of feature, before and after DA operation, with
520 samples.

We followed the previous study experience [23], based on which, at the semi-supervised
learning stage, we selected the same parameter settings, including the same number of
graphs in LBP feature extraction, the number of spectral bands (Band_num), and the size of
patches. The accuracy of labeling the unlabeled samples, using the random multi-graphs
algorithm, had an important impact on the final classification performance. The added
pseudo-labeled samples can help improve the performance of the classification model
during high labeled classification accuracy. Table 4 shows how the specific experimental
parameters were established. The accuracy of the pseudo-labeled samples on the three
datasets were 96.36%, 93.91%, and 97.83%.
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Table 4. The parameter settings of the random multi-graph algorithm on the three datasets.

Parameters Indian Pines Pavia University Kennedy Sapce Center

Number of graphs 4 20 20
Band_num 4 4 4
Patch Size 7 × 7 19 × 19 19 × 19

OA (%) 96.36 93.91 97.83

Equations (8) and (11) indicate that the design of the matrix P was related to both
the construction of the adjacency matrix W and to final label prediction results. Hence,
experiments compared the effect of the matrix P, defined by the Gaussian kernel, and
the optimized matrix P by the local anchor embedding algorithm on the classification
accuracy. Table 5 shows the overall classification accuracy results retrieved by the two
methods on three different datasets. The comparison of the classification results indicates
that solving the matrix P, using the Gaussian kernel definition, leads to higher classification
accuracy. Moreover, the accuracy on the three datasets is correspondingly improved. Due
to this, we opt for the Gaussian kernel definition to solve the matrix P in all the subsequent
experiments.

Table 5. The classification accuracy of the two methods to solve the matrix P in the three datasets.

Dataset Method OA AA Kappa

Indian Pines
LAE 92.41 89.62 91.37

Gaussian 96.36 95.68 95.85

Pavia University LAE 86.25 85.67 82.21
Gaussian 93.91 94.67 92.02

KSC
LAE 96.72 97.10 96.34

Gaussian 97.83 97.38 97.59

In the experiment, we need to select a certain number of pseudo-labeled samples to
expand the training set. However, very unlike the types and distributions of features in a
different dataset, the experiment demands one to determine the number of pseudo-label
samples that will be added to the training set in a different dataset separately, which can
obtain a model with better generalization performance. What’s more, we decided to set the
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number of pseudo-labeled samples to a multiple of 50 on the three datasets, according to
the minimum batch of 50 in CNN training. Through multiple experiments, we selected five
of the experimental results, as shown in Figure 7.
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Figure 7. Five experiments were performed on three datasets to determine the number of samples
selected for each round of active learning strategies.

The Indian pines dataset analysis indicates that the classification accuracy tended to
increase with the increase in unlabeled samples. Overall, a good classification result of
98.20% was achieved when 250, 200, 150, and 100 samples were added to the training set.
However, for the Pavia University dataset, with the increase in unlabeled samples, the
third experiment and the fourth experiment did not provide higher classification results.
By adjusting the number of samples added at each time to 200, the experiments provided
higher classification accuracy, which alleviated the mislabeling problem. This problem was
driven by the semi-supervised algorithm when labeling unlabeled samples. For the KSC
dataset, the number of samples added in each round was determined to be 200, 150, 100,
and 50, while the classification accuracy reached 99.43%.

4.3. Classification Results

We applied the new ADL method on three datasets and further compared it with
related hyperspectral image data classification methods, including the EPF [37], IFRF [38],
RP-Net [39], CNN-AL [30], and SS-RMG [23]. EPF optimizes the classification results by
pixel in the local filtering framework, and the pixel-level spectral information is more
advantageous relative to the spatial information in the spectral-spatial classification. IFRF
performs classification by combining spatial and spectral features through image fusion
and recursive filtering. RP-Net performs classification by combining shallow and deep
convolutional features, using random patches taken directly from images as convolutional
kernels. CNN-AL is a combination of active learning and a convolutional neural network to
achieve good classification results for small sample cases. SS-RMG stacks spectral features
and spatial features, and it applies the random multi-graphs algorithm for classification.

We selected training and test samples proportionally, ran each of the mentioned
methods for five times and reported their average test classification correctness. We also
selected overall accuracy (OA), individual category accuracy (CA), and Kappa coefficient
(Kappa) as the criteria for quantitative evaluation.

4.3.1. Experimental Analysis of the Indian Pines Dataset

In the training sample set, 3.3% of the labeled samples were used, and the rest of
samples were test samples in the Indian Pines dataset. Table 1 lists the number of training
samples and test samples of each type of ground feature in the Indian dataset. Therefore,



Remote Sens. 2022, 14, 171 13 of 19

in the first round, 346 labeled training samples were added to initialize the CNN model.
Pseudo-label samples, added in each round of the training process of the proposed method,
were 250, 200, 150, 100. Table 6 shows the comparison of the classification accuracy of each
classification method with the same number of labeled samples. The classification plots of
all methods are illustrated in Figure 8.

Table 6. Classification results of different methods on the Indian Pines dataset.

Class/Method EPF [37] IFRF [38] RPNet [39] CNN-AL [30] SS-RMG [33] Improved-ADL

Alfalfa 78.13 100 70.45 0 100 100
Corn-notill 79.23 70.97 91.30 92.58 96.78 98.90

Corn-mintill 83.64 90.58 85.79 84.40 86.39 91.98
Corn 78.36 52.99 48.03 91.15 95.78 96.41

Grass-pasture 98.41 95.87 79.87 96.13 95.65 97.29
Grass-trees 96.19 91.16 95.74 97.46 99.59 99.71

Grass-pasture-mowed 70.00 100 66.67 100 100 100
Hay-windrowed 100 100 90.04 99.36 100 100

Oats 75.00 62.50 63.16 100 80.00 100
Soybean-notill 59.40 80.14 83.07 92.90 95.06 96.58

Soybean-mintill 86.93 91.24 93.59 90.81 97.19 98.74
Soybean-clean 83.74 83.22 73.65 93.13 93.76 97.80

Wheat 100 99.45 96.46 100 95.61 98.91
Woods 99.64 98.42 96.65 99.19 100 99.92

Building-Grass-Trees-Drives 66.48 93.68 78.55 89.62 97.15 98.80
Stone-Steel-Towers 79.75 97.26 50.56 91.11 97.85 100

OA(%) 83.84 86.50 88.02 92.82 96.36 98.20
Kappa × 100 81.65 84.66 86.23 91.82 95.85 97.94

Bold numbers indicate the best performance.

Remote Sens. 2022, 13, x FOR PEER REVIEW 14 of 21 
 

 

convolutional kernels. CNN-AL is a combination of active learning and a convolutional 

neural network to achieve good classification results for small sample cases. SS-RMG 

stacks spectral features and spatial features, and it applies the random multi-graphs 

algorithm for classification. 

We selected training and test samples proportionally, ran each of the mentioned 

methods for five times and reported their average test classification correctness. We also 

selected overall accuracy (OA), individual category accuracy (CA), and Kappa coefficient 

(Kappa) as the criteria for quantitative evaluation. 

4.3.1. Experimental Analysis of the Indian Pines Dataset 

In the training sample set, 3.3% of the labeled samples were used, and the rest of 

samples were test samples in the Indian Pines dataset. Table 1 lists the number of training 

samples and test samples of each type of ground feature in the Indian dataset. Therefore, 

in the first round, 346 labeled training samples were added to initialize the CNN model. 

Pseudo-label samples, added in each round of the training process of the proposed 

method, were 250, 200, 150, 100. Table 6 shows the comparison of the classification 

accuracy of each classification method with the same number of labeled samples. The 

classification plots of all methods are illustrated in Figure 8. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 8. Indian Pines dataset Classification: (a) False color image, (b) Ground-truth map, (c) EPF, 

(d) IFRF, (e) RPNET, (f) CNN-AL, (g) SS-RMG, and (h) Improved-ADL. 

Table 6. Classification results of different methods on the Indian Pines dataset. 

Class/Method EPF [37] IFRF [38] RPNet [39] CNN-AL [30] SS-RMG [33] Improved-ADL 

Alfalfa 78.13 100 70.45 0 100 100 

Corn-notill 79.23 70.97 91.30 92.58 96.78 98.90 

Corn-mintill 83.64 90.58 85.79 84.40 86.39 91.98 

Corn 78.36 52.99 48.03 91.15 95.78 96.41 

Grass-pasture 98.41 95.87 79.87 96.13 95.65 97.29 

Grass-trees 96.19 91.16 95.74 97.46 99.59 99.71 

Grass-pasture-mowed 70.00 100 66.67 100 100 100 

Figure 8. Indian Pines dataset Classification: (a) False color image, (b) Ground-truth map, (c) EPF,
(d) IFRF, (e) RPNET, (f) CNN-AL, (g) SS-RMG, and (h) Improved-ADL.

The analysis of the experimental results (Table 6) includes the name of each category
of features, the classification accuracy of each feature, corresponding to the different
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classification methods, and the total accuracy OA and Kappa coefficient under the different
classification methods. There are 16 classes of features in the Indian dataset. Table 6
results prove that the final classification accuracy OA improved to 98.20%, and the Kappa
coefficient improved to 97.94 with the proposed method. Compared with the SS-RMG
classification method, our new method improved, at least, by 1.8% in OA. Table 1 also
shows that the samples of some ground objects are very rare. For instance, the first type
Alfalfa had only 46 samples, the seventh type Grass-pasture-mowed had only 28 samples,
and the ninth type Oats had only 20 samples. As the number of samples of each type of
feature may vary, the classification accuracy cannot be improved due to the limitation of
the number of samples. However, the method proposed in this paper was used to classify
the first, seventh, and ninth types of features. Compared with other classification methods,
the classification accuracy of the three types of features has been greatly improved, and the
new classification accuracy has reached 100%. As seen, the proposed classification method
yields superior results.

4.3.2. Experimental Analysis of the Pavia University Dataset

In the training sample set, 0.5% of the labeled samples were used, and the rest of
samples were test samples in the Pavia University dataset. Table 2 displays the number of
training samples and test samples of each type of feature in the Pavia University dataset.
Therefore, in the first round, 219 labeled training samples were added to initialize the CNN
model. The Pseudo-label samples were 200, 200, 200, and 200.

Table 7 demonstrates the comparison of the classification accuracy of each classification
method for the same number of labeled samples, while the classification plots of all methods
are shown in Figure 9. Table 7 (the analysis of the experimental results) includes the name
of each category of features, the classification accuracy of each feature corresponding to the
different classification methods, and the total accuracy OA and Kappa coefficient under the
different classification methods. There were nine classes of features in the Pavia University
dataset. As shown in Table 7, the classification accuracy of each class of features has been
improved (at different rates) under the proposed classification model. Compared with EPF
and IFRF, using support vector machine classification, the new ADL classification model
stood out with more advantages. Moreover, it had better generalization performance in the
case of small samples. Thus, the full use of a large number of unlabeled samples could be
achieved, while the problem of scarcity of labeled samples in HSI classification could be
simultaneously solved.

Table 7. Classification results of different methods on the Pavia University dataset.

Class/Method EPF [37] IFRF [38] RPNet [39] CNN-AL [30] SS-RMG [33] Improved-ADL

Shadows 96.67 83.19 89.77 95.49 90.38 90.97
Bricks 94.96 98.21 97.63 96.65 93.76 99.18

Bitumen 93.50 80.96 68.83 80.74 95.38 87.17
Bare Soil 86.55 85.00 91.76 95.82 89.88 97.39

Metal sheets 96.16 99.31 67.64 99.33 99.18 99.77
Trees 68.85 93.09 76.29 97.34 98.75 99.66

Gravel 85.24 79.17 77.63 67.17 100 98.98
Meadows 89.14 68.78 87.10 76.49 92.40 94.46
Asphalt 97.92 66.28 73.82 93.59 95.67 99.35

OA(%) 89.48 88.56 89.06 93.09 93.91 96.91
Kappa × 100 86.28 85.07 85.19 90.86 92.02 97.28

Bold numbers indicate the best performance.
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Figure 9. C Pavia University dataset Classification: (a) False color image, (b) Ground-truth map,
(c) EPF, (d) IFRF, (e) RPNET, (f) CNN-AL, (g) SS-RMG, (h) Improved-ADL.

4.3.3. Experimental Analysis of the Kennedy Space Center Dataset

In the training set, 0.5% of the labeled samples were used, and the rest of samples were
test samples in the Kennedy Space Center dataset. Table 3 shows the number of training
samples and test samples of each type of feature in the Kennedy Space Center dataset.
Therefore, in the first round, 180 labeled training samples were added to initialize the CNN
model. The Pseudo-label samples were 200, 150, 100, and 50. Table 8 shows the comparison
of the classification accuracy of each classification method with the same number of labeled
samples, while the classification plots of all methods are illustrated in Figure 10.

Table 8 (the analysis of the experimental results) includes the name of each class of fea-
tures, the classification accuracy of each feature, corresponding to the different classification
methods, and the total accuracy OA and Kappa coefficient under the different classification
methods. Both the KSC dataset and the Indian Pines dataset were photographed and
collected by the AVIRIS sensors. However, as seen from Table 3, the number of the samples
of each type of feature in this dataset is more balanced. Overall, the new method exhibits
superior performance on the KSC dataset, with a classification accuracy OA of 99.43% and
a Kappa coefficient of 99.36. To sum up, the classification accuracy of 9 types of features in
13 types of features reached 100%. Compared with traditional deep learning classification
methods, such as RP-Net and CNN-AL, the method proposed in this paper had more
advantages and can be classified with unlabeled sample features with high confidence.
Experimental results showed that the new classification model proposed in this study, can
classify different datasets, and the classification effect is better.
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Table 8. Classification results of different methods on the Kennedy Space Center dataset.

Class/Method EPF [37] IFRF [38] RPNet [39] CNN-AL [30] SS-RMG [33] Improved-ADL

Scrub 100 99.54 90.15 97.86 96.85 98.98
Willow 99.41 99.24 97.99 81.70 94.65 98.98

CP hammock 96.40 98.90 89.80 82.28 93.36 100
CP/Oak 86.02 98.08 82.20 66.07 87.30 90.65

Slash pine 86.26 98.39 78.83 76.00 100 100
Oak/Broadleaf 99.90 93.98 77.93 81.48 100 100

Hardwood swamp 75.83 100 66.12 98.99 100 100
Graminoid marsh 94.27 97.10 93.88 89.73 93.74 98.81

Spartina marsh 93.20 100 91.95 100 100 100
Catiail marsh 99.89 100 96.82 98.98 100 100

Salt marsh 93.78 93.66 96.44 97.84 100 100
Mud flats 95.56 91.03 94.65 99.59 100 100

Water 100 100 99.60 100 100 100

OA(%) 95.80 97.35 92.37 93.82 97.83 99.43
Kappa × 100 95.31 97.05 91.48 93.11 97.59 99.36

Bold numbers indicate the best performance.
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4.3.4. Analysis and Discussion

To evaluate the generalization ability and robustness of the new improved ADL classifi-
cation model, we randomly selected 3.3%, 4%, 5%, and 6% labeled samples from the Indian
Pines dataset. We also randomly selected the 0.5%, 0.6%, 0.8%, and 1% labeled samples from
the University of Pavia dataset to be the training data. As shown in Figure 11, the paper
compares the improved method with two other classification methods, of which CNN-AL is
a traditional active deep learning method, and SS-RMG is a classification method that uses
anchor image learning alone. The proposed model improves and combines the advantages
of CNN-AL and SS-RMG.
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Figure 11 shows that when the training data is small, the new method can still pro-
vide much higher classification accuracy compared with SS-RMG and CNN-AL. Overall,
the experimental results confirmed that the proposed classification model achieved good
classification performance not only in most categories but also in the category of features
with only a small number of labeled samples. The performance improvement was driven
by the following factors. First, the strategy with selection of samples in AL was introduced.
Meanwhile, querying samples with greater enhancement to the classification model among
unlabeled samples enabled the deep convolutional neural network to extract more dis-
criminative features. Second, the new ADL model provided a semi-supervised learning
algorithm based on anchor graphs. The graph learning was also used to pseudo-label
unlabeled samples, thereby ameliorating the high labeling accuracy of the samples added
to the training.

The method used in the paper is a small sample supervised classification method
based on improved active deep learning. The proportion of selected training samples
to the total number of samples is very small. In the semi-supervised learning process,
samples are automatically selected from the test samples, labeled, and added to the training
set. Although the process of selecting training samples has tried its best to reduce pixel
overlap (leakage) between the training and test sets, this is due to the possible leakage of
information when the neighborhood of the training and testing pixels overlap [40]. This
problem will be further studied and resolved in follow-up research.

5. Conclusions

In this paper, an improved active deep learning scheme, based on the random multi-
graph algorithm, is proposed to solve the unlabeled samples labeling problem in the HSI
classification. Considering the disadvantages of expert labeling cost in active learning, the
proposed model utilizes the concept of pseudo label to produce more training samples
available automatically, thereby reducing the labeling cost of human beings and enabling
machine self-learning. It is worth noting that our proposed classification model presents
another thought way of active deep learning and the potential of active deep learning as
a mature learning framework. Experiments, performed on three real HSIs from different
scenes, confirm that the proposed method produces competitive classification performance
over other compared approaches, which also illustrates the generalization capability and
effectiveness of the proposed method for identifying different features. In the future
research lines of this work, it is of great significance to further explore the deep learning
networks, except CNN, and algorithms of machine learning pseudo labeled samples.
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