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Abstract: The installation of research or permanent plots is a very common task in growth and forest
yield research. At young ages, tree height is the most commonly measured variable, so the location
of individuals is necessary when repeated measures are taken and if spatial analysis is required.
Identifying the coordinates of individual trees and re-measuring the height of all trees is difficult
and particularly costly (in time and money). The data used comes from three Pinus pinaster Ait. and
three Pinus radiata D. Don plantations of 0.8 ha, with an age ranging between 2 and 5 years and
mean heights between 1 and 5 m. Five individual tree detection (ITD) methods are evaluated, based
on the Canopy Height Model (CHM), where the height of each tree is identified, and its crown is
segmented. Three CHM resolutions are used for each method. All algorithms used for individual
tree detection (ITD) tend to underestimate the number of trees. The best results are obtained with the
R package, ForestTools and rLiDAR. The best CHM resolution for identifying trees was always 10 cm.
We did not detect any differences in the relative error (RE) between Pinus pinaster and Pinus radiata.
We found a pattern in the ITD depending on the height of the trees to be detected: the accuracy is
lower when detecting trees less than 1 m high than when detecting larger trees (RE close to 12%
versus 1% for taller trees). Regarding the estimation of tree height, we can conclude that the use
of the CHM to estimate height tends to underestimate its value, while the use of the point cloud
presents practically unbiased results. The stakeout of forestry research plots and the re-measurement
of individual tree heights is an operation that can be performed by UAV-based LiDAR scanning
sensors. The individual geolocation of each tree and the measurement of heights versus pole and/or
hypsometer measurement is highly accurate and cost-effective, especially when tree height reaches
1–1.5 m.

Keywords: UAV-based LiDAR; individual-tree detection; ForestTools; lidR; permanent plots

1. Introduction

Forest management needs tools to predict the growth of forest stands under different
silvicultural systems and climatic scenarios [1]. This information facilitates decision making
for both forest owners and managers. Such tools are usually based on growth and yield
models, for which it is essential to design research plots that will be successively mea-
sured over time (permanent plots). Stand-level models project values of stand parameters
(e.g., basal area, mean diameter, total height, or number of trees per hectare), while in-
dividual tree-level models are further classified as distance-dependent (or spatial) and
distance-independent models [2,3]. Spatial models include a measure of spatial competi-
tion, usually expressed as a function of the distance (or size) between the individual tree
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itself and its neighbors. Therefore, for the construction of these models, it is necessary to
obtain tree coordinates, tree crown boundaries, and the spatial variability of plant density,
and to re-measure their individual tree height and diameter at breast height at different
time intervals, making it an expensive and time-consuming task.

New technologies, such as remote sensing and new computer vision algorithms, have
enabled the introduction of semiautomated forest assessments based on automatic delin-
eation of single tree crowns and individual tree detection [4–10], which can reduce time and
cost compared to field inventory. Aerial photography, light detection and ranging (LiDAR)
and multispectral and hyperspectral imaging are current tools for Earth observation and
large-scale analysis of forest ecosystems. These methods allow us to analyze forests at
different temporal and geographic scales with the support of various statistical methods
and can therefore be complementary to the forest inventory [11–19]. In this way, very
high-resolution remote sensing data allow moving from the stand level to the individual
tree level [20]. Both active and passive remote sensors are robust alternatives for estimating
forest variables. Optical data is useful for providing spectral information on species and for-
est condition [5], while active remote sensing technologies, such as Airborne Laser Scanning
(ALS), provide very accurate estimation of individual tree height [21]. Photogrammetric
point clouds do not have the ability to penetrate vegetation and attain more information
on the vertical profile of the canopies and individual trees [22,23]. Still, although they
only have a large amount of information from the upper part of the canopy, they allow for
accurate canopy height models (CHM) and, therefore, the individual tree detection (ITD).
This type of approach is very common in mature plantations [24–26]. In young forests,
these approaches are infrequent [27,28], with these analyses focusing on terrestrial laser
scanning (TLS) data [29].

Originally, ITD was performed by using photogrammetric point clouds, while ALS is
now the dominant technology for 3D mapping of forests. At present unmanned aerial vehi-
cles (UAV)-based LiDAR scanning (ULS) standing out in small areas as it is a less expensive
alternative to ALS, while producing very-high density point clouds [30]. Therefore, several
methods for individual tree detection developed for optical imagery have been extended to
LiDAR data [24,31]. Currently, small UAVs are increasingly used in various forest remote
sensing applications [32–34]. The main characteristic that defines them is the high spatial
resolution obtained both in their images and in their photogrammetric point clouds [35,36].

Algorithms for ITD can be divided into those using CHM raster data and those us-
ing LiDAR point clouds directly [37]. Most of these algorithms for ITD are based on the
assumption that tree canopies represent the highest part of the landscape and therefore
find local maxima (LM) of heights within the data of individual tree canopies [7,38,39].
Application of smoothing filters helps to eliminate spurious local maxima generated by
individual tree branches [26]. The parameterization of LM algorithms is based on two
parameters: a Smoothing Window Size (SWS) and Tree Window Size (TWS) which defines
a fixed boundary within which the algorithm searches for treetops [40]. This is followed
by segmentation to delineate the canopy boundary of individual trees. The most com-
mon segmentation techniques are based on region-growing techniques [41,42], watershed
delineation [43], and clustering [44–47]. These LM-based methods usually result in an
underestimation of the number of stems and a bias towards larger trees or those at the
upper level of multilayer forest structures [24,48]. Errors increase with the stand height
and plot structural complexity by frequently generating omission and commission errors
when delineating trees [49,50], so more efficient methods are needed to accurately extract
local maxima in more complex forest structures and to be able to distinguish false posi-
tives [51]. Many methods based on deep learning are currently being developed to solve
these problems [52].

Using ITD, in addition to obtaining the total number of stems, the heights of these trees
can also be estimated and, from the deviations presented by the heights and the character-
istics of their crowns, their respective diameters at breast height can be estimated, and even
the competition indices could be estimated to be able to evaluate the forest uniformity of
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the stand in order to customize stand management to increase forest growth [53–55]. There
are many examples of individual tree detection focusing on forest stand and its inventory
in general [56], although the most notable are the studies coordinated by Hyyppä [57–59],
who were pioneers in demonstrating that single tree delineation in forest stands can be
detected using high-density laser data. On the other hand, Popescu et al. [60] estimated
individual tree heights at plot level with LiDAR data based on local filtering with a variable
window size based on canopy height with good success. Person et al. [61] and Leckie
et al. [62] have shown that individual tree heights can be measured with high accuracy
from airborne LiDAR data. There are also several studies that have used data from ULS for
individual tree height estimation [24,63].

Fast-growing P. pinaster and P. radiata are the main forest coniferous species in Galicia
region (NW Spain). Hence, experimental trials are intended to reduce rotation age and/or
improve production and wood quality. Nowadays, regional typical rotation ages are
30–45 years, while the stem wood production is 6–8 t·ha−1·year−1 [64]. P. pinaster and
P. radiata plantations may be ideal for individual tree detection monitoring due to their
relatively open nature and tendency towards single vertical stratums. The installation,
measuring and remeasuring of permanent plots is a time-consuming and, therefore, costly
task for forest researchers. In our research study, we use ULS data to detect and measure
individual P. pinaster and P. radiata trees at multiple research plots of varying both height and
canopy cover levels within six pine plantations located in Galicia. We test five LM-based
algorithms along with different combinations of TWS and SWS, on three LiDAR-derived
CHM resolutions in order to execute the ITD process. Thus, the overall goal of this study is
to demonstrate that it is possible to conduct ITD and subsequent measurement of individual
tree height in young pine research plots by combining forest modeling techniques on
ULS data.

2. Materials and Methods
2.1. Study Area

The study was carried out in the Galicia region (northwest Spain, Figure 1b), with
climate characterized by mild temperatures with low fluctuation and high rainfall with
some water deficit in summer. Most representative soils are acidic, rich in organic matter,
with a loam or sandy loam texture and well drained. The specific study area encompasses
nearly 5 ha of young pine plantations (P. pinaster, A026, and P. radiata, A028, with an average
height between 1 and 5 m) in four localizations (Table 1, Figure 1a). A total of 6 silvicultural
permanent research plots using improved genetic material were established. At the time
of planting, each plot comprised 1024 plants with a 4 × 2 m spacing. Plantations were
established between March and April in several years. As forest growing is seasonal in the
region, decreasing or even stopping in winter, in the moment of measurement (October
2020) the trees were in the dormant season.

Table 1. Description of the experimental (UTM coordinates: Coordinates of the upper left corner
of the plot, Elevation: meters above sea level (masl), Plantation: year of plantation, Species: A026
(P. pinaster) and A028 (P. radiata)).

Site UTM Coordinates
(X-Y)

Elevation
(m)

Plantation
(yr) Species

Frades (FRA) 556799-4766773 375 2016 A026
Santiago (SAN) 540550-4750580 325 2017 A028
Dozon (DOZ) 575255-4712433 770 2017, 2018 A028, A026
Begonte (BEG) 609842-4775917 400 2019 A026, A028
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Figure 1. (a) Location of the four areas tested in Galicia. (b) General view of Galicia, Spain,
and Europe.

2.2. LiDAR Data Collection and Pre-Processing

Data from the UAV was obtained on 28 and 29 October 2020. The integrated LiDAR
system comprises a DJI M600 Pro UAV, a Phoenix LiDAR Systems Scout 16 with a Velodyne
VLP-16 LiDAR sensor, and an inertial measurement unit (IMU-14). It is a high precision
system (Root Mean Square Error (RMSE) = 30 mm) with a scanning rate of 600 k dual return
points/s with a 360-degree field of view at a recommended scanning height of 20–60 m. To
generate Post Processing Kinematic paths (PPK) the system uses a dual-frequency L1/L2
Global Navigation Satellite System (GNNS) receiver. The study was conducted with a flight
height of 50 m above the ground at a speed of 4 m/s and at an approximate horizontal
distance between adjacent flight lines of 15 m, producing a very high-density LiDAR point
cloud (between 194 and 357 returns·m−2) with redundant coverage in the 90% overlap area.

Aeromedia UAV Inc. combined IMU and GNSS data through LiDARMill software
(Phoenix LiDAR Systems) to apply differential corrections to generate a smooth and highly
accurate trajectory for the computation of planimetric coordinates and ellipsoid height
values. The Lastools (rapidlasso software) and easyLaz® environment (föra forest technolo-
gies), a proprietary tool based on the FUSION/ LDV software [65], were used to pre-process
the raw data, which involved seven tasks: (1) a total of 34 unbuffered tiles (200 × 200 m)
was generated using lastile procedure; (2) duplicate points were eliminated and noise
was reduced using lasduplicate and lasnoise procedures, respectively; (3) the overlap was
classified by the procedure lasoverage; (4) ground points were classified using a triangulated
irregular network (TIN) algorithm implemented in lasground; (5) the elevation of each point
above the ground was already computed with the lasheight procedure; (6) the point cloud
was classified into high vegetation and buildings through the lasclassify procedure, this
tool requires that the bare-earth points have already been identified (task 4); (7) and finally,
the Digital Terrain Model (DTM), using the GridSurfaceCreate procedure, and the Canopy
Height Model (CHM), using the CanopyModel procedure, were generated at 0.10 m, 0.25 m
and 0.50 m resolutions.

2.3. Field Data and Photointerpretation

Total height of all living trees was measured using a telescometer in sites where trees
were less than 3 m, and a Haglöf Sweden® Vertex when the average tree height exceeded
the 3–4 m (plots A026FRA and A028SAN). In addition to the field work, a virtual inventory
of all the trees (location and measurement of their total height) was carried out in the 6 plots
based on the LiDAR point cloud. For this purpose, photointerpretation was performed
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using FugroViewer software (downloadable at http://www.fugroviewer.com/, accessed
on 28 November 2021). Table 2 shows the total number of living trees in each plot, and the
main statistics for the total height of each tree.

Table 2. Descriptive statistics for the database used in this work (N, number of trees; H, total tree
height; mean, average value, min, minimum, max, maximum. In the A026FRA and A028SAN plots,
all trees were measured with Haglöf Sweden® Vertex).

Plot N Mean H (m) Min H (m) Max H (m)

A026BEG 871 0.95 0.24 2.04
A028BEG 777 0.87 0.15 1.75
A026DOZ 776 1.03 0.36 2.10
A028DOZ 676 1.68 0.35 2.88
A026FRA * 420 3.70 1.60 5.70
A028SAN * 950 2.85 1.50 4.10

2.4. Individual Tree Detection Algorithms

Individual tree detection is the process of spatially locating trees and extracting height
information based on two independent processes. In the first phase, it is necessary to
detect the treetops through LM algorithms. The parameterization of LM algorithms is
based on two parameters: Smoothing Window Size (SWS) and Tree Window Size (TWS),
which defines a fixed boundary within which the algorithm searches for treetops [40].
This is followed by segmentation to delineate the canopy boundary of individual trees.
The most common are based on region growth [41,42], watershed delineation [38], and
clustering [44–47]. Some of the algorithms used in this work include both processes, while
others only include the treetop detection. The delineation of the canopy boundary of
individual trees in the latter was always performed from the watershed algorithm through
the SAGA software [66].

To identify treetops in this research, we have compared the algorithms of Forest-
Tools [67], lidR [68] and rLiDAR [69] packages in R software [70]. The vwf and mcws
functions of the ForestTools package [67] can detect treetops and outline their respective
crowns, applied to CHM, respectively. The vwf implements the variable window filter
algorithm [71] and mcws implements the watershed function to segment [72]. The functions
FindTreesCHM and ForestCAS available in the rLiDAR package [69] can detect treetops and
their respective crown boundaries. The FindTreesCHM function searchs for treetops in the
CHM through a moving window with a fixed TWS [21], while ForestCAS implements the
watershed function for segmenting in a similar way to the segment_trees function in the lidR
package [68]. Finally, the most comprehensive R package for manipulating airborne LiDAR
data in forestry contexts is lidR [68]. There are several algorithms available in lidR, and
they can be divided into two categories: point cloud-based algorithms that work without
a CHM, and raster-based algorithms that work with a CHM. The functions find_trees and
segment_trees can find the position of the trees and segment the individual tree crown,
respectively. The find_trees function can use two algorithms (LMF or manual) either from
the point cloud or from the CHM. The segment_trees function can use several possible
algorithms based on region growing [42,73], watershed, and Voronoi tessellation [69]. More
details can be found at Roussel et al. [68]). In our plots, we compared the results using a
point cloud-based approach to those obtained with the CHM. In the first case, we used the
algorithm of Li et al. [73], while in the second case, we used the algorithm of Dalponte and
Coomes [42].

2.5. Accuracy Evaluation

To explore the influence of the different algorithms on the ITD, an evaluation of
performance in terms of relative error rate was carried out. This accuracy assessment was
based on the evaluation of statistical measures such as true positive (TP, correct detection),
false negative (FN, omission error), false positive (FP, commission error), recall (r), precision

http://www.fugroviewer.com/


Remote Sens. 2022, 14, 170 6 of 14

(p) F-score (F, overall accuracy) and relative error (RE). These statistics are widely used
to evaluate ITD methods [26,73–75]. Recall gives us a measure of detected trees and is
inversely related to omission error, precision implies a measure of correctly detected trees
and is inversely related to commission error, and the F-score represents the harmonic mean
of recall and precision. These analyses were performed to compare the number of trees
correctly located.

r =
TP

TP + FN
(1)

p =
TP

TP + FP
(2)

F =
2 × r × p

r + p
(3)

RE =
NDi − NRi

NRi
× 100% (4)

where NDi is the number of detected trees in ith plot; NRi is the number of reference trees
in ith plot.

To validate the heights of the correctly identified trees, we compared the tree heights
measured in the fieldwork with the heights measured on the LiDAR point cloud and with
the height measured on the CHM for each of the correctly identified trees. The analysis of
the error obtained between the different estimated values of tree height and their respective
values measured in the field were analyzed by means of two goodness-of-fit statistics
well known in the forest literature: the mean bias error (BE) and the root mean square
error (RMSE). Moreover, according to Hartley et al. [27] the effect of height on error was
examined by plotting values of absolute error (AE) and percentage error (PE) against tree
heights classes (size class of 0.5 m and ranging from 0–0.5 m to 5.5–6 m).

BE =
∑i=n

i=1 Yi − Ŷi

n
(5)

RMSE =

√
∑i=n

i=1
(
Yi − Ŷi

)2

n
(6)

AE =
∣∣Yi − Ŷi

∣∣ (7)

PE =
AE
Yi

100 (8)

where Yi are the field-measured tree height values, Ŷi are the UAV-measured tree height
values and n is the sample size.

3. Results

The relative errors (RE) of the different combinations of algorithms/plot/species/CHM
resolution are shown in Tables 3 and 4. Generally, all algorithms tend to underestimate
the number of trees. In the case of raster-based algorithms that perform with a CHM, we
observe that the most accurate resolution for the ITD was always the 10 cm resolution of
the CHM, regardless of the algorithm used and the two pine species analyzed. Whether in
CHM-based or point cloud-based ITD, no differences in accuracy were detected between
P. pinaster and P. radiata. However, we did find a clear pattern when considering the average
height of the trees to be detected: the accuracy is lower when detecting small trees (trees
less than 1 m high) than when detecting larger trees. The plots in which the trees had an
average height of less than 1 m, obtained a higher RE (close to 15%), while the plots in
which the average height was higher than 2.5 m, the RE was roughly 1%.
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Table 3. Relative error (RE in %) of the different combinations of algorithms/plot/species/CHM
resolution (ForestTools, lidR CHM-based, rLiDAR, and lidR point cloud-based, are the different
algorithms evaluated. 0.1; 0.25 and 0.5 are the different resolutions (in m) of the CHM. A026 and
A028 indicate plots occupied by Pinus pinaster or Pinus radiata, respectively). A negative RE value
indicates that the number of trees detected is being underestimated.

RE (%)

Plot
ForestTools (CHM) rLiDAR (CHM) lidR (CHM) lidR (Point-Cloud)

0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5 *

A026BEG −18.1 −31.5 −51.0 −26.7 −36.4 −52.4 −10.7 −23.2 −39.6 −21.5
A028BEG −17.4 −29.0 −47.4 −24.7 −33.2 −48.8 −11.6 −21.4 −38.4 −23.8
A026DOZ −7.0 −14.6 −31.4 −9.5 −16.0 −33.6 −3.5 −8.5 −26.4 −10.4
A028DOZ −0.6 −8.5 −24.0 −2.8 −9.3 −26.7 −0.9 −4.5 −25.0 −5.5
A026FRA −1.3 −9.9 −41.2 −7.4 −8.0 −19.8 1.8 8.4 −9.2 4.8
A028SAN −0.2 −10.2 −42.5 −18.2 −20.9 −37.5 −1.7 −11.9 −34.8 −0.2

* In the case of point cloud-based algorithm, CHM resolution cannot be considered as a factor.

Table 4. Mean relative error (RE in %) of the different combinations of algorithms/plot/species/CHM
resolution (“all sites”, refers to the average RE of all evaluated plots. “Pinus pinaster” refers only to
plots occupied by P. pinaster (A026BEG; A026DOZ; A026FRA), while “Pinus radiata” refers to plots
occupied only by P.radiata (A028BEG; A028DOZ; A028SAN). A negative RE value indicates that the
number of trees detected is being underestimated.

RE (%)

Mean RE (%)
ForestTools (CHM) rLiDAR (CHM) lidR (CHM) lidR (Point-Cloud)

0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5 *

all Sites −7.4 −17.3 −39.6 −14.9 −20.6 −36.5 −4.4 −10.2 −28.9 −9.4
Pinus pinaster −8.8 −18.7 −41.2 −14.5 −20.2 −35.3 −4.1 −7.8 −25.1 −9.1
Pinus radiata −6.1 −15.9 −38.0 −15.2 −21.1 −37.7 −4.7 −12.6 −32.7 −9.8

* In the case of point cloud-based algorithm, CHM resolution cannot be considered as a factor.

The best results were obtained with the lidR package using Dalponte and Coomes [42]
algorithm, where we obtained a RE between −13.27% and 1.47%. The lidR package includes
the option to use a point cloud based algorithm [73], which is the most difficult to use and
parameterize, and we have not been able to obtain results in accordance with this difficulty.
Table 5 shows all the statistics calculated to evaluate the accuracy of the different methods,
but only for the case of Dalponte and Coomes [42] algorithm. Figure 2 shows the graphical
results obtained in plot A028SAN. The 2D view (Figure 2A) includes crown segmentation,
tree height from the point cloud and treetop location. The 3D views of the point cloud from
the results of the Li2012 algorithm [73] of the lidR package [68] are shown in Figure 2B,C.

Table 5. Evaluation of the ITD in terms of statistical measures for the case of the results obtained with
the Dalponte and Coomes [42] algorithm (H(m) is mean height of the trees in the plot, r is recall, p is
precision, F is overall precision and RE is relative error).

Plot H(m) r p F RE (%)

A026BEG 0.95 0.885 0.999 0.939 −10.7
A028BEG 0.87 0.894 0.969 0.930 −11.6
A026DOZ 1.03 0.948 0.999 0.973 −3.5
A028DOZ 1.68 0.966 0.998 0.981 −0.9
A026FRA 3.70 0.998 0.993 0.995 1.8
A028SAN 2.85 0.982 0.997 0.990 −1.7
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Li2012 algorithm from the lidR package.

The results of the second objective of this study, the reliability of LiDAR information
for measuring individual tree height, are shown in Table 6. In this case, only the results
obtained for the well-identified trees (TP) by the algorithm of Li et al. 2012 [73] are shown.
This algorithm uses the point cloud directly, so the height of the treetops has been calculated
based on it. As the other three algorithms are based on the CHM, we have also calculated
the treetop height from the CHM (with and without smoothing). The differences between
the results obtained through the three evaluated methodologies for estimating height are
noteworthy. We can conclude that CHM always tends to underestimate individual tree
height. If CHM has been smoothed, the underestimation is more significant. The estimation
of height directly on the point cloud presents less biased results (an average of −0.047 m)
and with a lower RMSE than in the case of the CHM (0.149 m versus 0.297 m). Finally,
no differences were detected between the two pine species analyzed, neither between the
different plots nor with any of the three methods evaluated.

Table 6. Goodness-of-fit statistics obtained from the well-identified trees by the Dalponte and
Coomes [42] algorithm and their respective field-measured values (BE represents the mean bias error;
RMSE represents the root mean square error, both in m).

Smoothed CHM (m) Non-Smoothed CHM (m) Point Cloud (m)

Plot BE RMSE BE RMSE BE RMSE

A026BEG 0.271 0.302 0.178 0.205 −0.109 0.143
A028BEG 0.214 0.242 0.123 0.175 0.019 0.081
A026DOZ 0.245 0.279 0.112 0.159 −0.047 0.121
A028DOZ 0.257 0.279 0.133 0.163 −0.101 0.138
A026FRA 0.253 0.290 0.143 0.143 −0.058 0.151
A028SAN 0.267 0.335 0.143 0.194 0.012 0.189

all sites 0.251 0.288 0.139 0.173 −0.047 0.137
Pinus pinaster 0.243 0.274 0.138 0.180 −0.046 0.115
Pinus radiata 0.259 0.301 0.139 0.166 −0.049 0.160
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Figure 3 shows the error pattern, when calculating the height of the treetops from the
point cloud, against predicted values for each of the plots analyzed. There is a trend to
underestimate the height of small trees and to slightly overestimate the height of larger trees.
The effect of tree height on error (absolute, AE, and percent relative, PE) was examined for
the methodology selected (estimation of height directly on the LiDAR point cloud) and
considering all sites (Figure 4). PE in estimating tree height decreases when tree height
increases (Figure 4 right), and specially declines sharply from the smallest two height
categories (0–0.5 m and 0.5–1 m) to the taller trees. The mean PE fall below 10% when tree
height categories exceed 1 m. Therefore, measure of tree height from UAV based lidar is
preferable when tree height reached 1 m, and this threshold is the same as for ITD.
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4. Discussion

Although, in the last few years, the forestry sector is increasing the use of UAVs to
measure tree traits, there are few studies assessing the possibilities in young trees and most
of them use UAV imagery. We have evaluated the use of UAV-based LiDAR scanning in
young pine trees belonging to permanent research plots. We first assessed individual tree
detection (ITD), followed by height measurement assessment.
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In ITD, the best results were obtained with the lidR package. We observed that the
accuracy is lower when detecting small trees (less than 1 m high). Probably, if the tree
we want to measure with ULS is less than 1 m high, its crown will usually be very small,
meaning that it will be more difficult to detect a relative maximum (LM). If plots with mean
tree height less than 1 m are excluded (A026BEG and A028BEG), the accuracy statistics
considered in ITD (recall, precision, and F-score) are higher than 0.94. Hao et al. [28]
obtained similar values in the same statistics for ITD with their best solution using UAV-
based photogrammetry from Chinese fir trees with heights ranging 1–4 m. According
to Hao et al. [28], no complex forest structures, regularly distributed trees and without
overlapping crowns; no complex topography, and cleared scrub before the UAV flight,
as it is in our study, provide higher accuracy for ITD. Moreover, coniferous trees are
better detected, and their height is better measured than deciduous trees thanks to their
cone-shaped crown [76].

Hartley et al. [27] evaluated the use of UAV to generate high-density point clouds to
measure height in young forestry trials (P. radiata from New Zealand). They concluded that
ULS predicted tree height in young stands with greater precision (RMSE = 0.15 m) and
lower bias than UAV-based photogrammetry with Structure from Motion (SfM) processing
software (RMSE = 0.48 m). However, Hao et al. [28] reported better precision using SfM
(RMSE = 0.22 m) in measured heights in young trees. Considering global values, the RMSE
cited in Hartley et al. [27] from ULS is comparable to our study (0.15 m vs. 0.137 m);
the bias is similar, although in the opposite direction. In our study, the tree height is
overestimated (BE = −0.047) whereas in their study height is underestimated (BE = 0.05).
The underestimation of tree height from LiDAR is well documented [56–58]. According to
Hartley et al. [27] the percent relative error (PE) in estimating tree height decreases with
increasing tree height, same as in our study, where mean PE falls below 10% when tree
height categories exceed 1 m. The PE decline is steeper in Hartley et al. [27], where PE was
63.7% and 8.1%, respectively, for the 0.5–1 m and 1–1.5 m categories, than in our study,
with values of 13.6% and 8.3% for the same categories.

We can consider the field height measurements with telescometer as real data, while
the measurement with Haglöf Sweden® Vertex in tallest trees (3–4 m) could have an error
in the same order that the RMSE obtained in this study [77]. Thus, we can point out
that when the errors are very small (as in our case) the under- or overestimation can be
very subtle and is often due to errors in height measurement in field. Wang et al. [78]
observed high agreement on height measurement between field measurement, airborne
laser scanning (ALS) and terrestrial laser scanning (TLS) for small trees (less 10 m) in no
complex stands. The taller the tree, especially for dominant and co-dominant trees and
for deciduous species, the more reliable is the ALS-based tree height measurement [78].
Wu et al. [79] also indicated agreement between these technologies and UAV imagery in
horticultural tree crops of 2–10 m. The authors take TLS data as reference (“real data”)
and conclude that UAV imagery provides the highest accuracies and level of flexibility for
height measurement in medium size areas. Although Wu et al. [79] considered medium
size areas as 1–10 km2, we considered more appropriate the range of spatial coverage that
the same authors cited to UAV (0.01–10 km2) for forest measurements. Field measurements
or TLS are more suited for small areas, and especially for collecting ground level data [80],
while ALS data perform better in large areas, and for characterizing the upper part of
the trees, including the crown [81]. However, the most interesting future challenge is to
combine point clouds from TLS and ALS to evaluate each tree in a complete way [82,83].

An advantage of the collected UAV point cloud is that data remain available and
allow for retrospective studies [79]. Moreover, UAV data provide canopy variables that are
not frequently field-measured, except for canopy base height, because canopy measured
in field is inaccurate, inconsistent, or not suited [79]. Having data on canopy variables
allows, for example, conducting studies related to tree competition or evaluating thinning
or pruning practices [84–86]. In addition, the canopy variables obtained from UAVs are
spatially explicit and therefore consider that tree canopies are rarely centered directly above
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their stem bases [87]. Canopy displacement occurs to reduce competition with neighbors,
so plants grow towards areas with greater resource availability.

5. Conclusions

Detecting and measuring the height of all trees is a difficult, costly, but necessary task
in all research plots. The use of UAVs to carry out many forestry measurements is becoming
more and more widespread, and it is even common for forest managers (as in agriculture)
to have their own UAV. This paper successfully evaluates three individual tree detection
methods based on the canopy height model, and another one based directly on the point
cloud. In all of them, the height of each tree is measured from the point cloud and from the
CHM (with and without smoothing) and compared with the data measured in the field.
All algorithms used for individual tree detection tend to underestimate the number of trees,
with worse results for small trees (trees less than 1 m high). Regarding the estimation of
individual height, the results obtained on the point cloud are practically unbiased.

There are already many studies comparing UAV-based photogrammetry with Struc-
ture from Motion (SfM) and LiDAR-based techniques. It would be very interesting to carry
out a photogrammetric flight to compare these results with those obtained with UAS, since
this type of flight is much cheaper and easier to perform.
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