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Abstract: Remote sensing satellites have been broadly applied to sea ice monitoring. The substantial 
increase in satellite imagery provides a large amount of data support for deep learning methods in 
the sea ice classification field. However, there is a lack of public remote sensing datasets to facilitate 
sea ice classification with spatial and temporal information and to benchmark the deep learning 
methods. In this paper, we provide a labeled large sea ice dataset derived from time-series sentinel-
1 SAR images, dubbed SI-STSAR-7, and a validated dataset construction method for sea ice classifi-
cation research. The SI-STSAR-7 dataset includes seven different sea ice types corresponding to dif-
ferent sea ice development stages in Hudson Bay during winter, and its samples are time sequences 
of SAR image patches in order to embody the differences of backscattering intensity and textures 
between different sea ice types, as well as the change of sea ice with time. We construct the dataset 
by first performing noise reduction and mitigation of incidence angle dependence on SAR images, 
and then producing data samples and labeling them based on our proposed sample-producing prin-
ciples and the weekly regional ice charts provided by Canadian Ice Service. Three baseline classifi-
cation methods are developed on SI-STSAR-7 to establish benchmarks, which are evaluated with 
accuracy and kappa coefficient. The sample-producing principles are verified through experiments. 
Based on the experimental results, sea ice classification can be implemented well on SI-STSAR-7. 

Keywords: open dataset; sea ice classification; spatial and temporal information; Sentinel-1 satellite; 
deep learning; dataset construction 
 

1. Introduction 
Sea ice monitoring in polar regions is very important because sea ice has a great im-

pact on ocean hydrological conditions, atmospheric circulation, and climate change [1]. 
Moreover, sea ice can directly affect human activities such as ship navigation and seabed 
mining and may even lead to major disasters [2]. Sea ice classification is the basis of sea 
ice monitoring, and the classification results can be used to calculate sea ice concentration 
and area [3]. 

Many studies on sea ice classification have been carried out using Gabor wavelet 
techniques [4], Markov random field (MRF) [5,6], neural network [7,8], support vector 
machine (SVM) [9,10], and other methods. With the widespread application of deep learn-
ing in the image field, researchers have applied deep learning models to sea ice classifica-
tion and achieved high classification accuracy [11,12]. However, the performance of deep 
learning methods depends on a large dataset. Some public remote sensing image datasets 
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have been developed for ground object detection [13,14], ship identification [15], and oil 
well detection [16]. In the field of sea ice, although the products of sea ice extent and con-
centration are widely available [17], the remote sensing image datasets for sea ice classifi-
cation are scarce [18]. To boost the development of effective deep learning methods, more 
studies on public sea ice datasets are needed. 

The synthetic aperture radar (SAR) imagery from the satellites, such as Sentinel-1, 
Radarsat-2, and TerraSAR-X, can be a good data source for sea ice classification. SAR sat-
ellites have been widely used in sea ice monitoring [19,20]. As an active microwave sensor, 
SAR has the ability to observe the earth all day without the limitation of light and cloud 
and provide multi-polarization and multi-band high-resolution remote sensing data. 
Among the C-band satellites, Sentinel-1 A/B consists of two SAR satellites, can cover the 
entire world within six days to provide SAR data with the highest time resolution. The 
polarization modes of SAR imagery, such as single polarization, dual polarization, and 
full polarization, demonstrate different abilities in sea ice classification. Compared with 
single polarization, multi-polarization (dual polarization and full polarization) SAR im-
ages improve the classification and segmentation of sea ice [21–23]. The advantage of full 
polarized data is limited by long and narrow image bands in sea ice classification [8]. 

When constructing a sea ice classification dataset, what information it contains is re-
lated to what kind of classification models it can support. At present, most sea ice analysis 
methods are typically based on a combination of backscatter intensity, texture features, 
and some ancillary information applying different numerical models for classification and 
segmentation [24]. For example, Aldenhoff et al. [25], based on backscatter intensities in 
co- and cross-polarization and autocorrelation as a texture feature, used neural networks 
to achieve the mapping between image features and ice/water classification. Chen et al. 
[26] used extended-maximum operator, morphological image processing, and geomet-
rical features to identify individual MYI floes from SAR images. However, these studies 
only considered the differences between the spatial characteristics of different sea ice 
types. To develop deep learning models for sea ice classification or concentration predic-
tion, Malmgren-Hansen et al. [27] fused Sentinel-1 SAR images with Advanced Micro-
wave Scanning Radiometer 2 (AMSR2) data to produce the AI4Arctic/ASIP Sea Ice Dataset 
and used it to train a Convolutional Neural Network (CNN) architecture for sea ice con-
centration prediction. Khaleghian et al. [18] combined near-simultaneous SAR images 
from Sentinel-1 and optical data from Sentinel-2 to train a CNN sea ice classification 
model. Both studies have focused on the use of complimentary information to improve 
the model performance. So far, it has been rare to build a dataset that considers temporal 
dimension information. 

Ice type can be defined in terms of the stage of sea ice development—from newly 
frozen smooth ice (Nilas), to deformed and roughened Young Ice, to thick ice cover that 
survived summer melts (Old Ice) with several intermediate stages [28]. Every year, sea ice 
has a melting period and a freezing period. Therefore, for the same area, the growth and 
development of sea ice are periodic and closed. Moreover, different types of ice grow at 
different speeds. The time correlation of sea ice has been applied in other areas of sea ice 
monitoring. For example, Petrou et al. [29] first studied the potential of Recurrent Neural 
Network (RNN) in predicting the trajectory of sea ice in the next few days based on pre-
viously observed satellite images. The predicted results obtained by this method are con-
sistent with the real motion of sea ice. Chi and Kim [30] used Multi-Layer Perceptron 
(MLP) and Long Short-Term Memory (LSTM) to predict the Arctic sea ice concentration, 
respectively. The results show that the two methods are superior to the traditional auto-
regressive model in both numerical statistics and vision. It is clear that taking temporal 
information into consideration is helpful for sea ice studies. In addition, we previously 
studied the impact of the combined use of spatial and temporal information on sea ice 
classification, and the results show that the addition of temporal information is helpful for 
sea ice classification [31]. 
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To promote the development of sea ice research based on spatial and temporal infor-
mation and alleviate the lack of a large of labeled datasets suitable for deep learning, we 
constructed a spatiotemporal dataset for sea ice classification based on Sentinel-1 SAR im-
ages, namely SI-STSAR-7. The dataset was constructed using the GRD products of Senti-
nel-1 SAR images with HH and HV polarization models, obtained from Hudson Bay in 
winter. Seven sea ice types with 164,564 samples were included in the large dataset to 
support the training and test of deep learning models. Each sample is a 32 × 32 × 6 image 
block (i.e., a time series of image patches with the time-step of 6 and the patch size of 32 × 
32) to maintain spatial and temporal information of sea ice. The dataset can be accessed at 
IEEE DataPort: http://ieee-dataport.org/open-access/si-stsar-7 (accessed on 29 December 
2021). 

A concise summary of our contributions are as follows: 
1. A complete method for constructing a spatiotemporal dataset for sea ice classi-

fication is provided. In sample production, the ice concentration principle, ice 
development principle, and cross-subswath principle are creatively proposed to 
improve the quality of the dataset. Among them, the cross-subswath principle 
can effectively alleviate the impact of Sentinel-1 thermal noise on sea ice classi-
fication, especially in the first subswath region, which provides a reference 
scheme for the region subject to high thermal noise in sea ice research. 

2. Using the proposed method, we provide a large spatiotemporal dataset for sea 
ice classification based on Sentinel-1 SAR images. This is the first large labeled 
sea ice SAR dataset that provides both spatial and temporal information. We 
also preliminarily studied the impact of time-step (the number of consecutive 
SAR scenes) on sea ice classification. 

3. Comprehensive evaluation results of three advanced classification algorithms 
based on accuracy and kappa coefficient, are presented as the benchmarks of sea 
ice classification using SI-STSAR-7. 

This paper is organized as follows. Section II presents the process of constructing the 
dataset. Section III presents the baseline experimental results on the constructed dataset 
and the verification results of our proposed sample-producing principles. Section IV is the 
conclusion. 

2. Dataset Construction 
The construction process of the SI-STSAR-7 dataset in this study is shown in Figure 

1. We firstly determined the data source and study area, taking into account the accessi-
bility of SAR data, the availability of sea ice reference data, and the diversity of sea ice 
types. Then, we downloaded the SAR images and the corresponding reference data within 
the determined location and time. Next, SAR image preprocessing was undertaken to re-
duce the impacts of noises and the effect of incidence angles. Finally, the sea ice data sam-
ples were produced following a set of principles to ensure the accuracy of sea ice classifi-
cation as high as possible. The details of the dataset construction are presented in the fol-
lowing subsections. 

SAR Images and 
Reference Data 
Downloading

SAR Image 
Preprocessing

Data Samples 
Production

Data Source and 
Study Area 

Determination
 

Figure 1. Dataset construction process. 

2.1. SAR Source and Study Area 
The SAR data used in this study come from the Sentinel-1 satellite data that is freely 

accessed from the Copernicus Open Access Center (https://scihub.copernicus.eu (accessed 
on 20 May 2021)). Sentinel-1’s satellites A and B share the same orbital plane, with an 
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orbital phase difference of 180 degrees, which can provide a 6-day repetition period at the 
equator. Sentinel-1 can provide a dual-polarization mode with high time resolution, and 
thus it is suitable for monitoring the change of sea ice. 

The format of SAR data we used is as follows: a medium resolution dual-polarization 
(HH and HV) Level-1 ground range detected (GRD) product obtained in the Extra Wide 
(EW) swath mode, with a standard strip width of 400 km, a resolution of about 90 m, and 
a pixel spacing of 40 m. In our study area of Hudson Bay, Sentinel-1A and Sentinel-1B 
alternately provides a SAR image at the designated location every six days. There are 
some differences between the two sets of images, as listed in Table 1. It should be noted 
that the exact size of every SAR image differs by several pixels from those given in Table 
1, and the coordinates of SAR images from the two satellites do not overlap exactly. To 
maintain the position consistency of the two satellite images, we cut out the non-overlap-
ping regions of the data in the study. 

Table 1. Parameters of collected SAR data. 

No. Satellite 
Size  

(pixels) 
Incidence Angle 

(degree) 
Coordinate 

1 Sentinel-1A 10,563×9998 19.23−46.90 
58.73°N−63.06°N, 
81.90°W−91.10°W 

2 Sentinel-1B 10,642×9991 19.09−46.94 
59.09°N−63.43°N, 
81.64°W−91.02°W 

Following our previous study [31], we selected Hudson Bay as the study area, which 
locates in the central-eastern part of Canada and its sea ice condition has been long-term 
monitored by Canadian Ice Service (CIS). It has a large area and a long freezing process, 
which can provide a large sea ice coverage and different sea ice types and is suitable for 
data preparation. The time span of the SAR data was set to two freeze-up periods of Hud-
son Bay from October 2019 to May 2020 and from October 2020 to April 2021. 

A total of 80 SAR scenes were collected to provide the data needed for our study. It 
covers all types of sea ice in Hudson Bay, including seven types: open water (OW), new 
ice (NI), grey ice (GI), grey-white ice (GWI), thin first year ice (ThinFI), medium first year 
ice (MedFI), and thick first year ice (ThickFI). In this study, sea ice type is defined based 
on the stages of development (SoD), which is indeed based on thickness of ice, as shown 
in Table 2. A fact worthy of our attention is that the sea ice in the freeze-up period is 
moving as it develops. Although the World Meteorological Organization (WMO) stand-
ard defines 15 ice classes with different SoD codes, only seven of them are involved in our 
study area (see Table 2). 

Table 2. Information of sea ice types used in this study. 

Stage of Development Thickness (cm) Code Color 
Open Water (<1/10 Ice)    

New Ice <10 1  
Grey Ice 10−15 4  

Grey-White Ice 15−30 5  
Thin First-Year Ice 30−70 7  

Medium First-Year Ice 70−120 1.  
Thick First-Year Ice >120 4.  

2.2. Reference Data 
Reference data are used for sample label preparation, that is to help identify the ice 

types. We refer to weekly regional ice charts and weekly regional ice data provided by 
CIS, available at https://iceweb1.cis.ec.gc.ca/Archive/page1.xhtml (accessed on 20 May 
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2021). The weekly regional ice chart is in graphics interchange format (GIF), made by ice 
experts based on satellite imagery, weather, and oceanographic information, visual obser-
vations from ships and aircrafts within three days of the effective date. The weekly re-
gional ice data are in ESRI ArcInfo interchange file (E00) format, containing coordinate 
and geometry data and can be imported into geographic information system software 
(such as ArcGIS). In the ice chart, ice information is presented in the ice egg format and 
color-coded using the WMO Standard. The ice egg contains information on ice concentra-
tion, stage of development (sea ice type), and morphology (size of ice floe). Figure 2 shows 
the weekly ice chart of Hudson Bay on 14 December 2020. The ice egg circled in red gives 
the ice information in the area where it is located. The 9+ represents the total ice concen-
tration in the area, which means that more than 90% of the area is covered by ice. The 
notations “5” and “7” indicate that there are two types of sea ice: GWI and ThinFI (see 
Table 2 for sea ice type code). The digits “1” and “9” indicate that these two types of sea 
ice account for 10% and 90% of the total ice, respectively. The light green color indicates 
that ThinFI dominates the region. More information about the ice chart can be found on 
the Government of Canada website [32]. 

 
Figure 2. The weekly ice chart of Hudson Bay published by CIS on 14 December 2020. The ice egg 
circled in red indicates that more than 90% of the area is occupied by ice, and the ThinFI (code 7) 
with the proportion of 90% of the total ice is dominating. 

2.3. SAR Image Preprocessing 
SAR is a coherent imaging radar system with high resolution, and speckle noise is its 

inherent characteristics [33]. Moreover, its unique working mode causes scalloping effect 
and interswath discontinuities effect on SAR images, which have a great impact on sea ice 
classification [34]. The cross-polarized channel of Sentinel-1 is highly affected by thermal 
noise in the low backscatter intensity region, which is a typical characteristic of open water 
and smooth first-year ice [35]. Although the European Space Agency (ESA) provides a 
calibrated noise vector for noise power subtraction, the contribution of residual noise is 
still significant considering the relatively narrow backscatter distribution of the cross-po-
larized channel [34]. In addition, the SAR images with a wide range of incidence angles 
have significant changes in backscatter intensity and contrast due to the continuous 
change in incidence angles, which poses great challenges to the successful visual or auto-
matic classification of Sentinel-1 EW images [36]. 

In order to alleviate the impact of SAR image residual noise and incidence angle ef-
fects on sea ice classification, we followed the generic workflow for processing Sentinel-1 
GRD products and use the Sentinel Application Platform (SNAP) [37] to preprocess SAR 
data [38,39]. The steps are shown in Figure 3. The preprocessing steps in this paper are a 
more comprehensive preprocessing scheme than our previous study [31], adding the re-
duction of the border noise and speckle noise of the SAR image, as well as the mitigation 
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of the incidence angle dependence. It should be noted that the preprocessing does not 
really change the SAR image resolution. The range doppler terrain correction, however, 
projects the ground range image into a geographic coordinate WGS84, in which each cell 
size is about 0.00036° in both longitude and latitude. 

Apply Precise Orbit File

Border Noise Removal

Thermal Noise Removal

Speckle Filtering

Calibration to Sigma0

Conversion to dB

Sentinel-1 GRD SAR Data

Range Doppler Terrain 
Correction

Sentinel-1 GRD Sigma0 dB

Incidence Angle Dependence 
Correction

Noise 
Reduction

 
Figure 3. Sentinel-1 GRD SAR preprocessing steps. 

2.3.1. Noise Reduction 
Our preprocessing scheme mainly reduces the boundary noise, thermal noise, and 

speckle noise in SAR images. Among them, Lee Sigma filter is used to reduce speckle 
noise, the parameters of which are set to kernel size 7 × 7, target window size 3 × 3, and 
sigma 0.9. Figure 4 shows the comparison before and after the preprocessing of “Applying 
Precise Orbit File → Border Noise Removal → Thermal Noise Removal → Speckle Filter-
ing → Calibration to Sigma0 → Conversion to dB” for the HV polarization image of SAR 
data acquired on November 24, 2020. After noise reduction processing, it can be found 
that the speckle noise of the image is significantly reduced, and the texture details of the 
ice are clearer, which is conducive to the classification of sea ice. Regarding the interswath 
discontinuities effect, except for the intensity discontinuity between the first subswath 
(EW1) and the second subswath (EW2), the obvious offset between the other subswaths 
is effectively alleviated. 
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(a) (b) 

Figure 4. Comparison before (a) and after (b) the noise reduction for the HV polarization image of 
SAR data acquired on 24 November 2020, by using SNAP. 

2.3.2. Incidence Angle Dependence Correction 
To compensate for the incidence angle effect, we need to determine the empirical 

relationships between incidence angle (𝜃𝜃) and the backscattering coefficient (𝜎𝜎0) at HH- 
and HV-polarizations. A lot of research results show that the linear regression model well 
describes the dependence of 𝜎𝜎0 in dB scale on 𝜃𝜃 [40–42]. Although some researchers ex-
pect the incidence angle dependence of radar backscatter to be lower at cross-polarization 
compared to co-polarization [43], Aldenhoff et al. [42] demonstrate that incidence angle 
normalization should be applied to both co-polarization and cross-polarization images to 
minimize the variation of backscatter intensity within the same ice type in one image 
swath. 

In this study, the dependence of 𝜎𝜎0 in dB scale on 𝜃𝜃 determined by the linear regres-
sion model [40] was used to compensate for the incidence angle effect. The compensation 
formula is as follows: 

𝜎𝜎N0 = 𝜎𝜎0 + 𝑐𝑐 ∗ (𝜃𝜃 − 𝜃𝜃0)  (1) 

where 𝜎𝜎𝑁𝑁0 is the compensated sigma naught value, 𝜎𝜎0 is the sigma naught value before 
compensation, 𝑐𝑐 is the dependence of sigma naught value on incidence angle, 𝜃𝜃 is the in-
cidence angle corresponding to the pixel, 𝜃𝜃0 is the central value of the wide incidence an-
gle range of SAR products. 

It is not a straightforward task to compensate for the effect of incidence angle de-
pendence for different ice types separately, because this would first require classifying the 
SAR image into the required ice type, which typically results in a certain number of mis-
classifications between the ice types. Coarse correction of generic sea ice 𝜎𝜎0 versus 𝜃𝜃 loops 
can also improve the results significantly in many sea ice classification studies based on 
SAR data. It should be noted that for some sea ice types (such as smooth young ice or 
rough thin ice), the general correction may be lower or higher than the true dependence 
of 𝜎𝜎0 on 𝜃𝜃. 

In this study, referring to the research results of Mäkynen et al. [40] and Aldenhoff et 
al. [42], which also studied Sentinel-1 SAR products with EW mode and dual polarization 
GRD, the incidence angle dependence coefficients for HH polarization and HV polariza-
tion were determined to be −0.24 and −0.16 dB/°, respectively. The central value of the 
wide incidence angle range was set to 33° calculated based on our SAR data. Then, the 
incidence angle dependence coarse correction on SAR image was performed using (1). 
Figure 5 shows the dependence of 𝜎𝜎0 on 𝜃𝜃 of our SAR image before and after the coarse 
correction. Figure 5a and Figure 5c are graphs of the dependence of 𝜎𝜎0 on 𝜃𝜃 for HH- and 
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HV-polarization without incidence angle dependence correction, respectively. Compared 
with HV-polarization, the backscattering coefficient of HH-polarization is more sensitive 
to the incidence angle, which is consistent with the conclusion of Nghiem et al. [43]. The 
HH-polarization after the incidence angle dependence coarse correction (Figure 5b) shows 
that the incidence angle dependence of GI, GWI, ThinFI, and MedFI is almost eliminated, 
while the dependence of NI and ThickFI is over-corrected slightly. In addition, the change 
of the incidence angle has a great influence on OW (Figures 5a). Its residual dependence 
is still significant after coarse correction (Figures 5b) because the incidence angle depend-
ence coefficients are determined only based on sea ice. However, this does not affect the 
accurate identification of OW. In HV-polarization, the incidence angle dependence of dif-
ferent types of sea ice is in different directions (Figure 5c), and coarse correction can rela-
tively improve the effect of the incidence angle on the backscattering coefficients of dif-
ferent sea ice on the whole (Figure 5d). 

  
(a) (b) 

  
(c) (d) 

Figure 5. The dependence of the backscattering coefficient on incidence angle. Before (a) and after 
(b) coarse correction of HH-polarization incidence angle dependence. Before (c) and after (d) coarse 
correction of HV-polarization incidence angle dependence. 

2.4. Sample Production 
To produce representative data samples for training and testing sea ice classification 

models, SAR images need to be filtered to meet the sample requirements. In addition to 
the sea ice concentration proposed in paper [31], factors such as the development process 
of sea ice, the interswath discontinuities effect, the scalloping effect on the first subswath, 
as well as the edge mismatch between the SAR image and the ice chart will affect the 
quality of the dataset. To alleviate the influence of these factors, we refer to the ice chart 
and ice data that have the least time difference between SAR image acquisition time and 
ice charting time, and select sample scenes and regions according to the following ex-
plained principles: 

• Concentration principle 
When producing the samples for a specific type of sea ice, we believe that the higher 

the concentration of this kind of ice, the more reliable the SAR images (or partial images) 
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where the ice is located can represent this ice type. Therefore, we rely on the information 
of ice eggs in the ice chart and attempt to find when and where the total ice concentration 
reaches 90% or more and the dominant ice type accounts for 90% and above of the total 
ice area. Take the example shown in Figure 2, the ice egg circled in red indicates that the 
total ice concentration in the area exceeds 90%, and the sea ice type ThinFI represented by 
the notation “7” accounts for 90% of the total ice, hence this area can be used as the sample 
region of ThinFI. 

The requirement of the main ice concentration can ensure that the sample represents 
a type of sea ice as much as possible, to avoid the impact of the incorrect label of sea ice 
type on the classification performance. However, due to the rapid growth rate of Ni ice 
type, this type of ice never reaches a high concentration rate. Thus, SAR images with 50% 
NI ice concentration on 9 December 2019, and 70% NI ice concentration on 24 November 
2020, were collected in our study. For GI and GWI, the ice charts show that the concentra-
tion of GI is at most 80% and there are only a few areas where the concentration of GWI 
can reach 90%, so we selected the sample region where the main ice type accounts for 80%. 
The sample region with the proportion of the main ice type to 90% was selected for the 
three ice types: ThinFI, MedFI, and ThickFI. 

• Ice development principle 
To better describe this principle, we took the development process of MedFI as an 

example. 
Table 3 shows the development process of MedFI in a certain region of Hudson Bay 

from January to February 2021. In Table 3, “SAR date” refers to the date when the SAR 
scene for the region was collected, and the information of sea ice type and concentration 
is given for each date. Taking the SAR date “20210117” for example, the ice types in the 
SAR scene collected on 17 January 2021, are ThinFI and MedFI, which account for 70% 
and 30% of the total ice, respectively. 

Table 3. The development process of MedFI and its sample types. 

Sample 
SAR Date 

… 20210117 20210123 20210129 20210204 20210210 20210216 20210222 … 

sample 1 … 
ThinFI, 0.7; 
MedFI, 0.3 

ThinFI, 0.5; 
MedFI, 0.5 

ThinFI, 0.3; 
MedFI, 0.7 

MedFI, 0.9 … … … … 

sample 2 … … 
ThinFI, 0.5; 
MedFI, 0.5 

ThinFI, 0.3; 
MedFI, 0.7 

MedFI, 0.9 MedFI, 0.9+ … … … 

sample 3 … … … 
ThinFI, 0.3; 
MedFI, 0.7 

MedFI, 0.9 MedFI, 0.9+ MedFI, 0.9+ … … 

sample 4 … … … … MedFI, 0.9 MedFI, 0.9+ MedFI, 0.9+ MedFI, 0.9+ … 

Assuming we want to obtain a data sample with a time-step of 4, we cropped image 
patches from the same region of four SAR scenes successively acquired to form the sam-
ple, and then labeled the sample (true class) as the main ice type in the region of the last 
acquired scene. For instance, “sample 1” in Table 3 contains a sequence of four image 
patches and its ice type is labeled as “MedFI”. 

To learn the entire process of ice development as fully as possible, we produced four 
sample types representing MeidumFI. The difference between these samples can be seen 
intuitively in Table 3. Sample 1 represents the sample whose ice concentration of MedFI 
has just reached 90%. With time, the concentration of MedFI gradually tends to be stable. 
Sample 2, sample 3, and sample 4 represent different stages of MedFI from formation to 
stability. This ice development principle can ensure that our samples can represent the 
entire development process of ice types, so that the model can better extract the temporal 
characteristics of sea ice. 

Ice movement also influences the change of ice type in one data sample. In particular, 
the ice in the early stages of development is often thin and small, and easy to be moved 
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away by wind and current. Therefore, the time-series of data samples for OW, NI, GI, and 
GWI may record a quick change of the dominant ice types. In this case, the temporal in-
formation has a limited effect on the ice classification. More discussion is presented in 
Section 3.4. 

• Cross-subswath principle 
The image intensity of Sentinel-1 satellite with progressive scans SAR is often dis-

turbed by additional thermal noise, particularly in cross-polarization channel. Although 
we reduced the noise of the SAR images (see Section 2.3.1), the contribution of residual 
noise is still significant, especially the interswath discontinuities effect and the scalloping 
effect on the first subswath, which brings great interference to feature learning. For this, 
we try to sample across subswaths. Setting the sample regions across different subswaths 
through manual intervention can effectively alleviate the influence of the interswath dis-
continuities effect and the scalloping effect on sea ice classification. 

• Boundary principle 
A fact worthy of our attention is that Sentinel-1 SAR data is provided by the Coper-

nicus Open Access Center every six days, while the weekly regional ice chart is provided 
by CIS every seven days. This results in an imperfect match between the SAR image and 
the ice chart for the boundaries of different ice classes. To minimize the impact of such a 
mismatch, we recommend that only samples that are far enough away from the boundary 
are valid. This principle has also been used in the studies of Park et al. [44] and Boulze et 
al. [12]. 

We verified the concentration principle, ice development principle, and cross-
subswath principle in Section 3.5. 

After screening according to the above four principles, the specific regions of specific 
SAR scenes that meet the sample requirements are determined, as shown in Table 4 and 
Figure 6. Table 4 provides the dates and ice information of these SAR scenes for different 
ice types. Figure 6 schematically demonstrates these determined regions. As there are 
overlaps among these regions, we used different colors to distinguish them (note: the col-
ors have nothing to do with the ice types). 

 
Figure 6. Specific regions selected according to the sampling principles. Note: The color is to show 
the location of different regions more clearly and has nothing to do with the ice types. 
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Table 4. Ice concentration information of the selected SAR scenes that meet the sampling principles. 

SAR 
Date 

Total Concentration 
Main Ice Type, 
Concentration 

SAR Date Total Concentration 
Main Ice Type, Con-

centration 
OW MedFI 

20191130 —— —— 20200216 0.9+ MedFI, 0.9+ 
20201118 —— —— 20200222 0.9+ MedFI, 0.9+ 

NI 20200228 0.9+ MedFI, 0.9+ 
20191209 0.9 NI, 0.5 20200305 0.9+ MedFI, 0.9+ 
20201124 0.9+ NI, 0.7 20200311 0.9+ MedFI, 0.9− 

GI 20200317 0.9+ MedFI, 0.9+ 
20191206 0.9− GI, 0.8 20210204 0.9+ MedFI, 0.9 
20201124 0.9− GI, 0.8 20210210 0.9+ MedFI, 0.9+ 

GWI 20210216 0.9+ MedFI, 0.9+ 
20191206 0.9 GWI, 0.8 20210222 0.9+ MedFI, 0.9+ 
20201130 0.9+ GWI, 0.9+ 20210228 0.9+ MedFI, 0.9− 
20201206 0.9+ GWI, 0.8 20210306 0.9+ MedFI, 0.9+ 

ThinFI 20210312 0.9+ MedFI, 0.9− 
20191230 0.9+ ThinFI, 0.9+ ThickFI 
20200105 0.9+ ThinFI, 0.9+ 20200410 0.9+ ThickFI, 0.9 
20200111 0.9+ ThinFI, 0.9− 20200416 0.9+ ThickFI, 0.9 
20200117 0.9+ ThinFI, 0.9− 20200422 0.9+ ThickFI, 0.9+ 
20200123 0.9+ ThinFI, 0.9+ 20200428 0.9+ ThickFI, 0.9+ 
20201212 0.9+ ThinFI, 0.9 20200504 0.9+ ThickFI, 0.9+ 
20201218 0.9+ ThinFI, 0.9+ 20200510 0.9− ThickFI, 0.9− 
20201224 0.9+ ThinFI, 0.9+ 20200516 0.9− ThickFI, 0.9− 
20201230 0.9+ ThinFI, 0.9+ 20200522 0.9+ ThickFI, 0.9+ 
20210105 0.9+ ThinFI, 0.9 20210423 0.9+ ThickFI, 0.9 
20210111 0.9+ ThinFI, 0.9 20210429 0.9+ ThickFI, 0.9+ 

With the selected SAR scenes for different ice types, the data samples are produced 
in the following process. Firstly, ArcGIS software is used to crop the SAR scenes according 
to the screened sample regions. Then, the CIS ice data that has the shortest time difference 
with the SAR image acquisition time are opened in ArcGIS. After geo-coordinate position-
ing, the position of the cropped SAR sub-image in the ice data can be determined, so that 
the main ice type of the region in the ice data is designated as the ice type label of this SAR 
sub-image. Next, to produce a data sample with both spatial and temporal information, 
we crop the SAR sub-image into small patches of 32 × 32 pixels, denoted as I (per pixel is 
about 0.000359° in the WGS84 coordinate system). Then, we concatenate the patches from 
consecutive s SAR scenes at the corresponding position into time-sequences (or 3D 
blocks). Each data sample is a time sequence �𝐼𝐼𝑡𝑡−(𝑠𝑠−1), … , 𝐼𝐼𝑡𝑡−1, 𝐼𝐼𝑡𝑡�, where t represents the 
current time. Finally, we label each sample with the main ice type at the time t. In order 
to facilitate the use of this dataset for training classification models, we numerically code 
OW, NI, GI, GWI, ThinFI, MedFI, and ThickFI from 0 to 6. 

The entire process generates the sea ice sample data with the size of (𝑁𝑁, 𝑠𝑠, 32, 32, 2) 
and the ground-truth data of sea ice type labels as one-dimension vector with the size of 
𝑁𝑁. Here, 𝑁𝑁 is the number of samples, 𝑠𝑠 is the number of SAR scenes involved in each sam-
ple, that is a sample’s time-step, 32 × 32 is the sample resolution, and 2 refers to the num-
ber of HH- and HV-polarization channels. 

In the end, our SI-STSAR-7 dataset has a total of 164,564 samples, including 20,452 
samples for OW, 19,334 samples for NI, 21,791 samples for GI, 20,310 samples for GWI, 
27,291 samples for ThinFI, 34,377 samples for MedFI, and 21,009 samples for ThickFI. Each 
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sample is a sequence of SAR image patches with six time-steps (about six weeks). The 
time-step of 6 is determined based on our previous study [31]. Nevertheless, this dataset 
can be used with any time-steps between one to six depending on the users’ needs, simply 
by removing the unwanted image patches from the sequence. The large dataset SI-STSAR-
7 has been published at IEEE DataPort for data sharing. The public access link is 
http://ieee-dataport.org/open-access/si-stsar-7 (accessed on 29 December 2021). It includes 
the dataset used for model training and the SAR scene data for testing and evaluating a 
sea ice classification model. Users can find more details about SI-STSAR-7 from the “Re-
adme.pdf” in the data access link. 

3. Experiments 
To further prove the effectiveness of our proposed method of producing a sea ice 

spatiotemporal dataset and construct a baseline on the generated spatiotemporal dataset 
SI-STSAR-7, this paper provides three state-of-the-art sea ice classification methods for 
benchmark. These methods include a classic machine learning algorithm, Support Vector 
Machine (SVM), and two deep learning networks, Convolutional Neural Network (CNN) 
and Convolutional LSTM (ConvLSTM). Accuracy and kappa coefficient are applied for 
evaluating the classification performance of these methods on sea ice spatiotemporal da-
tasets from 1 to 6 time-steps. The classification results constitute the baseline system. In 
addition, experiments verified the validity and necessity of the sample-producing princi-
ples we proposed. 

3.1. Baseline Methods 
Method 1: ConvLSTM [45] is an extension of the Long Short-Term Memory (LSTM) 

network. By converting the Hadamard product of the LSTM during the input-to-state and 
state-to-state transitions into convolution, the network can learn the temporal features and 
extract the spatial features of the image more effectively. The visualized architecture of 
the ice classification network based on ConvLSTM is shown in Figure 7. It consists of four 
ConvLSTM layers, three Batch Normalization (BN) layers, one Global Average Pooling 
(GAP), and one output layer. The BN [46] layer after each ConvLSTM layer is to normalize 
the output of the ConvLSTM layer to speed up the training and avoid overfitting. The size 
of the input image patch is t × 32 × 32 × 2, where t is the time-step (that is, the number of 
consecutive SAR scenes), 32 × 32 is the pixel of each SAR image block, and 2 refers to the 
HH- and HV-polarization channels. The output of ConvLSTM is the code of ice type, 
which is 0~6. Table 5 shows the parameter settings of the sea ice classification network 
based on ConvLSTM. 

Ice type

Input ConvL1 bn1 ConvL2 bn2 ConvL3 bn3 ConvL4 gap

t×32×32×2 t×32×32×16 t×32×32×32 t×32×32×32 32×32×32 32

ConvLSTM Batch normalization

Global average pooling Fully connected+softmax

fc5
7

Figure 7. Sea ice classification network architecture based on ConvLSTM. 

Table 5. Parameters of the sea ice classification network based on ConvLSTM. 

Layer Parameter Activation Function 
Input t × 32 × 32 × 2 —— 

ConvLSTM 1 (ConvL1) 
16 filters (3 × 3), padding same, 

return_sequences true 
Sigmoid 

Batch Normalization 1 (bn1) —— —— 
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ConvLSTM 2 (ConvL2) 
32 filters (3 × 3), padding same, 

return_sequences true 
Sigmoid 

Batch Normalization 2 (bn2) —— —— 

ConvLSTM 3 (ConvL3) 
32 filters (3 × 3), padding same, 

return_sequences true 
Sigmoid 

Batch Normalization 3 (bn3) —— —— 

ConvLSTM 4 (ConvL4) 
32 filters (3 × 3), padding same, 

return_sequences false 
Sigmoid 

Global Average Pooling (gap) —— —— 
Fully Connected (fc5) 7 nodes Softmax 

Method 2: Yang and Kiang [11] and Boulze et al. [12] applied the CNN model to the 
study of sea ice classification and achieved high classification accuracy. Therefore, we take 
CNN as one of our baseline methods. To maintain the consistency with the baseline 
method based on ConvLSTM, we kept the network architecture of the sea ice classification 
method based on CNN the same as that of Method 1, and only replaced the ConvLSTM 
layer with the CNN layer. At the same time, we also kept the same parameters of the 
corresponding layers of the two methods. Figure 8 shows the network visualized archi-
tecture of the baseline method based on CNN. The parameters of method 2 are shown in 
Table 6. 

Ice type

Conv1 bn1 Conv2 bn2 Conv3 bn3 Conv4 gap

32×32×16 32×32×32 32×32×32 32×32×32 32

Convolutional Batch normalization

Global average pooling Fully connected+softmax

fc5
7

Input

t×32×32×2

Transpose+Reshape

Transpose
+Reshape

32×32×2t

Figure 8. Sea ice classification network architecture based on CNN. 

Table 6. Parameters of the sea ice classification network based on CNN. 

Layer Parameter Activation Function 
Input t × 32 × 32 × 2 —— 

Transpose —— —— 
Reshape —— —— 

Convolutional 1 (Conv1) 16 filters (3 × 3), padding same Sigmoid 
Batch Normalization 1 (bn1) —— —— 

Convolutional 2 (Conv2) 32 filters (3 × 3), padding same Sigmoid 
Batch Normalization 2 (bn2) —— —— 

Convolutional 3 (Conv3) 32 filters (3 × 3), padding same Sigmoid 
Batch Normalization 3 (bn3) —— —— 

Convolutional 4 (Conv4) 32 filters (3 × 3), padding same Sigmoid 
Global Average Pooling (gap) —— —— 

Fully Connected (fc5) 7 nodes Softmax 

Method 3: SVM is widely used in sea ice classification in recent years [9,10,47,48]. In 
addition, it has been successfully applied to the Map-Guided sea ice classification system 
[49]. In this study, SVM is directly applied to the sea ice spatiotemporal dataset to extract 
high-level features and perform sea ice classification. In the experiment, SVM uses a 
Gaussian kernel function and its parameter C is set to 1, and the parameter of gamma is 
automatically learned. 
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Compared with the classification model in [31], which first extracted spatial features 
of sea ice with ResNet networks, and then further learned temporal features from the ex-
tracted spatial features with a LSTM network, the three methods designed in this study 
focus on learning spatial and temporal information of sea ice together to make direct clas-
sification. 

3.2. Evaluation Metrics 
In order to verify the performance of the baseline methods, the following metrics in 

the test dataset were calculated to evaluate the classification model. 
• Accuracy: The proportion of correctly classified samples to total samples. 
• Accuracy of each ice class: The proportion of correctly classified samples of a 

given class to total samples of that class. 
• Kappa coefficient: An indicator for measuring the consistency of multi-class 

models, which is based on the confusion matrix. The formula is as follows. 

𝑘𝑘 = 𝑝𝑝𝑜𝑜−𝑝𝑝𝑒𝑒
1−𝑝𝑝𝑒𝑒

  

𝑝𝑝𝑜𝑜 =
𝑚𝑚
𝑛𝑛

, 𝑝𝑝𝑒𝑒 =
∑ 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖7
𝑖𝑖=1

𝑛𝑛2
 .  

(2) 

where k is the kappa coefficient, 𝑝𝑝𝑜𝑜 is the overall accuracy, 𝑚𝑚 is the number of samples 
correctly classified, 𝑛𝑛 is the total number of samples, 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖  are the number of real 
samples and the predicted samples of ith ice level, respectively. 

3.3. Implementation 
Our experiments were conducted on a computer with the following specifications: 

Ubuntu 16.04 operating system, Intel Xeon Gold 6130 2.10GHz CPU, 256-GB Memory, and 
NVIDIA TITAN RTX GPU. Keras framework and Python programming language were 
adopted to build and train deep learning classification networks, and SVM is imple-
mented with the SVM library. 

We normalized the samples by min-max normalization. Then, the dataset was shuf-
fled randomly and divided into training set, validation set, and test set at the ratio of 8:1:1, 
all of which had the same proportion of ice types. 

For deep learning methods, we adopted cross-entropy loss function to minimize the 
error between the predicted value and the real value. Adam optimizer was used to calcu-
late and update the network parameters. In order to speed up the training, we built a high-
performance data input pipeline to load the training data into the computing device with 
128 batch-size. In addition, in model training, we also adopted the learning rate decay 
strategy and the early stopping to accelerate the model convergence and prevent overfit-
ting. 

3.4. Sea Ice Classification Performance on SI-STSAR-7 
To study the effect of spatial and temporal information on the performance of sea ice 

classification, we used the proposed dataset SI-STSAR-7 with time-steps from 1 to 6 to 
train and test three baseline classification methods. The experimental results of the base-
line methods based on ConvLSTM, CNN, and SVM on the test dataset are given in Table 
7. 

Table 7. Classification results when inputting data at different time-steps. 

Baseline 
Method 

Method 1 Method 2 Method 3 

Time-step Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa 
1 62.84 0.56 62.15 0.55 54.58 0.45 
2 82.65 0.79 78.02 0.74 74.56 0.69 
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3 88.02 0.85 83.89 0.81 79.53 0.75 
4 91.08 0.89 87.57 0.85 83.95 0.81 
5 94.68 0.93 91.18 0.89 87.76 0.85 
6 96.44 0.95 93.31 0.92 90.03 0.88 

Table 7 shows the accuracy and kappa coefficient of sea ice classification increase 
constantly with the increase of the number of time-steps for all the three methods. This 
indicates that temporal information plays a significant role in promoting the recognition 
ability of sea ice classification models. We also found that the overall performance of the 
deep learning methods (ConvLSTM and CNN) is better than the machine learning method 
(SVM). This suggests that our large dataset is suitable for deep learning models, which 
have deeper feature extraction and better learning capability. Comparing the evaluation 
results under the same time-step, Method 1 always overperforms Methods 2 and3. 
Clearly, Method 1 using the ConvLSTM network is more effective for spatiotemporal fea-
ture extraction, which contributes to identifying different sea ice types. 

More details about how the classification accuracy of different sea ice types is 
changed with the time-step are demonstrated in Figure 9a–c for the three baseline classi-
fication methods, respectively. These figures exhibit that although the overall classifica-
tion accuracy shows a positive dependence on the time step, the usefulness of sea ice tem-
poral information for classification varies with ice types. For NI, GI, and GWI, when the 
time-step is increased from 1 to 3, the recognition ability of all baseline methods is greatly 
improved, all of which reach more than 90%. We consider that this trend is related to the 
short growth period of these types of sea ice, as well as the fast ice movement. According 
to our statistics on the ice development duration in winter, the existence duration of thin 
ice is about 1–4 weeks, of which NI can exist for the shortest time, about 1 week, GI can 
survive for about 2 weeks, and GWI can survive for 3 weeks or more. Therefore, when the 
time-step is set to 3 (equivalent to 3 weeks), the three ice classes can be well distinguished. 
In addition, these relatively thin ices are usually small and move fast due to wind and 
currents. Short time-steps are more reasonable to reflect their fast change. When increas-
ing the time-step, however, the model accuracy does not drop. This indicates that the 
model has automatically learned that the previous time-step ice information is not related 
to the current ice and has given very low weights to them. 

ThinFI, MedFI, and ThickFI take more than three weeks from the initial formation to 
reaching 90% of concentration, and they exist for a long duration throughout the winter 
and move slowly due to their thicker and larger morphology. As a result, the short time-
step is not as effective as the long time-step in distinguishing them. Moreover, the three 
methods are generally better at recognizing OW, NI, GI, and GWI than ThinFI, MedFI, 
and ThickFI. It shows that the three types of first-year ice have similar characteristics and 
are difficult to differentiate. The temporal characteristics of sea ice have a higher degree 
of discrimination as the time-steps increase, which benefits sea ice with similar spatial 
characteristics. 

By comparing the three subgraphs in Figure 9, it can be found that, at the same time-
step, the recognition ability of the three methods for a certain kind of ice generally presents 
that ConvLSTM is better than CNN, and both of them are better than SVM. However, the 
MedFI category is a special case. SVM has higher classification accuracy for MedFI with a 
small time-step, and its accuracy has hardly improved with the increase of time-step. 
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(a) (b) 

 
(c) 

Figure 9. Accuracy of the baseline methods for different sea ice types at different time-steps. (a) 
Method 1; (b) Method 2; (c) Method 3. 

3.5. Sample-Producing Principle Verification 
3.5.1. Concentration Principle 

Concentration principle can ensure that the sample represents a type of sea ice as 
much as possible, so as to avoid the impact of incorrect labeling of ice type on classification 
performance. In order to verify the necessity of this principle, we selected SAR images of 
different ice types at different concentrations: 0.9 vs. 0.7 (the proportion of main ice type 
to the total ice area when the total ice concentration reaches 90% or more) and compared 
the probability density function (PDF) curves of sigma0 values of these ice types (see Fig-
ure 10). 

Figure 10a and Figure 10b are the PDF of sigma0 values of various ice types with the 
ice concentration 70% and 90% in HH polarization mode, respectively. Figure 10c,d show 
the PDFs in HV mode. Overall, the distribution of various ice types is more separated and 
more different when their concentration is 90% than it is 70%. This indicates that when 
the main ice type accounts for 70% of the total ice area, there may be more similar backscat-
tering characteristics between different ice types, making it more difficult to distinguish 
them. When the proportion of the main ice type in the total ice area increases to 90%, the 
samples can present more distinguishing characteristics of the specific ice type, which is 
helpful for reducing misclassification rate of the classification model. 

When it comes to the specific ice type, different behaviors can be found. Given that 
the PDF of OW is clearly different from other ice types, the classification between ice and 
water is relatively easier. With 70% of concentration, GI and GWI, and ThinFI and MedFI 
have almost identical PDF curves in both HH and HV modes (Figure 10a,c). These 
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phenomena are obviously improved when the ice concentration goes to 90%. There is an 
exception in Figure 10d, where the differences between NI and GI have shrunk. Never-
theless, when the data from HH and HV modes are used together, NI and GI can be easily 
distinguished. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Probability density function curves of different ice types at different concentrations. In 
the HH polarization mode, ice concentration is (a) 70% and (b) 90%; in the HV polarization mode, 
ice concentration is (c) 70% and (d) 90%. Note: Since the OW has no concentration information, its 
data is the same under the same polarization mode; NI can account for up to 70% of the total ice 
volume, so in (b,d) the concentration of NI is the same 70%; the concentration of GI in (b,d) is 80%. 

3.5.2. Ice Development Principle 
To prove the influence of ice development principle on ice classification performance, 

we constructed two small-scale datasets for verification. Both datasets have the samples 
with the time-step of 6. Table 8 describes the difference between the two datasets. All the 
data samples in Dataset 2 meet the ice development principle presented in Section 2.4 and 
cover the entire ice development process as much as possible. The samples of OW, NI, GI, 
and GWI in Dataset 1 remain the same as Dataset 2, but for the rest three types of ice 
(ThinFI, MedFI, and ThickFI), Dataset 1 only has samples whose ice concentration has just 
reached 90% (such an example is shown as sample 1 in Table 3). 

We used Method 1 based on the ConvLSTM network introduced in Section 3.1 as the 
classification method and trained it with the two sea ice classification datasets, respec-
tively. In order to verify the classification performance of the two datasets trained models, 
we used the collected SAR images of the two freezing periods to produce a test dataset 
with seven ice classes that conform to the actual situation of ice development. The results 
are given in Figure 11. By comparing Figure 11a,b, it is obvious that the classification ac-
curacy of model 2 for ThinFI, MedFI, and ThickFI is much higher than that of model 1, 
indicating that Dataset 2 can better provide the time correlation information of sea ice, so 
as to realize the high-precision classification. Therefore, the ice development principle that 
we consider when constructing spatiotemporal dataset is beneficial and necessary. 
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Table 8. Description of two datasets. 

Sea Ice Class Dataset 1 Dataset 2 
OW Meet the ice development principle. Meet the ice development principle. 
NI Meet the ice development principle. Meet the ice development principle. 
GI Meet the ice development principle. Meet the ice development principle. 

GWI Meet the ice development principle. Meet the ice development principle. 

ThinFI 
The ice concentration has just 

reached 90%. 
Meet the ice development principle. 

MedFI 
The ice concentration has just 

reached 90%. 
Meet the ice development principle. 

ThickFI 
The ice concentration has just 

reached 90%. 
Meet the ice development principle. 

 

  
(a) (b) 

Figure 11. Confusion matrix of the classification results on the test dataset. (a) Model 1 trained by 
Dataset 1, (b) model 2 trained by Dataset 2. 

3.5.3. Cross-Subswath Principle 
Cross-subswath principle is realized by setting the sample region to cross different 

subswaths through manual intervention. To visually demonstrate the effect of this princi-
ple, we constructed another dataset for comparison with our dataset SI-STSAR-7. The dif-
ference between these two datasets is that the SI-STSAR-7 contains the sample region 
across the subswaths of EW1 and EW2, while the other dataset does not. Then used them 
separately to train the classification model ConvLSTM introduced in Section 3.1. For de-
scription convenience, it is defined that the model trained using the dataset that does not 
contain cross-subswath samples is model 3, and the model trained using the dataset that 
contains the samples following cross-subswath principle is model 4. Next, we used the 
two trained models to test a whole SAR scene obtained on 24 November 2020, and gener-
ated the sea ice distribution map, shown in Figure 12. It should be noted that the SAR 
scene on 24 November 2020, was not used to make our dataset. 

The CIS weekly regional ice chart in Figure 12a highlights the SAR scene bounded by 
red lines. The sea ice distribution maps in Figure 12b,c roughly agreed with the weekly 
regional ice chart, except the lower right area where the proportions of NI and GI in the 
total ice area are both 50% according to the egg code and which dominant color could be 
NI or GI. 

Figure 12b clearly shows the influence of the scalloping effect on EW1 and the dis-
continuity effect between EW1 and EW2 on sea ice classification. These phenomena are 
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greatly improved by increasing the sample region spanning EW1 and EW2 (Figure 12c). 
This proves that the cross-subswath principle we proposed can effectively alleviate the 
disturbance of residual noise to sea ice classification. Some sea ice research chooses to 
abandon the first subswath to avoid its influence [48,50], but our method provides a po-
tential solution to this problem without losing any information. 

 
(a) 

  
(b) (c) 

Figure 12. Sea ice distribution map of SAR scene on 24 November 2020. (a) The weekly regional ice 
chart on 23 November 2021 provided by CIS. The red rectangle represents the position of the 
tested SAR scene in ice chart; (b) sea ice distribution map obtained with model 3; (c) sea ice distri-
bution map obtained with model 4. 
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4. Conclusions 
This paper provides a labeled large sea ice dataset SI-STSAR-7 based on Sentinel-1 SAR 

images for deep learning-oriented sea ice classification research. To our best knowledge, this 
is the first work to publish a sea ice classification dataset of SAR images, which contains 
both spatial and temporal information to reflect the differences of backscattering intensity 
and textures between different sea ice types, as well as the growth and development char-
acteristics of sea ice with time. The dataset is described in source data collection, SAR image 
preprocessing, and sample production. We applied three state-of-the-art machine learning 
and deep learning models to our spatiotemporal dataset for sea ice classification. This pro-
vides a benchmark for future research. By changing the time-step from 1 to 6, we proved 
the validity of the temporal information for sea ice classification and discussed the response 
speed of different sea ice types to the time-step. In addition, we also verified the effective-
ness and necessity of our proposed sample-producing principles through experiments. The 
experimental results in this paper reveal (1) the process we designed for constructing SI-
STSAR-7 is effective because the results of the baseline methods are reasonable; (2) high-
precision sea ice classification can be achieved on SI-STSAR-7, evidenced by the baseline 
method’s performance; (3) the proposed sample-producing principles can effectively allevi-
ate the impact of thermal noise on sea ice classification. We hope that SI-STSAR-7 can pro-
mote the development of sea ice research based on sea ice spatial and temporal information 
and provide a reference for relevant researchers. 

For data sharing, the spatiotemporal dataset for model training and testing (seven ice 
types with six time-step spatiotemporal data) and the spatiotemporal dataset for classifica-
tion model performance evaluation (six consecutive SAR scenes) are available on the public 
link http://ieee-dataport.org/open-access/si-stsar-7 (accessed on 29 December 2021). As dis-
cussed in Section 3.4, the time-series data are more beneficial to thicker ice than thinner ice. 
To meet for different users’ needs, this dataset can be used with any time-step between one 
and six. For example, if three time-steps are needed, you just simply remove the earliest 
three image patches from the sequence. 

There are some limitations to this work. Firstly, although our seven types of sea ice 
dataset can support fine ice classification, it does not cover land and other ice types given 
by WMO. In the future, using other regions of SAR images, we can further expand the ice 
types of this dataset for wider use. Secondly, the data sample labeling was taken the CIS’s 
ice chart as the ground truth. It is not completely accurate due to the time difference between 
the SAR image acquisition date and the weekly ice chart issue date. Moreover, the quality 
of our dataset is inevitably affected by the original SAR image quality and ice chart quality. 
Although the ice charts are quality controlled, it may still involve the subjective bias intro-
duced when producing the ice chart by sea ice analysts. For this problem, we provided a 
quality specification in the “Readme” file to indicate the conditions of the data. Thirdly, the 
classification model trained with this sea ice dataset may lead to the dependence of the 
model on the development process of sea ice over time. This will limit the ability of the 
model to classify ice that has different development characteristics from the training dataset. 
For example, the ice changes in the melting period are very different from the freezing pe-
riod. In our further research, more varied validation datasets are necessary to tackle the po-
tential problems. Finally, different visual structures (e.g., stripes, eddies) on SAR images 
affected by wind and currents may lead to misclassification of sea ice. Without purposely 
eliminating these influences, our dataset contains weather-affected samples. For deep learn-
ing models, this kind of data is conducive to increasing the robustness of the model. None-
theless, extra information of wind and currents adding as the input of the model may help 
to improve the classification accuracy of the model. 
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