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Abstract: In the remote sensing image processing field, the synthetic aperture radar (SAR) target-
detection methods based on convolutional neural networks (CNNs) have gained remarkable perfor-
mance relying on large-scale labeled data. However, it is hard to obtain many labeled SAR images.
Semi-supervised learning is an effective way to address the issue of limited labels on SAR images
because it uses unlabeled data. In this paper, we propose an improved faster regions with CNN
features (R-CNN) method, with a decoding module and a domain-adaptation module called FDDA,
for semi-supervised SAR target detection. In FDDA, the decoding module is adopted to reconstruct
all the labeled and unlabeled samples. In this way, a large number of unlabeled SAR images can be
utilized to help structure the latent space and learn the representative features of the SAR images,
devoting attention to performance promotion. Moreover, the domain-adaptation module is further
introduced to utilize the unlabeled SAR images to promote the discriminability of features with the as-
sistance of the abundantly labeled optical remote sensing (ORS) images. Specifically, the transferable
features between the ORS images and SAR images are learned to reduce the domain discrepancy via
the mean embedding matching, and the knowledge of ORS images is transferred to the SAR images
for target detection. Ultimately, the joint optimization of the detection loss, reconstruction, and
domain adaptation constraints leads to the promising performance of the FDDA. The experimental
results on the measured SAR image datasets and the ORS images dataset indicate that our method
achieves superior SAR target detection performance with limited labeled SAR images.

Keywords: synthetic aperture radar (SAR); target detection; semi-supervised learning; faster R-CNN;
deep convolution auto-encoder (AE); domain adaptation

1. Introduction

Synthetic aperture radar (SAR) is a moving radar system that works in all-day and all-
weather conditions and is capable of producing high-quality remote sensing images. With
the development of SAR imaging technology, SAR automatic target recognition (ATR) [1–9]
has developed rapidly. In general, the SAR ATR system consists of the following stages:
target detection [1–3,8,9], target discrimination [4,5], and target recognition [6,7]. As the
first stage of SAR ATR, target detection is a significant research hotspot in remote sensing
image processing.

Target detection focuses on deciding if a target of interest is present at a given position
in an image. At present, much reasearch has been devoted to the field of SAR target
detection, and the constant false alarm rate (CFAR) algorithm [8] is the most widely applied
SAR target detection method. According to the statistical characteristics of clutter, the
CFAR algorithm first calculates the detection threshold, which is then compared with the
current pixel to determine whether the pixel is the target or clutter. In [9], a Gaussian-
CFAR algorithm is developed based on the prior assumption that the background clutter
in SAR images follows the Gaussian distribution, and the algorithm achieves excellent
detection performance in some simple scenes. Though Gaussian CFAR does not need
training samples, the performance of it will degrade in some complex scenes.
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Deep-learning methods, especially convolutional neural networks (CNNs), have
gained superior performance by the way of data-driven research in the target detection
field. In recent years, the faster regions with convolutional neural network (R-CNN) fea-
tures method has gained promising detection performance on SAR images. In [1], a novel
model based on faster R-CNN is proposed by using the squeeze and excitation mechanisms,
thus achieving better detection performance and faster speeds than the state-of-the-art
method. In addition, Li et al. [3] develop an improved faster R-CNN model by introducing
a feature-fusion module, a transfer learning idea, and a hard negative mining mechanism
for ship detection. Moreover, Cui et al. [10] develop dense attention pyramid networks
(DAPN) by using the feature extractor of faster R-CNN to fuse features of multiple layers
and adaptively select significant scale features with an attention module, which performs
well on multi-scale ship detection.

Although the above faster R-CNN-based methods have shown positive effects on the
SAR target detection task, they require large-scale labeled training samples for model learn-
ing. In real situations, the labeling work for SAR images needs many labor and material
resources. When lacking labels, the SAR target detection performance will degenerate
greatly. In recent years, two main approaches, i.e., traditional semi-supervised approaches
and domain-adaptation approaches, have been proposed to address the performance
degeneration issue caused by limited labeled data in various fields [11–22].

The traditional semi-supervised methods focus on utilizing the unlabeled data to make
up for the lack of label information. In the target detection field, many semi-supervised
methods have already been developed to deal with the issue of limited labels. Rosenberg
et al. [11] apply the self-training method to a traditional target detector for semi-supervised
target detection. In [12], Zhang et al. apply the self-learning method to a target detection
network, in which pseudo-labels of unlabeled slices are predicted by the trained classifier
and the predicted negative slices are then applied for network training, which shows good
detection results on optical images. Moreover, in [13], Sohn et al. develop a framework
for an effective semi-supervised method based on self-training- and augmentation-driven
consistency regularization (STAC), which has gained promising results in optical image de-
tection. However, for SAR images with complex scenes, these self-learning methods [11–13]
are at risk of selecting the wrong clutter as the targets of interest when producing pseudo-
labels, which may lead to false detection. In [14], Wei et al. propose a novel semi-supervised
method by utilizing lots of image-level labeled images to make up for the limit of target-
level labeled images for SAR target detection. Though the method in [14] shows good
performance, it needs image-level labels for all images, which also requires a certain labor
resource. In addition, in image classification fields, the deep convolution auto-encoder [15]
is a commonly used semi-supervised network that reconstructs all the labeled and unla-
beled data. Some work [16], based on the auto-encoder network, can utilize the unlabeled
data to extract more representative features for performance improvement, which illustrates
that reconstruction performs well in semi-supervised learning.

In addition, the domain-adaptation (DA) [17] methods are another way of addressing
the performance degeneration issue. They make the unlabeled data from the target domain
participate in the learning process, which can promote the model performance on the target
domain with the assistance of the data from the source domain that contains abundant
labels. Adrian et al. [18] design a pixel-adaptation method to transfer the source images to
the target domain by means of adaptive instance normalization; thus, the transferred images
have labels. In addition, in [19], Chen et al. propose a hierarchical transferability calibration
network (HTCN), which utilizes the features’ alignment to mitigate the distributional shifts
for harmonizing the transferability and discriminability of the feature representations.
Chen et al. [20] construct a adaptive-domain faster R-CNN (DAF) that enforces the feature
distribution of the data in two related domains to be close via the domain classifier. These
methods [18–20] have shown that the DA idea can take advantage of the unlabeled data
to help model learning by introducing a related domain with abundant labels. Moreover,
Guo et al. [21] propose the domain adaptation from the optical remote sensing (ORS)
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images to the SAR images to address the issue of the small labeled training data size in the
SAR images, which validates the DA as an effective way of promoting the SAR detection
performance by using the ORS images.

Inspired by the effectiveness of the auto-encoder and domain adaptation for semi-
supervised learning, in this paper, we present an improved faster R-CNN with a decoding
module and a domain-adaptation module (FDDA) for semi-supervised SAR target detec-
tion. In detail, we first incorporate a decoding module into the baseline faster R-CNN to
build a semi-supervised detection framework, which contains a deep convolution auto-
encoder branch that performs to recover the original input data from the latent feature.
Thus, the unlabeled SAR images can participate in the training process, and more informa-
tion about the SAR images can be explored by the decoding module, which is helpful to
extract the features with strong representative capacity, and further, leads to better detec-
tion performance. The auto-encoder [22] is an unsupervised way of effectively exploring
the representative features based on the data, but it is independent of the detection task.
Furthermore, we aim to utilize the unlabeled SAR images to improve the discriminability
of features for detection. Therefore, a domain-adaptation module is introduced by utilizing
the ORS images with abundant labels to guide the learning of the features of SAR images.
More specifically, our method adopts the maximum mean discrepancy (MMD) to learn the
transferable features between the two domains, and then the discriminability of features of
SAR images is improved with the label supervision of ORS images, which is beneficial to
SAR target detection. Finally, the detection loss, reconstruction, and domain adaptation
constraints are jointly optimized to train the FDDA, devoting attention to its promising
SAR target detection performance with limited labeled SAR images.

With the proposed method, the SAR target detection task can be achieved with much
less label cost, which greatly solves the problem of limited labeled SAR images. The princi-
pal contributions of this paper are listed as follows: (1) In the SAR target detection field, a
semi-supervised detection network is constructed based on the auto-encoder framework.
By reconstructing large-scale unlabeled SAR images, more information about the targets
can be used to learn the representative features, which is beneficial to target detection.
(2) The domain-adaptation idea is applied to realize the semi-supervised learning by intro-
ducing the ORS images with abundant labels. With the domain adaptation, the unlabeled
SAR images participate in the training process to learn the discriminative features of SAR
images, which further promotes the detection performance in the case of limited labels.

The remainder of this paper is organized as follows. In Section 3, some preliminaries
covering faster R-CNN and MMD are provided. Section 3 presents the introduction to the
proposed target detection method. In Section 4, we then show some experimental results
and analyses of the SAR image datasets. Finally, the conclusion of this paper is shown in
Section 5.

2. Preliminaries

This section introduces some related preliminaries, covering faster R-CNN and maxi-
mum mean discrepancy (MMD), which are helpful to understand the proposed model.

2.1. Faster R-CNN

As a two-stage detector, faster R-CNN is composed of the following three parts: (1) the
base network; (2) the region-proposal network (RPN); (3) the region-of-interest (ROI) head.
The base network projects the input image onto the latent space to obtain a feature map,
which is then fed to the RPN. By the means of a low-dimensional convolution layer, the
RPN is implemented by scanning each point on the learned feature map, and then multiple
proposals are predicted for each point on the feature map. The proposals are operated with
ROI pooling to obtain the feature vectors with the same size. After that, two nonlinear
layers of full connection (FC) are adopted to predict the location and class of the obtained
proposals [23]. Figure 1 presents the overall architecture of traditional faster R-CNN.
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The total loss of faster R-CNN consists of the loss of the RPN branch and the loss of
the ROI branch, which is expressed as:

Lsupervised = Lrpn + Lroi (1)

Moreover, the loss function of PRN Lrpn is defined as:

Lrpn =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (2)

where Ncls denotes the number of anchors in a minibatch, Nreg represents the number of
anchor locations, Lcls and Lreg denote the classification loss and regression loss, respectively,
and λ is the weight that makes the two loss terms roughly equally balanced, in practice,
λ = 10. Moreover, the log loss of two classes (target and background) can be further
written as:

Lcls(pi, p∗i ) = − log[p∗i pi + (1− p∗i )(1− pi)] (3)

where p∗i and pi represent the ground-truth and the predicted probability of the ith anchor.
The regression loss can be written as:

Lreg(ti, t∗i ) = R(ti − t∗i ) (4)

where ti =
{

tx, ty, tw, th
}

is a vector indicating the predicted shift, and t∗i represents the
true box coordinate. R denotes the smooth L1 loss, and is defined as:

smoothL1(x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(5)

In addition, the loss of the ROI head is expressed as:

Lroi =
1

Nroi
cls

∑
i

Lcls(p, u) + λ
1

Nroi
reg

∑
i

uLreg(tu, v) (6)

where Nroi
cls and Nroi

cls denote the number of predicted targets and locations in a minibatch;
p and u represent the predicted probability and the ground-truth of class, and Lcls(p, u)
denotes the cross entropy loss of multiple classes if the number of classes is larger than
2; tu and v denote the predicted locations of and the ground-truth of the bounding boxes.
Although the original paper [23] adopts the four-step method of alternating training to
train faster R-CNN, most recent achievements directly utilize the end-to-end methods of
approximate joint training, which converge much faster.

2.2. Maximum Mean Discrepancy (MMD)

The basic statistical test criterion of maximum mean discrepancy (MMD) is as follows:
based on the samples generated by two distributions, p and q, MMD first obtains the means
of the samples mapped by a function f from the two distributions, and then the mean
discrepancy between the mapped samples from the two distributions can be obtained. As
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an effective non-parametric criterion, the MMD can be used to measure the distribution
discrepancy for the samples from two different datasets.

Recently, the MMD constraint has been applied in domain adaptation. Usually, the
domain adaptation aims to transfer the abundant knowledge of the source domain to the
target domain. However, there is great discrepancy between different domains. The MMD
can be utilized to measure the distribution discrepancy between the target domain and
the source domain. Here, let Dt =

{
xt

i
}Nt

i=1 denote the dataset from the target domain with

Nt SAR images, and Ds =
{

xs
i
}Ns

i=1 represent the dataset from the source domain with Ns
ORS images. xt

i and xs
i are matrices, and they are the real (magnitude) pixels of the images.

Dt =
{

xt
i
}Nt

i=1 and Ds =
{

xs
i
}Ns

i=1 are two datasets drawn from IID distributions p and q,
respectively. For the data from the two domains, we cannot specify the distributions p and
q for the datasets Dt and Ds, but we can know that the data in Dt have different statistical
characteristics from the data in Ds. The MMD criterion can be utilized to measure the
distribution discrepancy for the data from the two different distributions without knowing
the specific form for distributions p and q. In MMD, if there exists a mapping function f ,
the mapping of the data from the target domain is similar to that of the source domain. In
detail, the distribution discrepancy of the data with different distributions can be calculated
with MMD as:

LMMD = ‖ 1
Ns

Ns

∑
i=1

f (xs
i )−

1
Nt

Nt

∑
i=1

f
(
xt

i
)
‖

2

2

(7)

where ‖ · ‖2 denotes the L2-norm; xs
i and xt

i represent the samples from the two distributions
p and q, respectively. In general, the mapping function f in MMD, being a kernel function,
has a specific expression, and it is often chosen as the Gaussian kernel function, since the
Gaussian kernel can map the data into infinite-dimensional space, which is more expressive.
Thus, Equation (7) can be further expanded as:

LMMD =
1

(Ns)
2

Ns

∑
i=1

k(xs
i , xs

i )−
1

NsNt

Ns

∑
i=1

k
(
xs

i , xt
i
)
+

1

(Nt)
2

Nt

∑
i=1

k
(
xt

i , xt
i
)

(8)

where k(·, ·) is set as the Gaussian kernel function k
(
xs

i , xt
i
)
= e−‖x

s
i−xt

i‖
2/γ, with γ being the

kernel parameter.
In this paper, the MMD is utilized to measure the distribution discrepancy between

the features of SAR and the optical remote sensing data. The MMD can be written as:

LMMD =
1

(Ns)
2

Ns

∑
i=1

k(zs
i , zs

i )−
1

NsNt

Ns

∑
i=1

k
(
zs

i , zt
i
)
+

1

(Nt)
2

Nt

∑
i=1

k
(
zt

i , zt
i
)

(9)

where zt
i , zs

i denotes the features of the ith SAR and optical remote sensing images that are
obtained via the feature-extraction networks. By minimizing the LMMD, our network is
optimized to extract the features zt

i , zs
i that have the minimum distribution discrepancy after

being mapped to the RKHS via the Gaussian kernel function. Therefore, in our method,
MMD performs to help learn the transferable features between the SAR and optical remote
sensing data. A more detailed description of how the MMD is utilized in our proposed
method can be found in Section 3.1.2.

3. The Proposed Method

When lacking large-scale labeled training data, the existing SAR target detection
methods will be faced with the severe problem of performance degradation. To address
the issue, this paper constructs a semi-supervised method based on faster R-CNN. We
first introduce a decoding module into faster R-CNN to build a convolution auto-encoder
structure that can excavate more information from many unlabeled SAR images, and
then learn the representative features for target detection. In addition, we notice that the
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ORS images can be labeled more easily; thus, the abundantly labeled ORS images can be
collected to learn the discriminative features for target detection. In our method, we utilize
a domain-adaptation module to transfer the abundant information of the labeled ORS
images to the SAR images. Thus, the ORS images are taken as the supervisior of the feature-
extraction of the SAR images, which improves the SAR target detection performance with
limited training labels. We, ultimately, build the improved faster R-CNN with a decoding
module and a domain-adaptation module (FDDA). In this section, a detailed introduction
to the FDDA will be presented.

3.1. Model Structure

Let Ds =
{
(xs

i , ys
i )
}Ns

i=1 represent the source domain dataset (ORS image dataset) with
Ns denoting the number of ORS images, and xs

i represent the ith (i ∈ {1, · · · , Ns}) optical
remote sensing image that is a matrix and that is the real (magnitude) pixels of the images.
The label ys

i denotes the location and class label of targets in the ith image xs
i and is a set of

vectors. More specifically, assuming that there are K targets in the image xs
i , the label ys

i

represents
{

tk
x, tk

y, tk
w, tk

h, lk
}K

k=1
, where tk

x, tk
y denotes the center coordinate of the bounding

box for the kth target, tk
w, tk

h denotes its length and width, lk denotes the class number of the

kth target, and tk
x, tk

y, tk
w, tk

h, lk are real scalar numbers. Let Dt =
{

xt
i
}Nt

i=1 denote the target
domain dataset (SAR image dataset) with Nt denoting the number of SAR images, and
xt

i represent the ith (i ∈ {1, · · · , Nt}) SAR image that is a matrix, and that is also the real
(magnitude) pixels of the images. The target domain dataset Dt = Dl ∪ Du contains the

labeled data Dl =
{
(xl

i , yl
i)
}Nl

i=1
with Nl samples, and the unlabeled data Du =

{
xu

i
}Nu

i=1
with Nu samples. In the semi-supervised adaptation, the target domain has only a small
number of labeled examples, i.e., Nl � Nu.

Based on faster R-CNN, a decoding module and a domain-adaptation module are
introduced to develop our method. For the intuitive illustration, Figure 2 displays the whole
architecture of our model. As we can see from Figure 2, there are two base networks: one is
the base network (encoder) for the data from the target domain, which adopts the truncated
VGG16 network with five convolution blocks consisting of thirteen convolution layers and
four maxpooling layers in all; the other is the source base network that also adopts the
truncated VGG16 network, and it has the fixed network parameters that are pre-trained
with the labeled data from the source domain. The decoding module (decoder) has thirteen
deconvolution layers and four unmaxpooling layers. In detail, the architecture of the
encoder and the decoder is shown in Table 1. Moreover, the RPN and ROI head networks
are constructed with the same architectures as those in the original faster R-CNN [23],
which are sketched in Figure 3a,b, respectively. In addition, the decoding module recovers
the input sample to help learn the representative features, and the domain-adaptation
module utilizes the labeled ORS images to make the features of the SAR images appear
close to the discriminative features of the ORS images.
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Table 1. Overall architecture of the encoder and decoder.

Encoder Decoder

Layer Size of
Filter

Input/Output
Channel Stride Feature

Dimensions Layer Size of
Filter

Input/Output
Channel Stride Feature

Dimensions
Conv1_1 3 × 3 3/64 1 512 × 512 × 64 Unconv1_1 3 × 3 64/3 1 512 × 512 × 3
Conv1_2 3 × 3 64/64 1 512 × 512 × 64 Unconv1_2 3 × 3 64/64 1 512 × 512 × 64
Pooling1 2 × 2 64/64 2 256 × 256 × 64 Unpooling1 2 × 2 64/64 2 256 × 256 × 64
Conv2_1 3 × 3 64/128 1 256 × 256 × 128 Unconv2_1 3 × 3 128/64 1 256 × 256 × 64
Conv2_2 3 × 3 128/128 1 256 × 256 × 128 Unconv2_2 3 × 3 128/128 1 256 × 256 × 128
Pooling2 2 × 2 128/128 2 128 × 128 × 128 Unpooling2 2 × 2 128/128 2 128 × 128 × 128
Conv3_1 3 × 3 128/256 1 128 × 128 × 256 Unconv3_1 3 × 3 256/128 1 128 × 128 × 128
Conv3_2 3 × 3 256/256 1 128 × 128 × 256 Unconv3_2 3 × 3 256/256 1 128 × 128 × 256
Conv3_3 3 × 3 256/256 1 128 × 128 × 256 Unconv3_3 3 × 3 256/256 1 128 × 128 × 256
Pooling3 2 × 2 256/256 2 64 × 64 × 256 Unpooling3 2 × 2 256/256 2 64 × 64 × 256
Conv4_1 3 × 3 256/512 1 64 × 64 × 512 Unconv4_1 3 × 3 512/256 1 64 × 64 × 256
Conv4_2 3 × 3 512/512 1 64 × 64 × 512 Unconv4_2 3 × 3 512/512 1 64 × 64 × 512
Conv4_3 3 × 3 512/512 1 64 × 64 × 512 Unconv4_3 3 × 3 512/512 1 64 × 64 × 512
Pooling4 2 × 2 512/512 2 32 × 32 × 512 Unpooling4 2 × 2 512/512 2 32 × 32 × 512
Conv5_1 3 × 3 512/512 1 32 × 32 × 512 Unconv5_1 3 × 3 512/512 1 32 × 32 × 512
Conv5_2 3 × 3 512/512 1 32 × 32 × 512 Unconv5_2 3 × 3 512/512 1 32 × 32 × 512
Conv5_3 3 × 3 512/512 1 32 × 32 × 512 Unconv5_3 3 × 3 512/512 1 32 × 32 × 512
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3.1.1. Decoding Module

For the large-scale unlabeled SAR images that contain abundant information on the
SAR data, the proposed FDDA aims to use the unlabeled SAR images to help the model
learn to make up for the lack of labels. To take advantage of the abundant unlabeled
SAR images, a decoding module is first introduced to form a semi-supervised detection
framework, which is inspired by the deep-convolution auto-encoder being an unsuper-
vised model for feature extraction. The decoding module reconstructs all the labeled and
unlabeled target domain data, which can exploit more information of the SAR images to
learn the representative features for detection.

Since the base network (encoder) of the target domain adopts the truncated VGG16
network with five convolution blocks that are composed of thirteen convolution layers
and four maxpooling layers, the decoding module (decoder) has, symmetrically, thirteen
deconvolution layers and four unmaxpooling layers. In detail, the features extracted from
the conv5_3 layer of the encoder are fed to the unconv5_3 layer. In the end, the output of
decoder has the same size as that of the input image, with a size of 512× 512.

Therefore, our model extracts the features of the data from the target domain via the
encoder, and the features are then fed to the decoder to reconstruct the input data. The
reconstruction loss for the target domain data is written as:

Lrec =
1

Nt

Nt

∑
i=1
‖xt

i − x̂t
i‖

2
2 (10)

where x̂t
i is the reconstructed image of the ith input image xt

i from the target domain.
The proposed method contains a deep-convolutional auto-encoder architecture [12,22],

which consists of the base network (encoder) and the decoding module (decoder). By
reconstructing all the labeled and unlabeled SAR data, the large-scale unlabeled SAR images
can be utilized to learn the representative features, which is beneficial to target detection.

3.1.2. Domain-Adaptation Module

With abundant labels, the source domain data can learn the discriminative features
that are beneficial to detection. However, the target domain cannot achieve satisfactory
performance with limited labels. Here, the challenge is how to utilize the source domain
to help the task in the target domain. In our FDDA, we adopt the MMD constraint in our
domain-adaptation module, which aims to reduce the domain discrepancy and learn the
transferable features between the two related domains.

We note that there is some semantic similarity in the high-layer feature expression of
the ORS images and SAR images, and thus the distributions over the high-level features
can be utilized as a bridge to connect the two related domains. Specifically, to effectively
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reduce the domain shift, as some papers have also done [24], we use the maximum mean
discrepancy (MMD):

LMMD =
1

(Ns)
2

Ns

∑
i=1

k(zs
i , zs

i )−
1

NsNt

Ns

∑
i=1

k
(
zs

i , zt
i
)
+

1

(Nt)
2

Nt

∑
i=1

k
(
zt

i , zt
i
)

(11)

where zsi and zti are the feature maps corresponding to the inputs xs
i and xt

i , and k(·, ·)
is the Gaussian kernel function k

(
xs

i , xt
i
)
= e−‖x

s
i−xt

i‖
2/γ. The input images from the two

sources are both resized as 512× 512 and then fed to the feature extractor. Moreover, the
input images of the two sources are both normalized before being inputted into the feature
extractors, and thus the measurements of them are the same. Since the feature maps Zs
and Zt are both the output of the conv5_3 layer in the source and target base networks, the
ranges of them are the same.

In detail, the feature map Zs of the source domain data can be directly obtained via
feed-forward propagation of the trained base network, which is fixed in the framework.
However, the feature map Zt of the target domain data is learned with the target base
network. With the MMD constraint, the features of the data from the target domain are ap-
proximated to those of the source domain. Due to the strong discriminability ability for the
features of the source domain data, our method is capable of learning transferrable features
that can depict the characteristics of the target domain well, using only a little labeled data.
Thus, the ORS images perform as a supervisor to help improve the discriminability of the
features of SAR images.

Note that the features of the data from the source domain have strong discriminative
and representative ability. Our method is capable of learning transferrable features that
also depict the target domain well with limited labeled data. Therefore, with the MMD-
based adaptation criterion, our method can make use of the ORS images to promote target
detection performance in the case of limited labeled SAR images.

3.2. Overall Objective and Optimization

As described in Section 3.1, the proposed method contains domain-adaptation and
decoding modules, which, respectively, aim to borrow the information of the labeled source
domain data and the large-scale unlabeled target domain data. The total objective of the
constructed FDDA is expressed as:

L = Lsupervised + αLMMD + βLrec (12)

where LMMD represents the adaptation loss in Equation (4), and Lrec denotes the reconstruc-
tion loss in Equation (6); α and β are the trade-off parameters that balance the interaction of
the adaptation and reconstruction components, and Lsupervised is the supervised detection
loss, which is the same as the loss of the traditional faster R-CNN,

Lsupervised = Lrpn + Lroi (13)

with Lrpn and Lroi denoting the RPN loss and ROI loss in the detection module for tar-
get domain data, respectively. The specific expressions of Lrpn and Lroi are the same as
Equations (2) and (6).

To sum up, to train the FDDA, we first pre-train the faster R-CNN with ORS data
to obtain the learned base network with the parameter θs. Then, our goal is to minimize
Equation (7) to obtain the optimized parameters of the base network for the SAR data
with the parameter θt, the RPN with the parameter θRPN , the ROI fead with the parameter
θROI , and the decoder with the parameter θd. Here, we adopt the Adam optimizer [25] to
optimize the objection function shown in Equation (7), which consists of the supervised
detection loss, reconstruction loss, and domain-adaptation loss. Therefore, the decoder can
take advantage of the unlabeled SAR data to improve the expression ability of the learned
features, which further contributes to the superior detection performance. Moreover, the
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transferable features between two related domains can be learned by our method, and the
learned features are salient, benefiting from the deep CNN and the adaptation constraint.
During the test phase, one can remove the reconstruction and domain-adaptation modules,
and simply use the faster R-CNN architecture with learned parameters θt, θRPN , and θROI
to obtain the detection results via feed-forward propagation.

4. Experimental Results and Analysis

To evaluate the detection performance of our method, this section presents some
experimental results. The description of the measured datasets and some experimental
settings are firstly introduced. Then, some results, based on two domain adaptation
scenarios, are shown.

4.1. Description of the Datasets and Experimental Settings

In the following, some experiments are conducted based on two SAR image datasets
and one ORS image dataset. The SAR image datasets include the miniSAR dataset [26] and
the FARADSAR dataset [27], and the ORS images come from the Toronto dataset [28].

The miniSAR and FARADSAR datasets were, respectively, acquired by U.S. Sandia
National Laboratories in 2005 and 2015, and the resolution of SAR images in the two
datasets is 0.1 m × 0.1 m. The miniSAR dataset contains nine images, and the sizes of them
are 1638 × 2510 pixels; seven images were selected as the training dataset and the rest
were used for the test. The FARADSAR dataset contains 106 images with sizes ranging
from 1300 × 580 to 1700 × 1850 pixels, where 78 images were used as the training data
and the remaining 28 images were taken as the test data. In the Toronto dataset, the ORS
images cover the city of Toronto, in which the ORS images have a spatial resolution of
0.15 m and a color depth of 24 bits per pixel (RGB). There is a large image in the Toronto
dataset, with a size of 11,500 × 7500 pixels, and it is segmented into several subareas, in
which 13 and 10 subareas are, respectively, taken as the training and test datasets.

In Table 2, we list the parameters, including the incidence angles, location, scene, time,
and resolution, for the above three datasets. As we can see from Table 2, the scenes of
the three datasets are very complex. Moreover, as shown in the second column of Table 2,
there exists a small variation of the incidence angle for the miniSAR dataset, i.e., only
from 61 degrees to 64 degrees. Thus, in the experiments on the miniSAR dataset, the
variation of the incidence angle has minor impacts on the geometry variation for the targets
in the SAR images. Analogously, the third column of Table 2 shows that the incidence
angles of the FARADSAR dataset also have a small variation range, only from 56 degrees
to 61 degrees, illustrating the minor impacts on the SAR targets in the experiments with
the FARADSAR dataset. In detail, we will show some image samples to provide a more
intuitional illustration. In Figure 4, we present images samples for the two SAR datasets.
Figure 4a shows a sample in the miniSAR dataset that covers the scene of Tijeras Arroyo
Golf Course in the Kirtland Air Force Base with some of the targets (cars) locating on the
road, close to the trees, under the buildings, and so on. Analogously, Figure 4b presents an
image of the FARADSAR dataset, which is the scene of the Advisement and Enrichment
Center at the University of New Mexico. Moreover, we present an image from the Toronto
dataset in Figure 4c, which covers the complex city street scenes of the Toronto city. In
the miniSAR and FARADSAR datasets, the SAR targets contain cars, buildings, trees,
grasslands, concrete grounds, roads, vegetation, golf courses, baseball fields, helipads, and
so on. Therefore, the number of all the SAR targets is about 10. Up to now, the miniSAR
and FARADSAR datasets are the most complex SAR image datasets that we can find and
that are publicly available. It makes sense to verify the effectiveness of our method on
datasets with complex scenes.
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Table 2. The parameters of the miniSAR, FARADSAR, and Toronto datasets.

System Characteristics miniSAR FARADSAR Toronto

Incidence angle 61–64 56–61 -

Location Kirtland Air Force Base The University of New
Mexico The city of Toronto, Canada

Scenes Golf course, helicopter park,
baseball field, etc.

Dense urban buildings Dense urban buildings under
sunny weather

Time 2005 2015 2016
Resolution 0.1 m × 0.1 m 0.1 m × 0.1 m 0.15 m × 0.15 m
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In the above three datasets, the size of the images is too large to be directly used as
the network input. Thus, we first crop the original images in the three datasets into many
sub-images with sizes of 300 × 300, and then these sub-images can be used to train the
network. Moreover, in our model, these sub-images need to be resized to 512 × 512 to
input them into the base network. Analogously, the original test images are also cropped
into some sub-images, with sizes of 300 × 300, by sliding the window repeatedly, and we
set the sliding window repetition to 100 pixels. After detection for the test sub-images,
these detected images are then restored to the big SAR images with the same size as those
in the datasets. In the restoration process, we apply the non-maximum suppression (NMS)
deduplication for the detection results in the sub-images to attain the final results.

For the miniSAR dataset, there are 110 training samples, and there are 330 training
samples for the FARADSAR dataset. To validate the detection results of the semi-supervised
detection network in the case of limited labels, in this paper, the percentage of labels in
the training dataset is set to 30%. The 30% labeled training samples are randomly selected
six times from all training samples, and the mean and variance over the six random
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experiments are taken as the final test result. Moreover, the established domain-adaptation
scenarios include adaptations (1) from the Toronto dataset to the miniSAR dataset ( T → M ),
and (2) from the Toronto dataset to the FARADSAR dataset ( T → F ). In our experiments,
the original faster-RCNN is adopted as the baseline detection model.

In the objective function, the weights of the MMD and the reconstruction terms, i.e.,
α and β, are set to 0.1 and 1, respectively. The Adam algorithm is adopted for model
optimization, and the learning rate is 5 × 10−5; the decay is set to 0.1 and the momentum
is set to 0.5. Moreover, the Gaussian kernel parameter γ is set to 0.5 in our method. Our
method is implemented with Pytorch [29].

4.2. Evaluation Criteria

To comprehensively present the quantitative results of the different methods, we adopt
several widely used criteria, including precision, recall, and F1-score. In the following, we
present the formulas of these criteria as:

Precision =
TP

TP + FP
(14)

Recall =
TP

FP + TN
(15)

F1− score =
2× Precision× Recall

Precision + Recall
(16)

where TP denotes the number of correctly detected targets, FP denotes the number of
false alarms, and FN represents the number of missing alarms. The precision indicates
the fraction of true positive results over all the detected results, and the recall shows the
fraction of true positive results over ground-truths. The F1-score presents the harmonic
mean between the precision and recall, and it is taken as the main referenced criterion for
showing the detection performance.

4.3. Results on the MiniSAR Dataset

The experiments on the miniSAR dataset are conducted in this section, and the domain
adaptation from the Toronto dataset to the miniSAR dataset ( T → M ) is adopted in our
method. Firstly, the source domain data, i.e., the Toronto dataset, is utilized for faster
R-CNN training, which has gained superior detection performance on the test images of
the Toronto dataset, with the F1-score being 0.9260. Therefore, the Toronto dataset contains
abundant labeled training data that can be used to help SAR target detection.

4.3.1. Detection Performance Comparison with Other Methods

In this subsection, we evaluate the detection performance of our method on the
miniSAR dataset, comparing it to some related methods.

In Figure 5, we present the detection results of two test images obtained by the
proposed method, as well as some comparisons. As we can see from Figure 5a, the detection
results of the Gaussian-CFAR contain a lot of false alarms and some missing alarms; since
the Gaussian-CFAR is an unsupervised method, the performance is restricted when the
SAR scenes are complex. In addition, Figure 5b,c show the detection results of the DAF
and HTCN, respectively, and there are lots of missing alarms and false alarms. Since the
domain gap between the Toronto and miniSAR datasets is large, such unsupervised domain-
adaptation methods, i.e., DAF and HTCN, cannot perform well. Figure 5d illustrates that
the labels of the SAR images contribute to the better detection performance of faster R-CNN
than unsupervised methods. Moreover, as shown in Figure 5e, the DAPN benefits from
the multiple scales of feature-fusion and from the attention mechanism and thus performs
better than faster R-CNN. Figure 5f displays the results of YOLOv5 [30], which performs
well on the SAR data, since YOLOv5 benefits from the anchor-free, DropBlock, and label-
smoothing mechanism. Figure 5g,h show the results of the Rosenberg’s method and the
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Zhang’s method, respectively, which both have a large number of false alarms. They are
self-learning-based methods and tend to select the wrong clutter as the target, thereby
causing lots of false alarms. In addition, Figure 5i presents the results of STAC. Comparing
to the results of faster R-CNN, STAC can effectively reduce the missing alarms but brings
more false alarms. Since the pseudo-labels for the unlabeled data may be not correct, STAC
will regard the clutter as the target and lead to more false alarms. Moreover, in Figure 5j,
the Soft Teacher [31] benefits from the data augmentation and a soft-teacher mechanism to
improve the accuracy of the pseudo-labels, which has gained promising detection results.
Comparing to the related methods, the results of our proposed FDDA shown in Figure 5k
have much fewer missing and false alarms. With the domain adaptation from the Toronto
images to the miniSAR images, the proposed method could learn much more representative
features for detection, and the decoding module also helps learn the representative features
of the SAR data, thus leading to a much better detection performance. Furthermore, as for
two of the test images, the quantitative detection results of the proposed method and some
comparisons are displayed in Table 3. Note that the Gaussian-CFAR is directly applied
to the test images, and there is no randomicity about the method. Thus, there is no mean
and variance of results for the Gaussian-CFAR. Since the performance of CFAR algorithms
depend on the detection threshold, the results of CFAR algorithms are made best by setting
different thresholds. As we can see from Table 3, the proposed method has higher detection
precision and recall, which leads to higher F1-scores. Thus, Table 3 also validates that our
method obtains much better detection performance than the comparisons on the miniSAR
dataset.
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Figure 5. The detection results of the proposed FDDA and some related methods for the two
test images in the miniSAR dataset, where the green, red, and blue rectangles indicate the correctly
detected cars, the false cars, and the missing cars, respectively. (a) Gaussian-CFAR. (b) DAF. (c) HTCN.
(d) Faster R-CNN. (e) DAPN. (f) YOLOv5. (g) Rosenberg’s method. (h) Zhang’s method. (i) STAC.
(j) Soft Teacher. (k) Proposed FDDA.

Table 3. The detection methods of different methods on the miniSAR dataset.

T→M Supervision
Mode

Domain
Adapta-

tion

Target
Amounts

Missing
Alarms

False
Alarms Precision Recall F1-Score

Gaussian-CFAR

Unsupervised

No

123

17 176 0.3868 0.8618 0.5339
DAF Yes 100 ± 2 11 ± 3 0.6744 ± 0.0171 0.1890 ± 0.0195 0.2950 ± 0.0217

HTCN Yes 79 ± 5 23 ± 4 0.6406 ± 0.0194 0.3577 ± 0.0221 0.4591 ± 0.0231

Faster R-CNN Fully
supervised

No 12 ± 5 41 ± 7 0.7097 ± 0.0256 0.9036 ± 0.0426 0.7939 ± 0.0102
DAPN No 10 ± 2 39 ± 2 0.7334 ± 0.0072 0.9148 ± 0.0226 0.8180 ± 0.0085

YOLOv5 No 7 ± 2 40 ± 3 0.7402 ± 0.0183 0.9472 ± 0.0057 0.8310 ± 0.0138

Rosenberg’s
method

Semi-
supervised

No 11 ± 1 62 ± 4 0.6288 ± 0.0035 0.9126 ± 0.0108 0.7652 ± 0.0130

Zhang’s method No 48 ± 20 28 ± 19 0.5631 ± 0.0162 0.6098 ± 0.1644 0.5622 ± 0.0189
STAC No 1 ± 2 50 ± 6 0.6914 ± 0.0280 0.9919 ± 0.0115 0.8148 ± 0.0148

Soft Teacher No 5 ± 2 35 ± 3 0.7667 ± 0.0111 0.9593 ± 0.0081 0.8523 ± 0.0067
Proposed FDDA Yes 9 ± 2 27 ± 4 0.8169 ± 0.0221 0.9187 ± 0.0137 0.8592 ± 0.0048

4.3.2. Model Analysis

• Ablation Study

In our method, the baseline model is faster R-CNN, and we incorporate the decoding
and domain-adaptation modules to achieve superior semi-supervised SAR target detection
performance. To analyze the effect of the two modules in the proposed method, the ablation
study is conducted in the following, and Table 4 shows the quantitative experimental
results with 30% labeled training samples of the miniSAR dataset. As shown in Table 4,
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the decoding and domain-adaptation modules both devote attention to fewer missing and
false alarms, and have higher precision, recall, and F1-scores. In the proposed method, the
decoding module makes use of the unlabeled training samples to exploit much more useful
information for detection, and the MMD constraint helps learn some features depicting
the target domain data well. In this way, our method gains much better detection perfor-
mance than the baseline model, confirming the positive effect of the decoding and domain
adaptation modules in our method.

Table 4. Ablation results of our method on the miniSAR dataset.

T→M
Components Target

Amounts
Missing
Alarms

False
Alarms Precision Recall F1-Score

MMD Decoder
Faster R-CNN × ×

123

12 ± 5 41 ± 7 0.7097 ± 0.0256 0.9036 ± 0.0426 0.7939 ± 0.0102

Ours
× X 9 ± 2 34 ± 6 0.7660 ± 0.0289 0.9214 ± 0.0142 0.8362 ± 0.0162
X × 11 ± 5 36 ± 6 0.7508 ± 0.0223 0.9052 ± 0.0441 0.8198 ± 0.0088
X X 9 ± 2 27 ± 3 0.8169 ± 0.0221 0.9187 ± 0.0137 0.8592 ± 0.0048

Furthermore, the ablation experimental results of the mean and variance of the F1-
scores with different percentages of labeled training samples, from 10% to 100%, are pre-
sented in Figure 6. The faster R-CNN is the baseline model that is taught only with the
labeled training samples. In Figure 6, with the increase of the labeled training samples,
the F1-scores of all these methods gradually increase. Comparing to faster R-CNN, other
models with a decoding module or a domain-adaptation module have shown better results
with higher mean and lower variance of the F1-scores—especially our model, which features
both modules. Particularly, if the percentage of the labeled training samples is smaller,
the performance promotion of the decoding and domain-adaptation modules is more
obvious. Therefore, our semi-supervised method takes advantages of the decoding and
domain-adaptation modules to attain much better detection performance than the baseline
faster R-CNN in the case of limited labeled SAR images.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 6. The ablation study results of the F1-scores for our method with different percentages of 

labeled training samples on the miniSAR dataset. 

⚫ Reconstruction performance 

The proposed semi-supervised method is taught with the training images, in which 

only 30% of the data contain labels and the rest are unlabeled. For the unlabeled miniSAR 

images, they are recovered via the decoding module. To show the reconstruction effect of 

the decoding module, in Figure 7, we present the original and recovered samples. As we 

can see from Figure 7, comparing to the original miniSAR chips in the first row, the 

recovered samples in the second row retain the target (car) and background information, 

which shows that the convolutional autoencoder branch in our method performs well on 

recovering the original input samples. Thus, the proposed method can take advantage of 

the large-scale unlabeled SAR images for exploring more information of the miniSAR 

dataset, which is helpful for SAR target detection. 

 

Figure 7. The reconstruction results of the samples in the miniSAR dataset. The first row shows 

several original miniSAR chips, and the second row shows the corresponding recovered images via 

the decoder of the proposed method. Each column denotes the original and reconstructed chips 

pair. 

To illustrate the effect of the decoding module on the feature extraction, we compare 

the feature maps in the conv5_3 layer gained with the original faster R-CNN and the faster 

R-CNN with the decoder. Here, we take four feature maps from four channels as examples 

and show the results in Figure 8. The first image in Figure 8a presents an original test chip 

in the miniSAR dataset, and the other images in Figure 8a are its feature maps obtained 

by the original faster R-CNN, which are very fuzzy and omit some important information 

about the targets. Figure 8b shows the four corresponding feature maps via the faster R-

CNN with the decoder, and almost all of the target information is covered in the feature 

maps. Since there are a small number of labeled training images, the feature maps 

obtained by the faster R-CNN have limited representative ability. By incorporating the 
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labeled training samples on the miniSAR dataset.

• Reconstruction performance

The proposed semi-supervised method is taught with the training images, in which
only 30% of the data contain labels and the rest are unlabeled. For the unlabeled miniSAR
images, they are recovered via the decoding module. To show the reconstruction effect
of the decoding module, in Figure 7, we present the original and recovered samples. As
we can see from Figure 7, comparing to the original miniSAR chips in the first row, the
recovered samples in the second row retain the target (car) and background information,
which shows that the convolutional autoencoder branch in our method performs well on
recovering the original input samples. Thus, the proposed method can take advantage
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of the large-scale unlabeled SAR images for exploring more information of the miniSAR
dataset, which is helpful for SAR target detection.
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Figure 7. The reconstruction results of the samples in the miniSAR dataset. The first row shows
several original miniSAR chips, and the second row shows the corresponding recovered images via
the decoder of the proposed method. Each column denotes the original and reconstructed chips pair.

To illustrate the effect of the decoding module on the feature extraction, we compare
the feature maps in the conv5_3 layer gained with the original faster R-CNN and the faster
R-CNN with the decoder. Here, we take four feature maps from four channels as examples
and show the results in Figure 8. The first image in Figure 8a presents an original test chip
in the miniSAR dataset, and the other images in Figure 8a are its feature maps obtained
by the original faster R-CNN, which are very fuzzy and omit some important information
about the targets. Figure 8b shows the four corresponding feature maps via the faster
R-CNN with the decoder, and almost all of the target information is covered in the feature
maps. Since there are a small number of labeled training images, the feature maps obtained
by the faster R-CNN have limited representative ability. By incorporating the decoding
module into the faster R-CNN, the model can make use of a large number of unlabeled SAR
images to exploit representative features to cover the target information, thus improving
the expression capability of the feature maps for the targets in the SAR images.
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in (a) are the feature maps from 4 channels in the conv5_3 layer obtained by the original faster R-CNN;
(b) shows the four corresponding feature maps obtained by the faster R-CNN with the decoder.
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• Domain adaptation performance

Though the ORS and SAR images capture different scenes, for the target of interest,
such as the car, there is some semantic similarity in the high-layer feature expression. The
well-learned features of the ORS images can be used to help the feature extraction of the
SAR data via our adaptation method, and the features of the SAR data can be further
utilized for target detection. In the following, we conduct some experiments to give a clear
illustration of the interpretation of the transferred knowledge of the ORS images and show
the intuitionistic effects on the SAR images.

To analyze the domain-adaptation effect with an intuitive visualization, the original
features in the multidimensional space are mapped onto a two-dimensional space by
the means of t-distribution stochastic neighbor embedding (t-SNE) [2]. In the following,
we present the t-SNE visualization results for features of samples from the Toronto and
miniSAR datasets. In the miniSAR dataset, the training chips have 110 samples, while the
training chips in Toronto datasets have 2600 samples. Thus, 110 examples are randomly
chosen from the Toronto dataset. The features of the SAR and ORS images are, respectively,
extracted by the source and target base networks; then, the features are jointly projected
onto a common two-dimensional space by the means of t-SNE. In Figure 9, we present
the projection results of the features, and Figure 9a,b present the feature distributions
before and after adaptation, respectively. In detail, Figure 9a shows that the features
between the SAR and ORS images have clear margins, which illustrates the great domain
discrepancy between the features of the SAR and ORS image domains. Moreover, with
the MMD adaptation, the features of the SAR and ORS images distribute closely to each
other, showing that the feature distribution is aligned and that the domain shift is greatly
reduced. Since there is great discrepancy between the ORS and SAR images, the adaptation
constraint cannot totally mix the SAR and ORS images to be uniformly distributed. For a
clear illustration, corresponding to the feature of Figure 9b, we show some image examples
in Figure 9c, where the black line arrows and green line arrows indicate the miniSAR
data and Toronto data, respectively. In Figure 9c, for the samples distributed in the center,
the targets and backgrounds of the SAR images are similar to those of the ORS images.
Nevertheless, as for the samples displayed in the left column and right column of Figure 9c,
these ORS images are far away from the SAR data and have very different scenes from that
of the SAR data, such as cars under shadows, close to buildings, and so on. To a certain
degree, the MMD performs well on constraining the feature-distribution of the data from
the two domains to be close to each other, but the great discrepancy makes it hard to be as
well-proportioned as possible.
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Figure 9. The t-SNE visualization results of the features from the Toronto and miniSAR datasets. Blue:
the ORS samples in the Toronto dataset; red: the SAR samples in the miniSAR dataset. (a) Feature
visualization for the SAR and ORS samples without adaptation. (b) Feature visualization for the SAR
and ORS samples via the faster R-CNN with MMD. (c) Some examples of image chips corresponding
to the features in (b).
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Furthermore, we conduct some experiments to show the effect of the ‘transferred
knowledge’ of the ORS images to the feature maps of the SAR images. For clear illustration,
we randomly choose an image chip of a test image in the Toronto dataset, which is displayed
in Figure 10a. Correspondingly, the feature maps of four channels in the conv5_3 layer
for the chip in the first column of Figure 10a are presented in the other four columns of
Figure 10a. Since the ORS data has abundantly labeled training samples, the highlight
area of the feature maps can precisely locate the targets, which further validates the
superior performance of faster R-CNN for the ORS data. Analogously, the first image
in Figure 10b shows the image chip of a test image in the miniSAR dataset, and the other
columns of Figure 10b are the four feature maps obtained via the baseline faster R-CNN.
Correspondingly, Figure 10c presents the four feature maps obtained via the faster R-CNN
MMD adaptation. As we can see from Figure 10b, the feature maps are fairly fuzzy and
nearly cannot precisely indicate the location of the targets, indicating a limited detection
performance. Comparing to the results in Figure 10b, in Figure 10c, the results obtained via
faster R-CNN with the MMD constraint perform much better with precise locations for the
targets. Since the domain-adaptation module can transfer the abundant knowledge of the
ORS images to help the feature-extraction of the SAR images, the discriminative features of
the SAR images can be learned to depict the target characteristics precisely.
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Figure 10. Examples of the feature maps from 4 channels in the conv5_3 layer for image chips. The
first column of (a) shows the original image chip in the Toronto test dataset, the other four columns
of (a) are its feature maps obtained by the faster R-CNN. The first image of (b) displays the original
image chip in the miniSAR test dataset and the other four images of (b) are the feature maps obtained
by the original faster R-CNN; (c) shows the four corresponding feature maps obtained by the faster
R-CNN with MMD.

4.4. Results on the FARADSAR Dataset

We then show the detection results of our method on the FARADSAR dataset. Here,
the domain adaptation scenario is from the Toronto dataset to the FARADSAR dataset
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( T → F ). In the following, we present the detection results on the FARADSAR dataset
obtained by our method and some related methods.

In Figure 11, we display the detection results of two test images from the FARADSAR
dataset obtained by our method, as well as some comparisons. Due to the complex SAR
scenes in the FARADSAR dataset, the detection results of the Gaussian-CFAR are restricted,
with many false alarms and missing alarms. The unsupervised domain-adaptation methods,
including DAF and HTCN, still cannot perform well on the FARADSAR images, for there
are great domain shifts between the Toronto and FARADSAR images that cause a great
performance degradation. In addition, the baseline faster R-CNN gains promising detection
performance on the FARADSAR dataset, while YOLOv5 [30] achieves better results that
benefit from the anchor-free, DropBlock, and label-smoothing mechanism. For the self-
learning-based semi-supervised methods, i.e., Rosenberg’s method and Zhang’s method,
the clutter in the SAR scenes of the FARADSAR dataset are easily regarded as the targets;
thus, the results of the two methods have many false alarms. Moreover, STAC utilizes the
pseudo-labels of the unlabeled images and the data-augmentation strategy to retrain the
model, which achieves fewer missing alarms but more false alarms than faster R-CNN. The
Soft Teacher [31] is still effective on the FARADSAR dataset, by means of a soft-teacher
mechanism that produces accurate pseudo-labels for the unlabeled data. However, our
method gains better results than the comparisons, with fewer missing and false alarms,
since the decoding and adaptation modules can use the unlabeled images and the ORS
images to promote detection results. Furthermore, for a clearer illustration, the quantitative
detection results are illustrated in Table 5, from which the same conclusions as Figure 11
can be obtained. Thus, the results in Figure 11 and Table 5 both validate that our method
outperforms the comparisons on the FARADSAR dataset.
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Figure 11. The target detection results of different methods for the two test images in the FARADSAR
dataset, where the green, red, and blue rectangles indicate the correctly detected cars, the false
cars, and the missing cars, respectively. (a) Gaussian-CFAR. (b) DAF. (c) HTCN. (d) Faster R-CNN.
(e) DAPN. (f) YOLOv5. (g) Rosenberg’s method. (h) Zhang’s method. (i) STAC. (j) Soft Teacher.
(k) Proposed FDDA.

Table 5. The target detection results of different methods on the FARADSAR dataset.

T→M Supervision
Mode

Domain
Adapta-

tion

Target
Amounts

Missing
Alarms

False
Alarms Precision Recall F1-Score

Gaussian-CFAR
Unsupervised

No

691

368 823 0.2813 0.4671 0.3512
DAF Yes 448 ± 12 119 ± 23 0.6405 ± 0.0166 0.3252 ± 0.0119 0.4315 ± 0.0157

HTCN Yes 484 ± 18 243 ± 16 0.4228 ± 0.0142 0.2741 ± 0.0124 0.3304 ± 0.0214
Faster R-CNN Fully

supervised

No 54 ± 8 209 ± 39 0.7482 ± 0.0231 0.9219 ± 0.0145 0.8260 ± 0.0142
DAPN No 89 ± 14 144 ± 19 0.8000 ± 0.0137 0.8509 ± 0.0191 0.8341 ± 0.0046

YOLOv5 No 89 ± 6 113 ± 11 0.8373 ± 0.0123 0.8712 ± 0.0082 0.8538 ± 0.0025
Rosenberg’s

method
Semi-

supervised

No 185 ± 12 325 ± 23 0.4506 ± 0.0067 0.7325 ± 0.0108 0.5580 ± 0.0059

Zhang’s method No 142 ± 26 917 ± 35 0.3744 ± 0.0163 0.7945 ± 0.0208 0.5090 ± 0.0129
STAC No 39 ± 6 220 ± 18 0.7477 ± 0.0146 0.9435 ± 0.0082 0.8343 ± 0.0088

Soft Teacher No 50 ± 8 157 ± 6 0.8035 ± 0.0036 0.9276 ± 0.0112 0.8611 ± 0.0062
Proposed FDDA Yes 49 ± 6 141 ± 12 0.8184 ± 0.0135 0.9291 ± 0.0088 0.8681 ± 0.0129

To show the effectiveness of the proposed semi-supervised method in different cases
of limited labels, we conduct the experiments with different percentages of labeled training
samples on the FARADSAR dataset. The mean and variance results of the F1-scores with
different percentages of labels, from 10% to 100%, are shown in Figure 12. As displayed in
Figure 12, when the percentage of labels increases, the detection performance of different
models gradually improves and becomes steady when the percentage of labels is large
enough. Moreover, comparing to the baseline model (faster R-CNN), the decoding module
(decoder) and domain-adaptation module in our method both have a positive impact on
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the detection results, with a higher mean and lower variance of the F1-score. Notably, when
the percentage of labels is smaller, the performance improvement of the models with the
decoder and domain-adaptation modules is more obvious. Therefore, the ablation study
results on the FARADSAR dataset validate the effectiveness of the decoder and MMD for
utilizing the large-scale unlabeled SAR images to promote the semi-supervised SAR target
detection performance.
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of limited labels, we conduct the experiments with different percentages of labeled 
training samples on the FARADSAR dataset. The mean and variance results of the F1-
scores with different percentages of labels, from 10% to 100%, are shown in Figure 12. As 
displayed in Figure 12, when the percentage of labels increases, the detection performance 
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is large enough. Moreover, comparing to the baseline model (faster R-CNN), the decoding 
module (decoder) and domain-adaptation module in our method both have a positive 
impact on the detection results, with a higher mean and lower variance of the F1-score. 
Notably, when the percentage of labels is smaller, the performance improvement of the 
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labeled training samples on the FARADSAR dataset.

5. Conclusions

This paper focuses on the construction of an improved faster R-CNN for semi-
supervised SAR target detection by taking advantages of a decoding module and a domain-
adaptation module. Our method introduces the decoding module to explore more in-
formation of SAR images by reconstructing all labeled and unlabeled images, which is
beneficial to learn the representative features for target detection. Moreover, by adopting
the domain-adaptation module, our method can utilize the unlabeled SAR images to further
promote the discriminability of the features with the assistance of labeled ORS images, and
thus, the features can depict the targets precisely and are useful for target detection. Our
method is an end-to-end framework that is learned by jointly optimizing the detection
loss, reconstruction, and domain adaptation constraints. Experiments on two measured
SAR image datasets illustrate that our method outperforms the original faster R-CNN with
a clear margin under the condition of limited labeled SAR images, thus confirming the
effectiveness of our method for semi-supervised SAR target detection.
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