
����������
�������

Citation: Xue, B.; Yuan, Y.; Wang, H.;

Wang, H. Evaluation of the Integrity

Risk for Precise Point Positioning.

Remote Sens. 2022, 14, 128. https://

doi.org/10.3390/rs14010128

Academic Editors: Kamil Krasuski

and Damian Wierzbicki

Received: 4 December 2021

Accepted: 27 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Evaluation of the Integrity Risk for Precise Point Positioning
Bing Xue 1,2 , Yunbin Yuan 1, Han Wang 1,2 and Haitao Wang 1,*

1 State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement
Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China;
xuebing@asch.whigg.ac.cn (B.X.); yybgps@asch.whigg.ac.cn (Y.Y.); wanghan@apm.ac.cn (H.W.)

2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: whigg_wang@whigg.ac.cn

Abstract: Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive
positioning technology due to its high precision and flexibility. However, the vulnerability of PPP
brings a safety risk to its application in the field of life safety, which must be evaluated quantitatively
to provide integrity for PPP users. Generally, PPP solutions are processed recursively based on
the extended Kalman filter (EKF) estimator, utilizing both the previous and current measurements.
Therefore, the integrity risk should be qualified considering the effects of all the potential observation
faults in history. However, this will cause the calculation load to explode over time, which is
impractical for long-time missions. This study used the innovations in a time window to detect
the faults in the measurements, quantifying the integrity risk by traversing the fault modes in the
window to maintain a stable computation cost. A non-zero bias was conservatively introduced
to encapsulate the effect of the faults before the window. Coping with the multiple simultaneous
faults, the worst-case integrity risk was calculated to overbound the real risk in the multiple fault
modes. In order to verify the proposed method, simulation and experimental tests were carried out
in this study. The results showed that the fixed and hold mode adopted for ambiguity resolution is
critical to an integrity risk evaluation, which can improve the observation redundancy and remove
the influence of the biased predicted ambiguities on the integrity risk. Increasing the length of the
window can weaken the impact of the conservative assumption on the integrity risk due to the
smoothing effect of the EKF estimator. In addition, improving the accuracy of observations can also
reduce the integrity risk, which indicates that establishing a refined PPP random model can improve
the integrity performance.

Keywords: precise point positioning; integrity risk; extend Kalman filter; probability distributions;
fault modes

1. Introduction

Precise single positioning (PPP) technology can provide high-precision positioning
for Global Navigation Satellite System (GNSS) users with the help of precise correction
information, and by utilizing the code and carrier phase observations [1–3]. Generally, the
positioning accuracy of the kinematic PPP solution with float-ambiguity after convergence
can reach the decimeter to centimeter level. An even better solution and shorter convergence
time can be obtained with the integer carrier-phase ambiguities resolved correctly [4–8].
Unlike traditional differential positioning, such as real time kinematic (RTK) and network
RTK, PPP is an absolute positioning technology that requires no reference stations and
can be applied anywhere in the world. Moreover, PPP can also be augmented by a
regional reference station network or integrated with satellite based augmentation system
services [9–14]. Benefiting from the high precision and flexibility, the application range
of PPP is gradually expanding, even moving toward the life-critical field, such as in
automotive, maritime and air navigation applications [15–18]. For users in the field relating
to life safety, the accuracy is no longer the most concerning requirement but the safety,
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which means the positioning solution must be reliable and trustworthy [19,20]. Compared
with single point positioning (SPP), PPP is more vulnerable because there are more potential
sources of failure, which are categorized into the following five groups in [21]: satellite
and signal faults, atmosphere anomalies, product and correction faults, work environment
anomalies, and user-end faults. These faults may contaminate observations and result in
unsafe PPP location results. Typically, observation faults can be detected, to some extent,
based on the data quality control algorithms in PPP [22,23]. Unfortunately, the ones that
successfully escape detection may cause a hazardous position error (PE) to the unaware
users due to poor observation geometries. In GNSS integrity monitoring, this situation is
called hazardous misleading information (HMI), defined as the user’s PE exceeding the alert
limit (AL, defined by the requirements), while no timely alarm is triggered. For life-critical
applications, the HMI events can cause great potential dangers to the user’s positioning
safety. Therefore, it is of vital importance to evaluate the probability of HMI (also called
integrity risk) quantitatively to provide confidence on the current positioning results.

Receiver autonomous integrity monitoring (RAIM) is a user-level algorithm to ensure
the reliability of positioning that originates in the field of civil aviation [24]. RAIM contains
two basic functions; one is fault detection and exclusion, and the other is the evaluation
of integrity risk. The former is realized by the designed fault detector and threshold. The
latter quantifies the risk of the undetected faults by providing an upper bound of the real
integrity risk, or equivalently, providing the protection level (PL) to overbound the PE
according to the integrity risk requirement [25]. After decades of development, RAIM
has evolved from traditional RAIM to Advanced RAIM (ARAIM) [26]. The former was
originally designed to provide services for GPS (Global Positioning System) aviation users
during the on route phase calculating the PL under no more than one undetected fault
hypothesis [27,28]. The latter was developed with the emergence of multi-frequency and
multi-constellation to provide integrity for flight phases with more stringent requirements
(for instance, Localizer Performance with Vertical Guidance 200 foot minima, LPV-200)
considering multiple simultaneous undetected faults [29,30]. The aviation RAIM algorithms
are implemented for SPP with the least-squares estimator (snapshot estimator), which only
uses the observations at the current moment. Differently, the extended Kalman filter (EKF)
estimator is widely adopted for PPP positioning, which is a recursive estimator utilizing
both the previous and current measurements [31]. Indeed, the EKF solution coincides with
the batch least square solution that uses the current and all the previous measurements
as well as the propagation equations [32]. However, it is unsuitable to directly apply the
existing snapshot RAIM algorithms to PPP in the batch least square form because of the
increasing amount of matrix storage and calculation over time, especially for the long-time
mission. To provide integrity for EKF applications, Tanil et al. [33,34] proposed a sequential
integrity monitoring method using chi-square detection considering all the measurement
faults in history. However, it still cannot avoid the problem of the increasing computation
load. In this regard, Arana et al. [35] introduced a time window monitoring method to
maintain the constant computation requirements. Meanwhile, it is robust against faults
prior to the window, which is important for the practical implement of integrity monitoring
for the EKF estimator.

Limited studies for PPP integrity have been conducted in recent years and have not
been well-accepted in models and methods. The authors of [36,37] adopted the traditional
RAIM algorithms directly in PPP, which potentially assumed that the predicted states were
fault-free and only a single fault in the current observations. However, the assumptions
are not appropriate for PPP because the predicted states may contain biases caused by the
previous undetected faults. Moreover, the use of observations from multi-frequency and
multi-constellation will increase the possibility of instantaneous multiple faults, especially
when utilizing the phase observations. Based on the ARAIM algorithms developed earlier,
Gunning et al. [38] initially designed the integrity monitoring for PPP using the multiple
hypothesis solution separation algorithm, but brought a computational burden due to the
use of a bank of parallel filters. Accordingly, Blanch et al. [39] chose the suboptimal filters
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to reduce the calculation cost and, therefore, degraded the integrity performance due to
the increased PL. However, the results suggested that the degradation may be acceptable
given the potential computational load savings. To provide PL for PPP in multipath prone
environments, Blanch et al. [40] further modified the threat model to better account for
local threats to guarantee the integrity in challenging environments such as urban and
suburban roads. Facing the challenge of providing the integrity for land users, the Spanish
company GMV proposed their own integrity concept, which was a little different from that
commonly used in the aviation field [41]. The PL they constructed claimed to have good
performance under different test conditions; however, adequate mathematical explanations
of the related methods rarely appear in the literature.

In order to extend PPP to the life-critical field, the integrity risk of the PPP solution
should be evaluated quantitatively to ensure the users’ safety. The evaluation method
should not only adapt to the characteristics of the PPP processing, but also have an appro-
priate calculation cost for practical applications. This study evaluated the integrity risk
considering multiple simultaneous undetected faults under the conservative assumption
that the predicted states in the EKF are biased, which are caused by the previous mea-
surement faults. Based on a previous study [35], a time monitoring window was adopted
to reduce the impact of the conservative assumption and maintain the computation load.
Moreover, the influence of ambiguity was also considered. The remainder of this contribu-
tion is organized as follows. First, Section 2 introduces the EKF processing and the method
of integrity risk evaluation. Secondly, the PPP simulation experiment is designed, and the
related results are analyzed in Section 3. Finally, some conclusions and future work are
given in Section 4.

2. Methods
2.1. EKF Processing

EKF estimator is widely adopted in PPP algorithms, which is implemented based on
the following prediction model:

xk = Φk|k−1xk−1 + Γkwk where wk ∼ N(0, Qk) (1)

and the following observation model:

zk = Hkxk + fk + vk where vk ∼ N(0, Rk) (2)

where the subscript k stands for the current epoch; x is the true states including the user’s
coordinates, receiver clock or other estimates; Φ is the state evolution matrix and Γ is the
noise coupling matrix; z represents the linearized observation vector and H is the linearized
design matrix; w and v denote the nominal process noise and observation error, which are
both assumed to be white Gaussian noise with the covariance matrix Q and R, respectively;
and f is the observation fault vector caused by the various anomalies mentioned in the
introduction part. Generally, f is modeled as an unknown bias vector whose elements are
nonzero only when measurements are contaminated. This means that under a fault-free
condition, f is a zero vector. In this study, the state evolution model was assumed to not
have any faults, and the faults only appeared in the observations. The EKF processing can
be implemented using the following equations:

x(−)k = Φk|k−1x(+)
k−1 (3)

P(−)
k = Φk|k−1P(+)

k−1ΦT
k|k−1 + ΓkQkΓT

k (4)

γk = zk − Hkx(−)k (5)

Wk = (HkP−k HT
k + Rk)

−1
(6)
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Kk = P−k HT
k Wk (7)

x(+)
k = x(−)k + Kkγk (8)

P(+)
k = (I − Kk Hk)P(−)

k (9)

where the superscript (−) and (+) denote the predicted and updated values, respectively;
P is the variance covariance matrix that contains the uncertainties of the states; W is the
weight matrix of the innovation vector γ; and K is the Kalman gain matrix. The EKF can be
operated recursively once x(+)

k−1 and P(+)
k−1 are initialized.

2.2. Integrity Risk Evaluation

For integrity monitoring, an integrity risk evaluation is required to quantitatively
describe the impact of undetected faults on the safety of current positioning, which is
expressed as the probability of HMI as follows:

P(HMIk) = P(|εk| > AL ∩ Dk < T) (10)

where εk = αδx(+)
k is the PE in the direction of interest and δx(+)

k = x(+)
k − xk is the

EKF estimated state error. α is the corresponding extraction vector; for instance, α =[
1 0 0 · · · 0

]
is set for the PE in the first direction. Dk is the designed fault detector

and T is the corresponding threshold. To calculate (10), the probability distributions of εk
and Dk are required, which will be demonstrated next.

2.2.1. The Distribution of PE and Detector

Under the normality of the observation error and process noise, PE is normally dis-
tributed as follows:

εk ∼ N(αµ
(+)
k , αP(+)

k αT) (11)

where µ
(+)
k is the expectation of δx(+)

k . As shown in Appendix A, µ
(+)
k is influenced by the

current and all previous observation faults. Given a time window of M epochs prior to k,
µ
(+)
k can be expressed as follows:

µ
(+)
k = AM

k f M
k (12)

where AM
k is a known matrix containing EKF information in the window as shown in

Appendix A. f M
k =

[
f T
k f T

k−1 · · · f T
k−M µ

(+)
k−M−1

T
]T

is the combined fault vector
that contains the faults in the window and encapsulates the faults prior to the window into
the bias at k−M− 1 epoch.

The fault detector should react when a fault occurs. In the EKF, the innovations
measure the consistency between the actual measurements and the predicted ones. As a
result, in this study, the fault detector was defined as the sum of squares of the normalized
innovations in the time window as follows:

Dk = (γM
k )

T
WM

k (γM
k ) (13)

where γM
k =

[
γT

k γT
k−1 · · · γT

k−M
]T denotes the innovations in the window. WM

k is
the correspond weight matrix expressed as WM

k = Diagblk
[

Wk Wk−1 · · · Wk−M
]
,

where Diagblk[·] means forming a diagonal block matrix. Since the innovations at different
epochs are independent [33], the detector follows a non-central chi-squared distribution
as follows:

DM
k ∼ χ2(nM

k , λM
k ) (14)
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where nM
k is the degree of freedom, which is equal to the number of observations in the

window. λM
k is the non-centrality parameter as follows:

λM
k = ( f M

k )
T

YM
k ( f M

k ) (15)

where YM
k is a known term derived in Appendix B. Under the fault-free condition ( f M

k = 0),
the detector follows a central chi-squared distribution and the threshold T can be determined
for a given false alarm requirement, Pf a, as follows:

T = χ−2
nM

k
[1− Pf a] (16)

where χ−2
a [·] is the inverse central chi-squared cumulative distribution function with the

degree of freedom of a.
One advantage of selecting an innovation-based detector is that the PE and fault

detector are independent [33]. Therefore, the Equation (10) becomes the following:

P(HMIk) = P(|εk| > AL)P(Dk < T) (17)

Under the fault-free condition, Equation (17) can be calculated directly based on
the known distributions of the PE and detector. However, the distributions are not clear
for the faulted conditions due to the unknown f M

k , which is the difficulty for integrity
risk evaluation.

2.2.2. Fault Mode

To simplify the problem, the integrity risk can be evaluated under all potential fault
modes, which are all combinations of observation faults in history. However, as the
number of observations used by EKF estimator increases, the number of fault modes rises
exponentially, which will cause the calculation load to explode over time [31]. In this
regard, this study only considered the fault modes within the time window to maintain the
computation cost, since the number of fault modes within the time window was relatively
stable [35]. In addition, a non-zero bias µ

(+)
k−M−1 was conservatively introduced to contain

the effect of the observation faults prior to the window. This conservative assumption
is reasonable, because, on the one hand, the integrity risk can be appropriately given a
conservative value; on the other hand, its impact can be weakened by the window due to
the smoothing effect of the EKF estimator.

Using the total probability rule, the integrity risk can be expressed as follows:

P(HMIk) =
nh

∑
i=0

[P(HMIk|hi)P(hi)] (18)

where hi represents the i-th fault mode and, in particular, h0 means the observations in
the window are fault free. Given the independence of different observation faults, P(hi)
indicates the probability of j instantaneous faults as follows [29]:

P(hi) = P(h0)
j

∏
s=1

Ps_ f ault

1− Ps_ f ault
(19)

where P(h0) =
nM

k
∏

s=1
(1− Ps_ f ault) and Ps_ f ault is the probability of the fault on the s-th obser-

vation. In ARAIM, Ps_ f ault is obtained from the integrity support message [30]. However,
in this study, Ps_ f ault was given by a prior value for the purpose of algorithm research.

Although a time window was adopted, evaluating the integrity risk under all fault
modes was still computationally intensive. Fortunately, it was unnecessary because the
probability of a large number of instantaneous faults was very low. Therefore, this study
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only evaluated the risk for the modes with no more than nmax simultaneous faults, and
conservatively overbounded the risk for the modes with more than nmax faults as Punevaluated
using the following equation [29]:

1
nmax!

(
nM

k

∑
s=1

Ps_ f ault)
nmax ≤ Punevaluated (20)

where Punevaluated is the user defined integrity risk allocation that accounts for the risk
of unevaluated fault modes and nmax can be determined as the largest integer that from
Equation (20). Therefore, P(HMIk) can be overbounded as follows:

P(HMIk) ≤
nh_max

∑
i=0

[P(HMIk|hi)P(hi)] + Punevaluated (21)

where nh_max denotes the number of fault modes with no more than nmax faults.

2.2.3. The Worst-Case Integrity Risk

In the i-th fault mode, the unknown fault vector f M
k,i is still left to be determined to

calculate the term P(HMIk|hi) in Equation (21). In this regard, the concept of “worst-case”
commonly used in integrity monitoring is introduced to determine the worst-case integrity
risk. Angus et al. [42] showed that the direction of f M

k,i that maximizes P(HMI|hi) is the
one that results in the highest slope, which is defined as follows:

Slopei =
(αAM

k f M
k,i )

T
αAM

k f M
k,i

( f M
k,i )

TYM
k f M

k,i

(22)

where the numerator is the squared expectation of the PE, and the denominator is the
non-centrality parameter of the fault detector. For f M

k,i 6= 0, the denominator of Equation (22)
is positive. Therefore, YM

k is a positive definite matrix that can be orthogonally decomposed
as YM

k = CΛCT , where Λ is a diagonal matrix composed of the eigenvalues of YM
k , and C

is an orthogonal matrix composed of the corresponding eigenvectors. Equation (22) can be
expressed further as follows:

Slopei =
( f ∗i )

TG f ∗i
( f ∗i )

T f ∗i
(23)

where f M
k,i = CΛ−1/2CT f ∗i and G = CΛ−1/2CT(AM

k )
T

αTαAM
k CΛ−1/2CT . For the expres-

sion of Equation (23), the maximum slope is the maximum eigenvalue of G and the worst
direction of f ∗i is that of the corresponding eigenvector qdir. Therefore, the worst direction
of f M

k,i can be expressed as follows:

f M
k,i,worst_dir = CΛ−1/2CTqdir (24)

and the worst P(HMIk|hi) can be obtained by searching the magnitude of f M
k,i (‖ f M

k,i ‖)
along f M

k,i,worst_dir:

P (HMIk|hi)worst = max
‖ f M

k,i ‖
[P(|Z|> AL)P(Dk < T)] (25)

where Z ∼ N(‖ f M
k,i ‖αAM

k f M
k,i,worst_dir, αP(+)

k αT) and Dk ∼ χ2(nM
k , ‖ f M

k,i ‖
2 f M

k,i,worst_dir
YM

k f M
k,i,worst_dir). Ultimately, the integrity risk output to the user is as follows:

P(HMIk)output =
nh_max

∑
i=0

P (HMIk|hi)worstP(hi) + Punevaluated (26)
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Once P(HMIk)output exceeds the requirement, the current positioning solution will be
considered unreliable, and the system will be declared unavailable.

3. Experiments
3.1. Design of the Simulated PPP

In this section, a simulated PPP was designed to verify the method of integrity risk
evaluation. The reason for adopting a simulation test is that on the one hand, it can strictly
guarantee the normality of the errors, which is the precondition for integrity monitoring;
on the other hand, it is more effective to control the changing of inputs in order to validate
the performance of the algorithm. In this study, a simulated dynamic ionosphere-free (IF)
PPP was designed and the states included the receiver coordinates, velocities, accelerations,
receiver clock, zenith tropospheric delay (ZTD), and IF ambiguities.

Figure 1 shows the entire simulation process, including the prediction of states, obser-
vation simulation, linearization, fault detection, update, and risk evaluation. The process
started with the prediction of the states. The coordinates, velocities, and accelerations were
predicted using a constant acceleration model. The receiver clock error was modeled by
the white noise. ZTD was modeled as random-walk noise using a Saastamoinen model
and Niell Mapping Function [43,44]. The ambiguities were considered to be time invariant.
In the observation simulation part, the IF code and phase observations were generated
based on the truth of states and the satellite precise orbit and clock products provided by
the GeoForschungsZentrum Potsdam (GFZ) center. The observation errors were randomly
generated by the given covariance. The generation of process noise in the prediction part
was similar but is not shown in the figure for brevity. In the update part, the fixed and
hold mode was adopted for an ambiguity resolution. That is, if the ambiguity change of a
certain satellite is continuously smaller than the given threshold for epochs, the ambiguity
will be fixed and no longer be estimated in the EKF until the satellite descends. Table 1
shows the configuration of the related parameters for the simulated PPP positioning and
integrity risk evaluation.
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Table 1. Configuration of the parameters for the simulated PPP and integrity risk evaluation.

Input Information Settings

Navigation system GPS
Calculation interval 10 (s)

Period 9/19/2021 00:00:00–9/19/2021 02:00:00
Cut-off elevation 10◦

Weighted model Elevation weighted

Standard deviation of raw observations Code: σP = 100σφ

Phase: σφ = 0.3 (cm)

Standard deviation of initialized states\process
noise

σPosition = 1\0.01 (m)
σVelocity = 10\0.01 (m)

σAcceleration = 10\0.01 (m)
σReceiver Clock = 10\0 (m) for every epoch

σZWTD = 0.5\10−4 (m)
σAmbiguity = 1\10−6 (m)

Pf a 10−7

Ps_ f ault 10−5

Punevaluated 10−8

AL 0.1 (m) for the east and north directions and 1
(m) for the up direction

Length of the window 2 epochs

3.2. Experimental PPP Test

To verify the effect of the proposed method in the real environment, the static IF PPP
experiments were carried out using the data collected by four International GNSS Service
(IGS) tracking stations (as shown in Figure 2). The observation data and precise products
could be accessed from the Crustal Dynamics Data Information System (CDDIS) center. The
state parameters contained receiver coordinates, a receiver clock, ZTD, and IF ambiguities.
The receiver coordinates were considered to be time invariant, and the other parameters
were modeled in line with the description in the simulated PPP. The fixed and hold mode
was still adopted for the ambiguity resolution. Moreover, the ambiguity parameters would
be reinitialized when a new satellite rose, and a cycle slip occurred. The detailed processing
strategies for the experimental PPP are listed in Table 2. The configuration of parameters
for integrity risk evaluation is the same as that set for the simulated PPP in Table 1.
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Table 2. Detailed processing strategies for the experimental static PPP.

Items Strategies

Navigation system GPS
Frequencies L1, L2

Calculation interval 30 (s)
Period 9/19/2021 00:00:00–9/19/2021 04:00:00

Weighted model Elevation weighted

Standard deviation of raw observations Code: σP = 100σφ

Phase: σφ = 0.3 (cm)

Standard deviation of initialized states\process
noise

σPosition = 1\0 (m)
σReceiver Clock = 10\0 (m) for every epoch

σZWTD = 0.12\10−4 (m)
σAmbiguity = 0.6\10−4 (m)

Precise satellite orbits and clocks Products provided by the GFZ center

Differential code bias Corrected by the products provided by the
Chinese Academy of Sciences

Relativistic effect Corrected
Phase wind-up Corrected

Earth rotation effects and tidal displacements Corrected by the earth rotation file provided by
the GFZ center

Antenna phase center offset and variation
correction Corrected by the igs14_2178.atx file

Truth of station coordinate Provided by the igs21P21760.snx file
Ambiguity resolution Fixed and hold mode

4. Results and Discussion
4.1. Simulated Results

This section shows the results of the simulated PPP. Figure 3 shows the PEs, three
times of updated standard deviations (STDs) and ALs for the east (E), north (N) and up
(U) directions. After a period of convergence (about 15 min), the accuracy of the PEs
can reach the centimeter level and the RMSs are 1.0, 0.8 and 2.5 cm for the E, N and U
directions, respectively. Figure 4 demonstrates the integrity risk evaluated for the E, N, and
U directions. The green solid lines and blue dotted lines show the output integrity risk with
and without ambiguity fixed, respectively. It can be seen that if the strategy of ambiguity
fixed is not adopted, the integrity risk is almost equal to one all the time, which means that
the algorithm will not be available. This is because when the ambiguities are estimated
as floating points in the EKF, there are fewer redundant observations. In addition, the
algorithm assumes, conservatively, that the updated states before the window are biased,
which amplifies the impact of ambiguities on the integrity risk. Therefore, the ambiguities
are partially fixed in this study and, subsequently, are no longer estimated in order to
reduce the number of states in the EKF and improve the observation redundancy. From
Figure 5, it can be seen that as the filtering progresses, the ambiguities begin to be partially
fixed, and the number of estimates in the EKF decreases accordingly. After about 17 min,
all the ambiguities are fixed, and the integrity risk is drastically reduced correspondingly,
as shown by the green solid lines in Figure 4.

Figure 6 demonstrates the change of the fault detector and threshold. Since no faults
were added into the simulated observations, the chi-square test statistic is always less than
the threshold. For the strategy of ambiguity fixed adopted in this study, the fault detector
can protect the PE from the contamination of the ambiguity fixed error. Furthermore,
even if the ambiguity fixed error escapes detection, the integrity risk caused by the wrong
ambiguities can be quantified to ensure the reliability of the positioning.
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Figure 7 shows the integrity risk evaluated using the configuration in Table 1 but with
windows of different lengths. It can be seen that increasing the length of the window will
reduce the integrity risk, since the longer window reduces the impact of the conservative
assumption that the undetected faults prior to the window always exist and result in the
worst estimate bias at the k−M− 1 epoch. However, increasing the length of the window
without a limit will result in a computational burden due to the increased number of fault
modes. Therefore, the length of the window should be selected appropriately, trading off
the computing performance of the hardware and the actual integrity requirements.
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To quantify the effect of the random model, the configuration in Table 1 is used but
with different STDs of the raw observations to evaluate the integrity risk and accuracy
of the PE. Figure 8 and Table 3 show the corresponding integrity risk and RMSs of the
PE, respectively. It can be seen that reducing the STD of the raw observations can not
only improve the accuracy of the positioning result, but also reduce the risk of integrity.
Therefore, the establishment of a reliable and refined PPP random model is very important
to improve the performance of accuracy and integrity.
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Table 3. The RMS of the PEs using different STDs of raw observations after convergence (unit: cm).

σφ E N U

0.3 1.0 0.8 2.5
0.4 1.3 1.1 3.4
0.5 1.8 1.4 4.2

4.2. Experimental Results

This section shows the results of the experimental PPP. Figure 9 displays the static
PPP positioning results of the four IGS stations. It can be seen that after about 15 min of
convergence, the positioning accuracy can reach the centimeter level. The RMSs of the
E, N and U directions are 3.1, 2.2 and 2.8 cm for the BREW station, 1.6, 2.6 and 2.6 cm
for the FAIR station, 2.5, 1.0 and 6.1 cm for the HUEG station, and 0.8, 0.5 and 4.8 cm for
the DAV1 station, respectively. Figure 10 shows the time series of the fault detectors and
thresholds using the window length of 2, 4 and 6 epochs for the four stations. No obvious
observation faults were detected in this experimental stage. Some obvious protrusions on
the change curves of the detector are caused by the initialization of the ambiguities of the
newly rising satellites.
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Figure 9. The three PEs, including the updated STDs and ALs of the: (a) BREW station; (b) FAIR
station; (c) HUEG station; and (d) DAV1 station. The top, middle and bottom panels of each figure
represent the east (E), north (N) and up (U) directions. The RMSs of the PEs after convergence are
noted on the panel, respectively.
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Figure 10. Time series of the fault detector and threshold of the: (a) BREW station; (b) FAIR station;
(c) HUEG station; and (d) DAV1 station. The top, middle and bottom panels of each figure represent
the length of time windows of 2, 4 and 6 epochs, respectively.

Figure 11 shows the integrity risk evaluated using the corresponding lengths of
the window for the four stations. All the stations complete the initialization (ambiguity
resolution) before 30 min and then start the integrity risk evaluation. It can be seen that the
integrity risk results of the different stations are inconsistent during the same positioning
period. This is mainly because, on the one hand, the different observation geometries
are caused by the different positions of the stations; on the other hand, the difference
in the ambiguity resolution results in a different observation redundancy, especially the
reinitialization of the ambiguities caused by the rise of new stars and cycle slips. Noted
by different colors, the integrity risk evaluated using different lengths of window for each
station are also shown in Figure 11. It can be seen that increasing the length of the window
can reduce the integrity risk, which is consistent with the results of the simulated PPP.
However, there are periods when the degree of risk reduction is not obvious, such as from
50 to 70 min in the N direction of the HUEG station and from 90 to 120 min in the U
direction of the DAV1 station. This is related to the poor observation geometries during
these periods, requiring a longer window to further reduce the risk.
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5. Conclusions

In this study, the integrity risk of PPP was evaluated quantitatively considering the
recursive characteristics of the EKF solution. A time window was employed to maintain the
computation load by traversing the fault modes limited within the window. To account for
the impact of the faults prior to the window, a non-zero bias was conservatively introduced.
Dealing with the multiple instantaneous potential faults, the worst-case integrity risk was
quantified to overbound the real risk in multiple fault modes. Moreover, the fixed and hold
mode was adopted for an ambiguity resolution to remove the influence of the ambiguities
in the integrity risk.

The methodology of the integrity risk evaluation for PPP was derived rigorously.
The effect was validated in both the simulated and experimental tests, which show a
good consistency. The results suggest that the fixed and hold strategy adopted for the
ambiguity resolution is the key to applying this method to PPP, as it can increase the
observation redundancy and thereby reduce the integrity risk. Moreover, it can also
remove the influence of the biased predicted ambiguities on the integrity risk under the
conservative assumption. Increasing the length of the window can further weaken the
impact of the bias on the integrity risk because of the smoothing effect of the EKF estimator.



Remote Sens. 2022, 14, 128 16 of 19

However, selecting the length of the window should weigh the computing load and the
given integrity requirements. The STD of the raw observations was changed to investigate
the influence of the random model on the integrity risk. The result shows that reducing the
STD cannot only improve the positioning accuracy, but also decrease the integrity risk. This
indicates that establishing a refined PPP random model can improve the PPP positioning
and integrity performance, which will be studied in future work.
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Appendix A

This appendix shows that the bias of the current EKF estimates can be expressed as a
function of the current and all the previous observation faults. Given a time window of M
epochs, the current estimated bias can be expressed by the faults in the window and the
bias at the k−M− 1 epoch.

First, by substituting Equations (2) and (7) into (8), the EKF estimate at epoch k can be
expressed as follows:

x(+)
k = (Ik − Kk Hk)x(−)k + Kk Hkxk + Kk( fk + vk) (A1)

Then, by subtracting the truth of state xk from both sides of Equation (A1), the EKF
estimate error can be obtained as follows:

δx(+)
k = (Ik − Kk Hk)δx(−)k + Kk( fk + vk) (A2)

Taking the expectation of both sides of Equation (A2), the estimate bias µ
(+)
k =

E(δx(+)
k ) can be expressed as follows:

µ
(+)
k = (Ik − Kk Hk)µ

(−)
k + Kk fk (A3)

Therefore, the current estimate bias is not only affected by the current observation
faults, but also by the bias of the predicted state. Using Equations (1) and (3), the prediction
bias can be expressed further by the estimate bias at the last epoch as follows:

µ
(−)
k = Φk|k−1µ

(+)
k−1 (A4)
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Finally, by substituting Equation (A4) into (A3), µ
(+)
k can be expressed as follows:

µ
(+)
k = Ak f 1

k (A5)

where Ak =
[

Kk Uk
]
, Uk = (Ik − Kk Hk)Φk|k−1 and f 1

k =
[

f T
k µ

(+)
k−1

T
]T

. Noting the

recursive feature of Equation (A5), µ
(+)
k can be further expressed by the current and all the

previous faults. Given the time window of M epochs, µ
(+)
k can be expressed as follows:

µ
(+)
k = AM

k f M
k (A6)

where AM
k =

[
Kk UkKk−1 [· · · ] UkUk−1 · · ·Uk−(M−1)Kk−M UkUk−1 · · ·Uk−M

]
and

f M
k =

[
f T
k f T

k−1 [· · · ] f T
k−M µ

(+)
k−M−1

T
]

is the combined fault vector, which contains
the faults in the window and encapsulates the faults prior to the window into the bias at
the k−M− 1 epoch.

Appendix B

This appendix shows that the non-centrality parameter of the fault detector’s dis-
tribution can also be expressed as a function of the combined fault vector f M

k shown in
Appendix A.

Based on Equations (2), (3) and (5), the innovation vector at the k epoch, γk, can be
shown as follows:

γk = −Hkδx(−)k + fk + vk (A7)

The expectation of γk can be expressed as follows:

E(γk) = −Hkµ
(−)
k + fk (A8)

Thus, E(γk) is also affected by the current observation faults and the bias of the
predicted state. Given Equation (A4), E(γk) can be further expressed as follows:

E(γk) = −HkΦk|k−1µ
(+)
k−1 + fk (A9)

Similarly, E(γk) can be also expressed by the combined fault vector f M
k as follows:

E(γk) = BM
k f M

k (A10)

where BM
k =

[
Ik −HkΦk|k−1 AM−1

k−1

]
. For 1 ≤ i ≤ M, E(γk−i) can be expressed as

E(γk−i) =
[

0 BM−i
k−i

]
f M
k . Thus, the expectation of the innovation sequences in the

window, E(γM
k ), can be shown as follows:

E(γM
k ) = BM

k f M
k (A11)

where BM
k = Uptriblk

[
BM

k BM−1
k−1 · · · B0

k−M

]
and Uptriblk[·] means forming an up-

per triangular matrix. By substituting Equation (A11) into (15), the non-centrality parameter
can be expressed by the combined fault vector f M

k as follows:

λM
k = ( f M

k )
T

YM
k ( f M

k ) (A12)

where YM
k = (BM

k )
T

WM
k (BM

k ).
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