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Abstract: Detection of forest pest outbreaks can help in controlling outbreaks and provide accurate
information for forest management decision-making. Although some needle injuries occur at the
beginning of the attack, the appearance of the trees does not change significantly from the condition
before the attack. These subtle changes cannot be observed with the naked eye, but usually manifest
as small changes in leaf reflectance. Therefore, hyperspectral remote sensing can be used to detect
the different stages of pest infection as it offers high-resolution reflectance. Accordingly, this study
investigated the response of a larch forest to Jas’s Larch Inchworm (Erannis jacobsoni Djak) and
performed the different infection stages detection and identification using ground hyperspectral
data and data on the forest biochemical components (chlorophyll content, fresh weight moisture
content and dry weight moisture content). A total of 80 sample trees were selected from the test area,
covering the following three stages: before attack, early-stage infection and middle- to late-stage
infection. Combined with the Findpeaks-SPA function, the response relationship between biochemical
components and spectral continuous wavelet coefficients was analyzed. The support vector machine
classification algorithm was used for detection infection. The results showed that there was no
significant difference in the biochemical composition between healthy and early-stage samples, but
the spectral continuous wavelet coefficients could reflect these subtle changes with varying degrees
of sensitivity. The continuous wavelet coefficients corresponding to these stresses may have high
potential for infection detection. Meanwhile, the highest overall accuracy of the model based on
chlorophyll content, fresh weight moisture content and dry weight moisture content were 90.48%,
85.71% and 90.48% respectively, and the Kappa coefficients were 0.85, 0.79 and 0.86 respectively.

Keywords: Jas’s Larch Inchworm; continuous wavelet coefficients; chlorophyll content; fresh weight
moisture content; dry weight moisture content; SVM

1. Introduction

Jas’s Larch Inchworm (Erannis jacobsoni Djak) is a forest pest that is mainly distributed
in northern and northeastern Mongolia. As the main defoliators of coniferous forests
in Khentii Province, Mongolia, Jas’s Larch Inchworm (JLI) poses serious threats to the
ecological security of the Siberian larch (Larix sibirica Ledeb) forest [1]. Mongolia is rich
in forest resources dominated by coniferous forests, which make up 76.6% of the total
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forest area and provide good habitat for insects. According to statistics from the Mongolian
Ministry of Forestry, the area of the larch forest threatened by JLI increased from 46,838 hm2

to 292,833 hm2 between 2010 and 2017, making it the most serious pest in Mongolia. Forest
destruction will increase the likelihood of forest fires and pose a serious threat to the forest
ecosystem [2,3]. According to reports, as of 17 April 2020, Mongolia has 23 counties in seven
provinces including Arhangei, Bulgan, Donald, Serenge, Sukhbaatar, Kenti and Huwengur.
A total of 31 forest and grassland fires occurred over an area of 9.82 hm2 and caused severe
economic damage. With global warming, longer dry spells and longer summers have
created conditions for harmful forest pests to survive, which has increased the pressure on
forest pests [4,5]. We have checked a lot of the literature on forest pest and found that there
are few studies on JLI pests in the world. In particular, there are few experimental studies
on remote sensing technology, and it is difficult to control the spread of JLI in larch forests.

Timely detection of pests and diseases is an important link for foresters to control the
spread of pests [6]. Traditional JLI detection methods rely heavily on the visual recognition
and empirical analysis of local national experts. This method is time-consuming, labor-
intensive, and problematic [7–9]. Even in the early stages of the attack, JLI did not show any
obvious symptoms on the forest canopy, and it was difficult to be detected in time. Hence,
it is very important to develop an effective method for detecting JLI infection in Siberian
larch forests. The pest feeds on needle leaves and twigs, altering the content of biochemical
components (such as chlorophyll content and water content) in leaves from late May to
June (larval stage) every year [10]. As the severity of pest infestation increases, the loss
rate of needles will increase, and the color of the Siberian larch forest canopy will change
from green (“green attack”) to yellow (“yellow attack”) to red (“red attack”), and finally
to gray (“gray attack”) [10]. The transition period from the green canopy to the yellow
canopy is called the green attack stage, which is the early stage of pest infestation [11,12].
Many studies on plant diseases and insect pests show that the detection rate of yellow, red
and gray attack is higher [13–15]. However, the detection of “green attack” is relatively
low, although the stress of biochemical components such as leaf chlorophyll content and
water content are obviously detected at this stage [16,17]. The study also showed that
hyperspectral techniques can be used to estimate the chlorophyll and water content of
forest leaves under pest stress. For instance, RL et al. [18] analyzed the sensitivity between
absorption characteristics, three-band ratio indices of spectra, and corresponding relative
water content of oak leaves. They concluded that the relative moisture content of oak leaves
and the absorption characteristic parameters exhibit linear relationships at 975 nm, 1200 nm,
and 1750 nm, which indicates that hyperspectral can capture changes in moisture content.
Zhang et al. [19] used spectral continuous wavelet coefficients to estimate the chlorophyll
content of corn pests, and the results confirmed the potential of hyperspectral inversion
for determining chlorophyll content. Asner et al. [20] developed a spectrum feature of
Rapid Ohia Death (ROD) and found that 80% of plants infected with fungal pathogens had
reduced water content and chlorophyll content. From what has been said above it can be
seen that hyperspectral data are obviously very sensitive to these small changes and can
offer technical assistance in the detection of pest forests.

The hyperspectral continuous wavelet transform detects small changes in forest tree
infestation status, which can improve the weak or insignificant spectral signals caused by
the infestation and highlight some characteristic information, such as the spectral absorp-
tion and reflection properties of the shape and position of the canopy or leaves [21–23]
Therefore, the use of continuous wavelet coefficients is very important for detecting forest
pests at different stages of infestation. This experiment aims to explore a new method for ex-
tracting continuous wavelet spectral features sensitive to chlorophyll and moisture content.
Pearson correlation analysis is usually used to extract sensitive spectral features [19,24–26].
Then the more sensitive spectral bands are further screened out by statistical analysis. For
the correlation analysis of the entire waveband, a correlation value is obtained for each
waveband, so that the obtained value is continuous and forms a waveband curve with
inconsistent fluctuations. Peck et al. [27] A review article summarized some peak extraction
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algorithms, from which we found that the Findpeaks function can effectively divide the
highest peaks into an interval. This is an effective algorithm for extracting sensitive bands
and is worth using in this research. Since the sensitive band extracted by the Findpeaks
function may not correctly explain the contribution of the relevant band to target detection,
we introduce a successive projections (SPA) algorithm. If the number of original bands is
large, the process will take a long time, but the RMSE value can quantify the whole process.
This feature makes SPA more suitable for practical applications [28].

In addition, some machine learning algorithms have been successfully applied to de-
tect the symptoms of plant infestation. For example, Tian et al. [29] used the SVM algorithm
to successfully identify the different degrees of damage to rice leaf blast infected rice plants,
and the classification accuracy rate in both the asymptomatic phase and the early stage
of infection exceeded 80%. Sarangdhar et al. [30] developed a support vector machine
algorithm to identify cotton leaf diseases, and the classification result was 83.26%. These
studies show that the support vector machine algorithm has great potential in monitoring
plant symptoms. Support Vector Machine is a non-parametric method that attempt to use
an optimal hyperplane for training data in a multidimensional feature space. Therefore,
when data is classified from multiple sources, it can have better classification accuracy
than non-parametric methods such as the method of maximum likelihood. At present,
the remote sensing research using hyperspectral continuous wavelet coefficients to detect
pest infection status is still immature. In particular, the hyperspectral classification of
asymptomatic, early and infected larch has not, to our knowledge, been attempted under
the stress of JLI infestation. In response to the above problems, the overall goal of this
research is to establish a classification method based on Findpeaks-SPA-SVM to provide
the most important experimental data and theoretical basis for large-scale detection of
JLI, identification of asymptomatic, early and infected larch trees. Therefore, the specific
objectives are: (1) By analyzing the differences in the sensitivity of different biochem-
ical components of larch to different hyperspectral continuous wavelet coefficients, to
explore the potential of different biochemical components in detecting pest infected forests;
(2) Evaluate the classification accuracy of Findpeak-SPA-SVM algorithm in asymptomatic,
early and infection stages and the best combination of hyperspectral features.

2. Materials and Methods
2.1. Study Area

The study site is a larch forest in northeastern Mongolia (110◦46′1.2′′E to 110◦46′33.6′′E,
48◦26′13.2′′N to 48◦26′34.8′′N) (Figure 1). It is located 100 km from Khentii Province and
has a total area of 16.75 hm2 and an annual average altitude of 1330 m. The study area has
a continental climate, with an annual average temperature of 20 ◦C in June and July and an
average annual precipitation of 200–300 mm [31]. The forest has a single tree species (larch),
and it is characterized by poor forest quality and susceptibility to outbreaks of JLI. Larch
trees in the study area exhibit different levels of damage, which can represent different
stages of pest infestation. Therefore, it can meet the needs of this research.

2.2. Data Preparation and Preprocessing
2.2.1. Selection of Sample Trees

JLI pests damage larch forests mainly during the period from late May to mid-July
(larval stage). During this time, the larvae will eat a large number of healthy needles
and twigs, which will seriously damage the tree and change the color of the leaves [1,10].
Therefore, sample trees were selected on the basis of leaf loss rate and canopy color data.
Canopy color data were determined through a combination of visual discrimination in the
field and indoor photo identification (using the straw tool of Adobe Photoshop software to
obtain the RGB information of larch canopy photos) (Figure 2). For the data of leaf loss rate,
typical branches were selected from the upper, middle, and lower levels of each sample tree,
and a total of six typical branches were selected. Then the number of damaged needles and
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healthy needles were counted, and the leaf loss rate of each sample number was calculated
using Equation (1):

LLRi =
1
6 ∑6

i=1
NLi

(NLi + NHi)
× 100%, (1)

where LLRi is the leaf loss rate of the i-th (i = 1, 2, 3 . . . 79, 80) sample tree, and its
value is in the range of 0% to 100%. NHi and NLi are the number of healthy needles and
damaged needles, respectively, of the i-th sample branch. This sampling approach provides
a fairly accurate and feasible method for spectral identification of forest canopy affected by
insects. The JLI attack is highly likely to begin at the upper crown, and the entire sampling
process from the upper to the middle and lower layers is a scalable sampling method for
investigating chaotic insect invasion.
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As shown Table 1, sample larch trees with a leaf loss rate of 0–5% and a green canopy
color were defined as healthy trees (before attack). Sample larch trees with a leaf loss rate of
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5–15% and a green canopy color were defined as damaged early trees (early–stage infection).
Sample larch trees with a leaf loss rate of 15–100% and yellow, red, and gray canopy colors
were defined as damaged trees (middle to late-stage infection). In this manner, 19 healthy
trees, 21 damaged early trees, and 40 damaged trees were selected from the test area as the
basic data of the hyperspectral identification model (Table 1).

Table 1. Sample tree evaluation table.

Tree Class Healthy Tree Damaged Early Tree Damaged Tree

Leaf loss rate 0–5% 5–15% 15–100%
Canopy color Green Green Yellow, red, and gray

2.2.2. Hyperspectral Data Collection and Preprocessing

In the experiment, the ground object spectrometer, SVC HR-102, was used; this spec-
trometer has a spectral range of 350–2500 nm. During the collection of hyperspectral
reflectance data, the same distance (approximately 20 cm) was maintained between the
instrument probe and the needle of the sample tree and the correction distance of the white-
board; the field of view angle was 25◦, vertical downward, and the data were collected
under fine weather conditions from 10:30 a.m. to 14:30 p.m. Cut a typical branch from the
upper, middle, and lower layers of each sample canopy. Hyperspectral data for each layer
were collected five times, and the whiteboard was calibrated for each sample tree to ensure
accuracy and reliability of the data.

Regarding the preprocessing of the collected hyperspectral data, random noise in-
terference was first removed using the ViewSpecPro hyperspectral processing software,
abnormal and duplicate spectra were then eliminated, and the effective spectra of each
sample tree were averaged to obtain the original spectral data representing the sample
tree. On the basis of obtaining the original spectral reflection data, the Spectral Math tool
of ENVI software was used to obtain the smooth spectral curve (weighted coefficient 5),
and then the spectra were transformed into a series of continuous wavelet coefficients
on the 21–10 scale in MATLAB2021b software. The principle is to transform the original
hyperspectral reflectance into a series of wavelet energy coefficients at different scales and
positions using wavelet bases. The specific Equations (2) and (3) are as follows:

ψa,b(λ) =
1√
a

ψ

(
λ− b

a

)
, (2)

W f (a, b) = ( f , ψa,b) =

+∞∫
−∞

f (λ)ψa,b(λ)dλ, (3)

where ψa,b(λ) is the mother wavelet basis, a and b are the scale factor and the shift fac-
tor, respectively, W f (a, b) is the wavelet coefficient, f (λ) is the reflection spectrum, and
λ is the wavelength (350–1800 nm). The specific mother wavelet bases are as follows:
1© Biorthogonal wavelet function series: bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8,

bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, and bior6.8; 2© Coiflets wavelet
function series: coif1, coif2, coif3, coif4, and coif5; 3© Daubechies wavelet function series:
db1, db2, db3, db4, db5, db6, db7, db8, db9, and db10; 4© Symlets wavelet function series:
sym2, sym3, sym4, sym5, sym6, sym7, and sym8.

2.2.3. Data Collection and Preprocessing of Biochemical Components

(1) Chlorophyll content data

The SPAD-502 portable chlorophyll meter was used to measure the relative chloro-
phyll content of larch needles. In the determination of leaf SPAD value, as leaf thickness,
development stage, and environmental conditions are variable, the actual chlorophyll
content has a certain influence, and it needs to be strictly controlled [32]. In this study,



Remote Sens. 2022, 14, 124 6 of 19

only one test area was considered, and its development stage and environmental stage
were relatively consistent. Therefore, in order to improve the universality of experimental
data, we ensured that the thickness of the needles of each sample tree was as consistent
as possible during the clamping of experimental instruments. The specific approach is
to ensure that the needle samples to be tested completely cover the instrument receiving
window, and the needles should be arranged in a layer. According to this experimental
process, at least three repeated measurements were performed on each tree, and the average
value was taken to represent the relative chlorophyll content of the sample tree. Then the
absolute chlorophyll content was further calculated by Equation (4):

y = 0.996x + 1.52, (4)

where y is absolute chlorophyll content (µg/cm2), and x is relative chlorophyll content.

(2) Water content data

First, three twigs of similar sizes were cut from each sample tree, and their weights
were averaged in the field. Then, they were sealed and taken to the laboratory for drying
and weighing. The average weight of branches weighed in the field is called fresh weight,
and the average weight of branches dried in the laboratory is called dry weight. It should
be noted that the fresh weight and dry weight data cannot truly represent the moisture
content of each sample tree. Many scholars use the fresh weight moisture content and dry
weight moisture content to express the moisture content of plant tissues [33–35]. The fresh
weight and dry weight moisture contents were calculated by Equations (5) and (6):

LWCF =
FW − DW

FW
× 100%, (5)

LWCD =
FW − DW

DW
× 100%, (6)

where FW is the fresh weight, DW is the dry weight, and LWCF and LWCD are the fresh
weight and dry weight moisture contents of twigs, respectively.

2.3. Method

The overall research technical route of the hyperspectral identification of JLI infection
forest in the different stage is shown in Figure 3

2.3.1. Sensitivity Analysis

Before conducting a sensitivity analysis, the significant differences in the biochem-
ical composition of healthy, early damaged and damaged trees should be assessed. We
calculated the mean, maximum, minimum, and standard deviation (std) of various sam-
ple trees (Table 2). The conditions for measuring biochemical composition in the field
have some accumulated errors in the process of environmental, instrument and human
operation. Therefore, the abnormal and non-compliant sample trees are eliminated. In
addition, the experiment considers the authenticity of the measured biochemical composi-
tion values, so the data quality of the sample tree we select must ensure that it meets the
experimental requirements.

The Pearson correlation analysis method was used to determined significant correla-
tions between the biochemical components and continuous wavelet coefficients. The value
of p and the correlation coefficient (r) determine the correlation between them. The smaller
the p-value, the more significant the correlation between variables. The closer the value
of r is to 1, the better the sensitivity. This study analyzed the correlation between forest
biochemical composition and spectral continuous wavelet coefficients to understand the
distribution of sensitive spectral bands under JLI attack.
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Table 2. Descriptive statistics of biochemical components of different types of sample trees.

Chlorophyll Content (µg/cm2) Fresh Weight Moisture Content Dry Weight Moisture Content

Max Min Mean Std Max Min Mean Std Max Min Mean Std

Healthy tree 50.30 39.39 44.51 2.79 0.74 0.62 0.69 0.04 2.76 1.61 2.00 0.37
Damaged early tree 38.45 28.41 32.87 3.35 0.67 0.57 0.62 0.04 1.54 1.09 1.31 0.15

Damaged tree 27.16 4.41 13.95 5.38 0.57 0.02 0.26 0.15 1.08 0.02 0.40 0.28

2.3.2. Sensitive Hyperspectral Feature Extraction

The number of peak points in the waveform function and the corresponding peak
values can be rapidly extracted using the Findpeaks function in MATLAB2021b [36–38].
When the value of a function is greater than the left and right adjacent dependent variables,
it is defined as a peak value. In this study, the Findpeaks toolbox function was used to
automatically find the R2 peak between the biochemical components and hyperspectral
features, and then extract the corresponding sensitive hyperspectral features. Findpeaks
function has two important parameters. The first is mpd, which is expressed as the
minimum distance between adjacent peaks in the frequency band R2; the other is mph,
which is expressed as the minimum height between adjacent R2 peaks. There is no clear
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standard for the choice of mpd and mph, which depends on the requirements of the
experiment. After observing the R2 results and considering the band range, we select the
mpd and mph values to be 20 and 0.25, respectively. The result of this parameter selection
is to control the number of extracted bands between 0–90 (band range is 350–1800 nm)
and its R2 value will be greater than 0.25 (p < 0.05) for the purpose of extracting to reach
sensitive hyperspectral feature extraction.

The successive projection algorithm (SPA) has been successfully applied in many stud-
ies on the dimensionality reduction processing of vegetation hyperspectral features [39–42].
SPA can overcome the collinearity between sensitive bands, select important wavelengths,
and establish reliable models. The principle for the SPA to select the sensitive band is that
the selected sensitive band is the new sensitive band among all remaining sensitive band
and the new sensitive band has the largest projection value on the orthogonal subspace
of the previously selected sensitive band and use the root mean square error (RMSE) as a
scoring standard to determine the optimal band. The principle and steps of SPA algorithm
are explained in many related articles, so there is no more description here. Because of
the Findpeaks function extracts many sensitive hyperspectral features, including a large
amount of low sensitivity spectral feature information. Therefore, in order to improve the
stability and accuracy of the detection model, the SPA is used to further process the Find-
peaks processing results to obtain high-sensitivity hyperspectral features (the combined
algorithm is denoted as Findpeaks-SPA).

2.3.3. Model Establishment and Evaluation

From the data of all larch sample trees, 59 trees (70%) were selected as the training
sample data, and the remaining 21 (30%) trees as the verification sample data. The training
sample data includes 14 healthy trees, 15 damaged early trees, 29 damaged trees, and the
rest is verification sample data. The sensitive spectral features of chlorophyll content, fresh
weight moisture content, and dry weight moisture content extracted based on Findpeaks-
SPA were taken as independent variables of the model, and sample trees at different stages
of damage were taken as the dependent variables. Using the support vector machine (SVM)
algorithm, the hyperspectral recognition model was established, and we evaluated the
accuracy of the model. SVM algorithm have been widely used in many fields, and I have
made many achievements in various applications [43–46]. Therefore, it is worthwhile to try
to apply these methods in this research.

Support vector machines are non-parametric supervised classifiers. It follows the
strategy of minimizing structural risk, constructs an optimal separation hyperplane, and
maximizes the boundary between classes with fewer support vectors. Compared with
traditional training methods, this can achieve accurate classification results in a data
structure with fewer training samples and stronger aggregation. [47–49]. We use a free
library (LibSVM) with radial basis function (RBF) kernel to perform support vector machine
tasks. Its classification accuracy and precision are mainly controlled by the parameters c
and γ. γ controls the width of the Gaussian kernel and c controls the penalty for training
samples on the wrong side of the decision limit. The value of c will determine the number
of support vector machines obtained. For example, the smaller the value of c, the smaller
the number of support vectors obtained and the greater the classification error; otherwise,
the larger the number of support vectors, the problem of overfitting arises. Taking into
account the rationality of the parameters c and γ, we use the libSVM library for grid search
and five cross-validations.

In order to evaluate the accuracy of the classification model, we use MATLAB2021b
software to construct a confusion matrix for the classification results. We can obtain four
model evaluation indexes: user accuracy (UA), producer accuracy (PA), overall accuracy
(OA) and Kappa coefficient. The specific effects of these indicators have been explained in
many articles [50,51], so they will not be repeated here.
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3. Results
3.1. Sensitivity Analysis of Hyperspectral Features to Biochemical Components

Given that the spectral continuous wavelet coefficients appear to be related to the
outbreak of JLI, the correlation coefficient r squared (R2) between spectral continuous
wavelet coefficients and the biochemical components (chlorophyll content, fresh weight
moisture content and dry weight moisture content) were analyzed. Differences in the
responses of the biochemical components to different wavelengths of spectral continuous
wavelet coefficients were identified. A significant correlation was observed when the pest
outbreak conditions significantly influenced the biochemical components, indicating that
the pest outbreak causes varying degrees of changes in the biochemical components of the
larch. Therefore, the components exhibited different sensitivities to different bands of the
continuous wavelet coefficients of the spectrum. The coefficients between the continuous
wavelet coefficients and chlorophyll content, fresh weight moisture content, and dry weight
moisture content at each wavelength are shown in Figure 4.

The continuous wavelet coefficients exhibited varying degrees of sensitivity to the bio-
chemical components, although the sensitivities were very similar with subtle differences.
In relative terms, the spectral continuous wavelet coefficients were highly sensitive to fresh
weight moisture content, followed by chlorophyll content and dry weight moisture content,
which indicates that the pest outbreak had a stronger effect on fresh weight moisture con-
tent than on chlorophyll content and dry weight moisture content. This finding suggests
that the continuous wavelet coefficients can capture these subtle changes, thus facilitating
the early identification of pest outbreaks.

Figure 4a shows that the R2 between the continuous wavelet coefficients and chloro-
phyll content varies with wavelength. From the R2 of different bands, the chlorophyll
content appears to have an obviously significant correlation (R2 > 0.56; p < 10–15), with
good sensitivity mainly in the ranges of 540–581 nm, 596–699 nm, 723–804 nm, 954–956 nm,
974–1011 nm, 1134–1143 nm, 1166–1199 nm, 1245–1275 nm, 1313–1386 nm, 1412–1467 nm,
1483–1485 nm, 1500–1664 nm, 1743–1770 nm, and 1784–1785 nm.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

 

 
  

Figure 4. Cont.



Remote Sens. 2022, 14, 124 10 of 19
Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 

 

 
Figure 4. Variations of R2 (the correlation coefficient r squared) with wavelength between the spec-
tral continuous wavelet coefficients and: (a) chlorophyll content (b) fresh weight moisture content; 
and (c) dry weight moisture content. 

Figure 4b shows that the R2 between the continuous wavelet coefficients and fresh 
weight moisture content varies with wavelength. From the R2 of different bands, the fresh 
weight moisture content appears to have an obviously significant correlation (R2 > 0.56; p 
< 10–15), with good sensitivity mainly in the ranges of 537–583 nm, 595–709 nm, 723–804 
nm, 953–962 nm, 967–1010 nm, 1053–1083 nm, 1130–1139 nm, 1162–1206 nm, 1247–1279 
nm, 1315–1386 nm, 1404–1468 nm, 1480–1486 nm, 1503–1672 nm, 1746–1772 nm, and 1783–
1785 nm. 
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continuous wavelet coefficients and: (a) chlorophyll content (b) fresh weight moisture content; and
(c) dry weight moisture content.

Figure 4b shows that the R2 between the continuous wavelet coefficients and fresh
weight moisture content varies with wavelength. From the R2 of different bands, the fresh
weight moisture content appears to have an obviously significant correlation (R2 > 0.56;
p < 10–15), with good sensitivity mainly in the ranges of 537–583 nm, 595–709 nm, 723–804 nm,
953–962 nm, 967–1010 nm, 1053–1083 nm, 1130–1139 nm, 1162–1206 nm, 1247–1279 nm,
1315–1386 nm, 1404–1468 nm, 1480–1486 nm, 1503–1672 nm, 1746–1772 nm, and 1783–1785 nm.

Figure 4c shows that the R2 between the continuous wavelet coefficients and dry
weight moisture content varies with wavelength. From the R2 of different bands, the dry
weight moisture content appears to have an obviously significant correlation (R2 > 0.56;
p < 10−15), with good sensitivity mainly in the ranges of 542–579 nm, 598–679 nm, 723–803 nm,
978–1007 nm, 1168–1195 nm, 1245–1274 nm, 1316–1386 nm, 1416–1426 nm, 1439–1465 nm,
1503–1519 nm, 1533–1654 nm, 1744–1769 nm, and 1784–1785 nm.
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The results show that continuous wavelet coefficients can capture the spectral absorp-
tion and reflection characteristics caused by chlorophyll and moisture. With increasing
degree of damage by the JLI, the rate of leaf loss will gradually increase. At the same
time, the chlorophyll content and water content will gradually decrease, leading to obvious
responses of the spectral reflectance of the forest canopy [52]. Therefore, the continuous
wavelet coefficient of the spectrum and the chlorophyll content, fresh weight moisture
content, and dry moisture content of the needles have high potential for application to the
detection of JLI outbreak.

3.2. Extraction of Sensitive Hyperspectral Feature Bands

In this study, the Findpeaks function and combined Findpeaks—SPA function was
used to process the sensitivity function between the continuous wavelet coefficients and the
biochemical components and extract sensitive hyperspectral feature bands (Figure 5). As
shown in Figure 5a, sensitive hyperspectral features corresponding to the chlorophyll con-
tent are mainly in the ranges of 360–522 nm, 772–972 nm, 1140–1433 nm, and 1536–1791 nm.
This shows that the blue absorption band (403 nm, 427 nm, 434 nm, 450 nm, 453 nm, 471,
and 484 nm) and red absorption band (614 nm and 654 nm) and green reflection peaks
(506 nm and 542 nm) of chlorophyll content were well captured using the Findpeaks-SPA
function. Figure 5b,c show that sensitive hyperspectral characteristic bands corresponding
to fresh weight moisture content are mainly in the ranges of 953–962 nm, 967–1010 and
1404–1468 nm. Sensitive hyperspectral bands corresponding to dry weight water content
are mainly in the ranges of 978–1007 nm, 1168–1195 nm, and 1439–1519 nm. This indicates
that the Findpeaks-SPA function well captures the absorption bands of water (964 nm, 983
nm, 991 nm, 1099 nm, 1184 nm, 1421 nm, 1493 nm, and 1502 nm). In general, the continuous
wavelet coefficients in the bands of 360–522 nm, 772–1010 nm, 1140–1433 nm, 1404–1519
nm and 1536–1791 nm were highly sensitive to the damage degree of larch. This can be
explained by the serious decrease in chlorophyll and water content in the conifer of larch
forest due to the JLI attack (Table 2). The 360–522 nm band mainly reflects the reflection
characteristics of chlorophyll, while the 772–1010 nm, 1440–1433 nm, 1404–1519 nm and
1536–1791 nm bands mainly show the characteristics of water absorption in needles. With
the increase of leaf loss rate caused by JLI and the change of larch canopy color from green
to yellow to red to gray, the chlorophyll content and the water content of conifers gradually
decreased, leading to the gradual increase of spectral reflectance. Therefore, the obtained
experimental results are undoubtedly in line with the biological characteristics of plants.
These results satisfactorily prove that the Findpeaks-SPA function can effectively extract
sensitive hyperspectral features of chlorophyll content and water content.
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Figure 5. Sensitive spectral features: (a) chlorophyll content; (b) fresh weight moisture content;
(c) dry weight moisture content.

3.3. Model Results

Figure 6 shows the overall accuracy (OA) and kappa coefficient (A) of the SVM
classifier for chlorophyll content, moisture content in fresh weight, and moisture content
in dry weight of different trees. Chlorophyll content shows high recognition accuracy on
bior2.8, coif3 and sym3 (OA: 0.81–0.90; K: 0.72–0.85), and the accuracy of these mother
wavelet bases is higher than that of fresh weight moisture content and dry weight moisture
content except that OA and K (0.81, 0.74) similar to dry weight moisture content are
produced on sym3. Among them, the chlorophyll content has the best accuracy at coif3,
and its overall accuracy and kappa coefficient are 0.90 and 0.85, respectively, as shown in
Figure 6a. The fresh weight moisture content classification accuracy of coif4, sym2 and
sym7 is higher, the overall accuracy is 0.86, 0.86 and 0.86, and the kappa coefficient is 0.79,
0.79 and 0.80, respectively (Figure 6b). The dry weight moisture content produced high
classification accuracy on bior4.4, db2, db4, db5 and sym3, especially bior4.4 showed the
highest overall accuracy and kappa coefficient (0.90, 0.86) (Figure 6c). It should be noted
that chlorophyll content, fresh weight moisture content and dry weight moisture content
produced the lowest classification accuracy on bior3.3, bio2.2 and sym2, with the overall
accuracy of 0.52, 0.43 and 0.38, and kappa coefficients of 0.34, 0.26 and 0.21, respectively.
These results show that the models constructed by different biochemical components on
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various mother wavelet bases show different accuracy. Chlorophyll content data produced
more stable overall accuracy (0.52–0.90) than fresh weight moisture content and dry weight
moisture content data (0.43–0.86, 0.39–0.90). The overall accuracy of the chlorophyll content
data (0.52–0.90) is higher than that of the fresh weight moisture content (0.43–0.86) and dry
weight moisture content (0.39–0.90). On the whole, the larch damage identification model
constructed on each biochemical component can better classify healthy trees, early damaged
trees and damaged trees, which can meet the requirements of classification accuracy. Since
our model has many outcomes, the confusion matrix of each outcome can only be used as a
reference for supplemental data.
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Figure 6. Accuracies of early pest discrimination models based on (a) chlorophyll content, (b) fresh
weight moisture content, and (c) dry weight moisture content.

The confusion matrix and evaluation model index results of the optimal SVM classifier
based on chlorophyll content, fresh weight moisture content and dry weight moisture
content are shown in Tables 3–5. The overall accuracy was 90.48%, 85.71% and 90.48%, and
the Kappa coefficients were 0.85, 0.79 and 0.86, respectively, which met the requirements of
this study. The user accuracy and production accuracy of the healthy trees and the early
damaged trees based on chlorophyll content were consistent, being 1 and 0.8, respectively.
The user accuracy and production accuracy of the damaged forest were 91.68% and 100%,
respectively. The user accuracy was 83.33%, 66.67% and 100%, and the production accuracy
was 100%, 80% and 81.81%, respectively. The user accuracy of various sample trees based on
dry weight moisture content was 100%, 71.43% and 100%, and the production accuracy was
80%, 100% and 90.91%, respectively. It can be seen that the identification rate of damaged
trees was higher than that of healthy and early damaged trees, while the identification
rate of early damaged trees is relatively low, especially the production accuracy of early
damaged trees based on dry weight moisture content was only 71.43%. At the same time, it
can also be seen that there are fewer cases of misclassification of injured trees into other
categories, while there are relatively more cases of misclassification of healthy trees into
early injured trees or early injured trees into healthy trees. This is because there is no
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obvious quantitative change in the biochemical components of our healthy sample tree
and the early victim sample tree, and there is a high gap between the healthy sample tree
and the victim sample tree, which will affect the difficulty of classification between the
early victim tree and the healthy tree. This was consistent with our experimental design.
From the accuracy analysis of the above models, we can see that this experimental mode is
workable to detect the damage status of larch forest in the early stage of inchworm invasion.

Table 3. Confusion matrix and evaluation index based on optimal mother wavelet basis (coif3) model
of chlorophyll content.

Classes Healthy Damaged Early Damaged Total UA

OA: 90.47%, Kappa: 85.42%

Healthy 4 0 0 4 100%
Damaged Early 1 4 0 5 80%

Damaged 0 1 11 12 91.68%
Total 5 5 11 21

PA 80% 80% 100% 90.48%

Table 4. Confusion matrix and evaluation index based on optimal mother wavelet basis (coif4) model
of fresh weight moisture content.

Classes Healthy Damaged Early Damaged Total UA

OA: 85.71%, Kappa: 79.48%

Healthy 5 1 0 6 83.33%
Damaged Early 0 4 2 6 66.68%

Damaged 0 0 9 9 100%
Total 5 5 11 21

PA 100% 80% 81.82% 85.71%

Table 5. Confusion matrix and evaluation index based on optimal mother wavelet basis (bior4.4)
model of dry weight moisture content.

Classes Healthy Damaged Early Damaged Total UA

OA: 90.48%, Kappa: 86%

Healthy 4 0 0 4 100%
Damaged Early 1 5 1 6 71.43%

Damaged 0 0 10 10 100%
Total 5 5 11 21

PA 80% 100% 90.91% 90.48%

4. Discussion
4.1. Sensitive Hyperspectral Feature Bands

This study proved that there was a good sensitivity between biochemical components
and hyperspectral continuous wavelet coefficients in the larch forest under the stress of JLI
in the whole hyperspectral band (Table 6). In some specific band ranges, spectral continuous
wavelet coefficients can capture some spectral absorption and reflection characteristics
corresponding to changes in the chlorophyll content and water content of leaves. Hence,
when we use Pearson correlation to analyze the relationship between the hyperspectral
continuous wavelet coefficient and the chlorophyll content and water content of leaves,
we find that there are many sensitive band regions of different degrees. Some recent
study also confirmed that hyperspectral continuous wavelet coefficients are sensitive to
changes in plant biochemical parameters [19,53,54]. Such a large number of sensitive
bands extracted will affect the stability and accuracy of later modeling because it contains
a large number of continuous bands. We select the sensitive band corresponding to the
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peak of the correlation coefficient by introducing Findpeaks function. The selected band
has high sensitivity and ensures the dispersion of the band. We have identified different
sample tree classes based on the sensitive bands extracted by Findpeaks function, but
the results are not ideal. In addition, we find that the sensitive bands extracted based
on Findpeaks function have multicollinearity problem, which reduces the stability of the
model to some extent. In order to solve the problem of band multicollinearity, we use
SPA function to further screen the highly sensitive spectral features, which can improve
the speed and stability of later modeling. The SPA function is widely used in sensitive
hyperspectral feature extraction [55–57]. After the Pearson–Findpeaks–SPA process, we
extracted the sensitive hyperspectral bands that met our experimental requirements. These
extracted sensitive hyperspectral bands can effectively capture the spectral reflection and
absorption characteristics caused by differences in biochemical components, but they
cannot correctly explain the contribution of the relevant bands to target detection. This is
a shortcoming of this experiment. In addition, the main purpose of our experiment is to
explore a new method to extract sensitive hyperspectral features. To establish an effective
identification model of different degrees of damage of JLI infected larch forest. Therefore,
the sensitive hyperspectral feature extraction experiment of Pearson–Findpeaks–SPA has
certain application value.

Table 6. Sensitivity analysis results obtained by using Pearson–Findpeaks–SPA.

Biochemical
Component Main Sensitive Band Range (nm) Sensitive Band Etracted by

Findpeaks–SPA (nm)

Chlorophyll
content

540–581, 596–699, 723–804, 954–956,
974–1011, 1134–1143, 1166–1199,

1245–1275, 1313–1386, 1412–1467,
1483–1485, 1500–1664, 1743–1770,

1784–1785

450, 644, 1042(coif3)

Fresh weight
moisture content

537–583, 595–709, 723–804, 953–962,
967–1010, 1053–1083, 1130–1139,

1162–1206, 1247–1279, 1315–1386,
1404–1468, 1480–1486, 1503–1672,

1746–1772, 1783–1785

446, 563, 1221, 1620, 1362,
1711(coif4)

Dry weight
moisture content

542–579, 598–679, 723–803, 978–1007,
1168–1195, 1245–1274, 1316–1386,
1416–1426, 1439–1465, 1503–1519,
1533–1654, 1744–1769, 1784–1785

382, 734, 951(bior4.4)

4.2. Future Trends and Prospects of Remote Sensing Monitoring of JLI Outbreak

In this study, hyperspectral data were used to detect the damage of larch forest under
the infection of JLI. This method has good stability in the identification of stressed forest.
However, there are still several shortcomings. For example, we cannot determine the
optimal pest index, because our sensitivity analysis results showed that although there was
a good sensitivity between the biochemical components of the influence of the JLI and the
spectral continuous wavelet coefficient, there was little difference in sensitivity between
them. At the early stage of larch forest destruction, the canopy was green, and pathogens
or other climatic conditions probably caused the decrease in chlorophyll content and water
content in leaves. Therefore, our experiments cannot accurately judge the external factors of
forest destruction. As a result, pathogen infection or climatic conditions may have damaged
some trees in our study area to some extent before our data collection. This damage is likely
to work with the JLI pest to damage the trees. Accordingly, when we only detect pest stress
through the spectral difference between asymptomatic samples and infected samples, it is
often not comprehensive enough. However, this method is especially useful for pest control.
If the aim is to trace the cause of symptoms, we suggest future studies should consider
forest conditions prior to pest attack. Specifically, a certain number of sample trees were
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selected, and then the gradual changes of forest spectral reflectance and some biochemical
components in the time series from pupal stage to adult stage were recorded. Such spectral
and biochemical data can also explore the cause of symptoms using the method proposed
in this study.

At present, the pest of inchworm is only distributed in larch forest of Mongolia, but the
prediction and control of this pest should be carried out further. If the pest is left unchecked,
it is highly likely to explode and spread to neighboring countries, causing unpredictable
damage. We hope that more international researchers will pay attention to and take part in
forest remote sensing research on JLI infection. Since we only did this under the condition
that a single pest (JLI) infected a single forest (larch forest), the applicability of other forest
pests needs to be further verified. In addition, remote sensing monitoring research on this
insect pest has not been widely concerned by international researchers, and many articles
supported by experimental technology are lacking. Therefore, the technical theories and
methods of this study are referenced from other plant diseases and insect pest articles. Of
course, we are only designing a study using ground non-imaging hyperspectral remote
sensing, and implementing the technology is the key and the focus of future development.

5. Conclusions

This study showed that hyperspectral features based on chlorophyll content, fresh
weight water content and dry weight water content could detect JLI infected larch forests.
Nondestructive testing of healthy, early and damaged trees is important for controlling
JLI outbreaks. We make full use of the full band spectrum of all sample trees and study
the spectral characteristics of 36 parent wavelet bases obtained by continuous wavelet
transform. A total of 11 mother wavelet bases (bior2.8, coif3, sym3, coif4, sym2, sym7,
bior4.4, db2, db4, db5 and sym3) are considered to reveal the important characteristics of JLI
infection. In addition, coif3, coif4 and bior4.4 are the optimal hyperspectral characteristics
of chlorophyll content, fresh weight moisture content and dry weight moisture content
in turn. The overall accuracy of the model based on these hyperspectral mother wavelet
bases is 0.86–0.90, the kappa coefficient is 0.79–0.86, and the identification accuracy of early
victims is more than 80%. These results prove the feasibility of extracting sensitive bands
by Pearson–Findstacks–SPA and the practicability of SVM classification algorithm. This
design method is helpful to JLI’s early warning of Larch Forest stress and provides a very
important theoretical basis and technical guidance for the detection of other large-scale
pest outbreaks, which has a certain reference value.
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