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Supplemental methods 
Model performance evaluation 

The Nash–Sutcliffe efficiency (NSE) and Coefficient of Determination (R2) were used 
to measure the goodness of fit, and Percent Bias (PBIAS) was used to assess the offset of 
simulated flow against measured flow. The formula is as follows. 𝑁𝑆𝐸 = 1 − ∑ (𝑄 − 𝑄′)∑ (𝑄 − 𝑄)  (S1)

where 𝑄  is the measured flow on day i, 𝑄′ is the flow on day i of the simulation, 𝑄 is 
the average flow during the simulated snowmelt period, and n is the number of days in 
the simulation period. The value of Nash-Sutcliffe coefficient NS is between 0 and 1, the 
closer it is to 1, the more accurate the simulation results are. 𝑃𝐵𝐼𝐴𝑆 = ∑ (𝑄 − 𝑄′)∑ 𝑄′

 (S2)

PBIAS measures the offset of the simulated flow from the measured flow, with posi-
tive values indicating overestimation and negative values indicating underestimation; the 
smaller the absolute PBIAS, the smaller the deviation of the simulated volume from the 
observed volume. 

The decision coefficient R2 is also an important metric for evaluating the model, de-
scribing the correlation between simulated and measured flows. 

Bias correction approaches 
(1) Linear scaling（LS） 
Linear scaling corrects for deviations from the simulated multi-year monthly aver-

ages of precipitation/air temperature. It corrects for the monthly average deviation be-
tween the simulated and observed variables, with precipitation corrected by a multiplier 
and temperature corrected by an additive (plus or minus a value). 𝑃 , , =𝑃 , , ×µ( , )µ( , ) (S3)𝑇 , , =𝑇 , ,  + µ(𝑇 , ) - µ(𝑇 , ) (S4)

where 𝑃 , ,  and 𝑇 , ,  are the precipitation and temperature values on day d of the 
corrected month m, respectively, and 𝑃 , ,  and 𝑇 , ,  are the precipitation and 
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temperature values on day d of the simulated month m. µ(.) represents averaging, for 
example, µ(𝑃 , ) is the observed precipitation for month m. 

(2) Local intensity scaling (LOCI) 
The LOCI method corrects for wet day frequency and wet day precipitation intensity, 

thus improving the correction [75]. In general, the LOCI method is divided into two steps: 
first, a wet day threshold Pthres_m is defined for month m (m is the month from 1-12), 
and when 𝑃 , , < 𝑃 , , the precipitation for that day is set to 0 to ensure that the 
number of precipitation days in the simulated series is equal to the observed precipitation 

days; second, a scaling factor 𝑠 = 𝑃 , , 𝑃 , , > 0𝑃 , , 𝑃 , , > 𝑃 , to ensure that the cor-

rected total precipitation is equal to the observed total precipitation. With these two cor-
rection parameters, the following equation can be used for the correction:   𝑃 , , = 0, 𝑖𝑓 𝑃 , , < 𝑃 , 𝑃 , , × 𝑆 , otherwise  (S5)

(3) Distribution mapping (DM) of precipitation and temperature 
Gamma distribution mapping and Gaussian distribution mapping (DM) methods 

can adjust the distribution of climate variables simulated by GCMs so that it is the same 
as the distribution of observed climate variables [76]. Theoretically, DM methods can cor-
rect for mean, standard deviation, and deciles, and, importantly, DM methods can pre-
serve the extremes in climate change. However, there are some limitations to the DM 
method, the most notable of which is that it assumes that the simulated and observed 
temperature and precipitation obey assumed distributions. 

For precipitation, it is assumed that precipitation obeys the Gamma distribution, 
which is given by the following formula. 𝑓 (𝑥|𝛼, 𝛽) = 𝑥 × 1𝛽 × Γ(𝛼) × 𝑒 ; 𝑥 ≥ 0, 𝛼, 𝛽 > 0 (S6)

For air temperature, it is assumed that the air temperature follows a Gaussian distri-
bution, i.e., a general normal distribution, with the following equation. 𝑓 (𝑥|𝜇, 𝜎) = 1𝜎 × √2𝜋 × 𝑒 ( ) ; 𝑥 ∈ R (S7)

Similarly, the corrected air temperature can be obtained from the following equation.  𝑇 , , = 𝐹 𝐹 𝑇 , , 𝜇 , , 𝜎 , 𝜇 , , 𝜎 ,  (S8)

where 𝜇 and 𝜎 denote the mean and standard deviation of the temperature, respectively. 𝐹 (. ) and  𝐹 (. )are cumulative distribution functions of the Gaussian distribution and 
their inverse functions, 𝜇 ,  and 𝜇 ,  are the mean values of the simulated and ob-
served air temperature for month m, and 𝜎 ,  and 𝜎 , are the standard deviations 
for the corresponding months. 

(4) Power transformation (PT) 
The power transformation (PT) method corrects for the standard deviation of precip-

itation using a power function [77]. the PT method also consists of two steps, first, esti-
mating the power exponent bm such that f(𝑏 ) obtains a minimum. 

f(𝑏 ) = 𝜎(𝑃 , )𝜇(𝑃 , ) − 𝜎(𝑃 , )𝜇(𝑃 , ) (S9)

where bm is the exponent of month m, 𝜎(. ) represents the calculated standard deviation, 
and 𝑃 ,  is the average precipitation for month m after LOCI correction. If bm > 1, the 
simulated precipitation underestimates the standard deviation of the mth month, and vice 
versa. 
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Second, after calculating bm, the coefficient 𝑠 = ,,  is calculated to ensure 

that the corrected precipitation and the observed precipitation in month m are equal. This 
yields the PT-corrected precipitation series 𝑃 , , : 𝑃 , , = 𝑠 × 𝑃 , ,  (S10)

Supplemental tables 

Table S1. Precipitation lapse rate of each month in Yarkant River basin. 

Month 1 2 3 4 5 6 7 8 9 10 11 12 
Pre lapse rate 

(mm) 0.42 0.49 0.42 0.78 1.64 2.64 2.07 1.56 1.07 0.27 0.10 0.32 

Table S2. Estimated and calibrated Parameters for the calibration and validation of streamflow, for 
the six sub-basins of Yarkant River basin. 

Parameter Optimized Values Source of Initial Values 
Simple Canopy 

Initial Storage (%) 10 HEC-HMS Help manual (Trial and Error) 
Max Storage (%) 10 HEC-HMS Help manual (Trial and Error) 

Simple Surface 
Initial Storage (%) 20 HEC-HMS Help manual (Trial and Error) 
Max Storage (%) 20 HEC-HMS Help manual (Trial and Error) 

Soil Moisture Accounting (SMA) Loss Method 
Max Infiltration (mm/h)  FAO soil data 

Impervious (%) 20 FAO soil data 
Soil Storage (mm) 100 FAO soil data 

Tension Storage (mm) 20 HEC-HMS Help manual 
Soil Percolation (mm/h) 1 FAO soil data 

Ground Water 1 Storage (mm) 100 Calibration trial and error 
Ground Water 1 Percolation (mm/h) 10 Calibration trial and error 

Ground Water 1 Coefficient (h) 30 Calibration trial and error 
Ground Water 2 Storage (mm) 190 Calibration trial and error 

Ground Water 2 Percolation (mm/h) 1 Calibration trial and error 
Ground Water 2 Coefficient (h) 80 Calibration trial and error 

Clark Unit Hydrograph 
Time of Concentration (h) 90 Optimization Trial 

Storage Coefficient (h) 30 Optimization Trial 
Recession 

Recession Constant 0.95 Optimization Trial 
Ratio to Peak 0.95 Optimization Trial 

Temperature Index 
Px Temperature (℃) 3 HEC-HMS help 

Base Temperature (℃) -1.6 HEC-HMS help 
Lapse Rate (℃/100 m) -0.65 [33] 

Degree Day Factor (DDF) (mm/℃-day) 3.4 Optimization Trial 
Evapotranspiration (mm/month) 88.58 Obsecrated data 

ATI-Meltrate Function (mm/℃-day) 0.025-0.04 Calculation and Calibration 
ATI-Coldrate Function (mm/℃-day) 1.32 Calculation and Calibration 

 


