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Abstract: As Mediterranean streams are highly dynamic, reconstructing space–time water presence in
such systems is particularly important for understanding the expansion and contraction phases of the
flowing network and the related hydro–ecological processes. Unmanned aerial vehicles (UAVs) can
support such monitoring when wide or inaccessible areas are investigated. In this study, an innovative
method for water presence detection in the river network based on UAV thermal infrared remote
sensing (TIR) images supported by RGB images is evaluated using data gathered in a representative
catchment located in Southern Italy. Fourteen flights were performed at different times of the day in
three periods, namely, October 2019, February 2020, and July 2020, at two different heights leading to
ground sample distances (GSD) of 2 cm and 5 cm. A simple methodology that relies on the analysis
of raw data without any calibration is proposed. The method is based on the identification of the
thermal signature of water and other land surface elements targeted by the TIR sensor using specific
control matrices in the image. Regardless of the GSD, the proposed methodology allows active stream
identification under weather conditions that favor sufficient drying and heating of the surrounding
bare soil and vegetation. In the surveys performed, ideal conditions for unambiguous water detection
in the river network were found with air–water thermal differences higher than 5 ◦C and accumulated
reference evapotranspiration before the survey time of at least 2.4 mm. Such conditions were not
found during cold season surveys, which provided many false water pixel detections, even though
allowing the extraction of useful information. The results achieved led to the definition of tailored
strategies for flight scheduling with different levels of complexity, the simplest of them based on
choosing early afternoon as the survey time. Overall, the method proved to be effective, at the same
time allowing simplified monitoring with only TIR and RGB images, avoiding any photogrammetric
processes, and minimizing postprocessing efforts.

Keywords: unmanned aerial vehicle (UAV); thermal infrared (TIR); RGB images; dense vegetation;
narrow headwater streams

1. Introduction

The use of UAVs (Unmanned Aerial Vehicles) in the study and monitoring of the
environment is growing exponentially, thanks also to the availability of equipment with
increasingly versatile sensors of reduced size and weight. The possibility of significantly
increasing the temporal and spatial resolution of the datasets, as compared to the satellite
remote sensing platforms and manned aircraft [1], gives the UAVs an intermediate position
between these platforms and land surveys. Moreover, this technique is relatively cheap
to use and not particularly time consuming. The efficiency of drones for environmental
surveys is widely demonstrated in the literature (e.g., [2–5]). Manfreda et al. [1], while
discussing the most recent advances, pointed out the need to identify the limitations of
these technologies, which often lack standard protocols unequivocally identifying all the
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procedural steps, starting from data acquisition up to the final products (e.g., maps, 3D
models, and ortophotos, etc.).

The first scientific applications with UAVs mainly concerned photogrammetry with
innovative Structure from Motion (SfM) techniques [6,7]. Afterwards, new sensors (thermal
cameras, multispectral and hyperspectral cameras, and LiDAR) were adapted to UAVs
and used for different purposes (environmental monitoring, precision farming, and forest
fires, etc.) [8]. Specifically, several studies demonstrated the potential of this technology
for monitoring and understanding river network dynamics (e.g., [8–19]). Among them,
Tamminga et al. [10] and Woodget et al. [14] identified the advantages of UAV systems to
characterize the morphologies of hydraulic channels using red–green–blue (RGB) pho-
togrammetry with the SfM technique. Using a UAV system capable of capturing RGB,
near–infrared (NIR), and thermal infrared (TIR) images, Jensen et al. [9] performed in–
stream temperature measurements with high spatial and temporal resolutions. Specifically,
they identified the water pixels using the NIR band, in which water has a very low re-
flectance compared to soil and vegetation, and they used the corresponding TIR images to
measure water temperature. The advantages compared to ground surveys of using UAVs
in river flow management are also described by Samboko et al. [18], who highlighted the
potential of UAVs for monitoring dangerous and difficult to access reaches. However, the
precise mapping of the geomorphic channel for the recognition of water pixels requires ap-
proaches based on the use of multiple sensors (e.g., RGB and TIR; Kuhn et al. [19]), further
emphasizing the need for standardized methods in the analysis of UAV–gathered images.

Monitoring the presence of water in channels remotely with the use of drones is
particularly useful in the study of the expansion and contraction dynamics of active river
networks. The topic is experiencing a renewed interest of the scientific community owing
to the influence of stream dynamics on hydrology, freshwater ecology, and biogeochemistry
(e.g., [20–22]). In this context, the Mediterranean region is particularly challenging, owing
to the enhanced variability of the active length in arid and semiarid regions [23,24]. Borg
Galea et al. [16] showed the usefulness of drones for monitoring intermittent Mediterranean
rivers using RGB images. However, the authors also highlighted the need to search for
better solutions for space–time monitoring of the flow regimes in intermittent streams.
Spence & Mengistu [12] comparatively evaluated the efficiency of high–resolution RGB
images from UAVs to identify the active part of intermittent flowing networks. Rivas
Casado et al. [25] also showed the importance of UAV image resolution for the correct
identification of wet channels. This is true especially for narrow and highly dynamic
headwater streams that experience several activation–deactivation cycles within the same
hydrological year.

Water presence detection in surface water bodies is generally performed with multi-
spectral images, acquired with RGB, NIR, and short wavelength infrared (SWIR) sensors,
and relies on the calculation of normalized indices. Among these, the best known is the
NDWI (Normalized Difference Water Index; McFeeters [26]), calculated as:

NDWI = (Green − NIR)/(Green + NIR) (1)

The identification of water pixels is then performed imposing a minimum threshold on
the NDWI. The NDWI has been extensively used, especially in combination with satellite
images (e.g., [27–31]), for mapping water bodies or quantifying surface water resources
(e.g., [32–35]) and soil moisture (e.g., [36,37]). The NDWI underwent several modifications
and revisions [27,38–41] aimed at overcoming its major shortcomings. One inherent limit
of NIR images is that they cannot be used for spatially distributed water temperature
monitoring but only for water presence detection.

To the best of our knowledge, the literature lacks detailed investigations about the pos-
sibility of detecting water presence in river channels using only TIR and RGB images, in the
absence of NIR or SWIR sensors. The TIR–based remote sensing approach is based on the
analysis of infrared radiation emitted by objects with a temperature greater than 0 Kelvin,
measured with thermal imaging cameras. These instruments provide radiometric images to
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a single band, usually 16–bit (range of values 0–65.535), with pixel values (digital number
DN) proportional to the TIR radiance. The temperature measured with the TIR technique is
defined as radiometric temperature (Tr), to be distinguished from the real kinetic tempera-
ture (Tk) measured with conventional devices, such as thermometers and standard contact
probes. TIR measurements are mainly conditioned by the emissivity (ε) and the reflectance
(ρ) of the objects (the third component, i.e., the transmissivity τ, is usually negligible),
which are, as per the well–known Kirchhoff’s law, inversely proportional:

ε + ρ = 1 (2)

Water has a low reflectance in the TIR band and consequently a very high emissiv-
ity [42], standing at values of about 0.98–0.99, therefore resulting in being essentially opaque.

Hancock et al. [43] recently summarized the state–of–the–art TIR technology for dif-
ferent types of applications in riverine landscapes. Dugdale et al. [44] demonstrated the
efficiency of drone shooting images for characterizing the spatial patterns of river tempera-
ture. Casas–Mulet et al. [17] proposed a method that combines TIR and RGB images for the
study of thermal contrasts in rivers, also hypothesizing that water can be detected using TIR
images when sufficient contrast exists with the surrounding terrain. Kuhn et al. [19] used
RGB and TIR images from UAVs for the identification and characterization of thermally
differentiated patches to model how climatic predictions affect thermal habitat suitability
and connectivity of a cold–adapted fish species; they also reiterated that the combined use
of TIR and RGB images is still under development.

In this paper, the efficiency of UAV–based TIR remote sensing technology in recogniz-
ing water pixels, as an alternative to the use of multispectral image sets, is tested for the first
time. TIR–based techniques are increasingly used in many research and applicative fields,
owing to the increased reliability, stability, portability, and affordability of TIR imaging
systems. The use of TIR images for both water pixel detection and spatially distributed
water temperature measurements would greatly simplify postprocessing operations, with
a reduced number of IR images to be georeferenced and managed. The main purpose of
the paper is to evaluate the effectiveness of TIR technology for water pixel detection based
on combined TIR and RGB images only. The procedure allows one to leave out all issues
related to TIR image calibration and accuracy evaluation of the radiometric temperature
measurements since the method exploits only the thermal contrast (temperature gradient)
between water and the surrounding environment.

The main aim was pursued by performing several sample flights over a Mediterranean
headwater channel using a UAV equipped with RGB and thermal sensors. The selected
location, although representative of many Mediterranean headwaters, was particularly
challenging since it is characterized by a narrow flowing section (minimum width of 1 m)
and a dense vegetation cover. With the goal of exploring the broadest range of climate and
vegetation conditions and testing different image resolutions, the flights were carried out
during different seasons, times, and heights. The accuracy of the results was evaluated
accounting for the observed water temperature, suitably measured with a thermometric
probe, and several meteorological variables. Eventually, a method was proposed for the
detection of the water pixels within the surveyed channel using only noncalibrated TIR
images and a control point with the water presence verified by either a ground survey or
with the support of RGB images.

2. Materials and Methods
2.1. Study Site

The surveys were carried out along a river reach some tens of meters long located
approximately 550 m upstream of the outlet of the Upper Turbolo catchment [23] (Figure 1),
Southern Italy. The catchment is 7 km2 wide, with altitudes ranging from 183 m a.s.l. at the
outlet to 1005 m a.s.l. on top of the Coastal Range mountains. The complex lithology of
the area implies a significant hydrogeological variability, with the presence of deep and
free–surface aquifers feeding the main river network. As a consequence, despite a typically
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Mediterranean climate with long hot and dry summers [23], the measurements recorded at
the Fitterizzi outlet (white dot in Figure 1) display a quasi–permanent hydrological regime.

Figure 1. Subcatchment of the Turbolo creek closed at the Fitterizzi outlet. The red dot indicates the
point where the surveys were carried out with the drone. In the RGB images taken at two different
(winter and summer) dates, the geomorphic channel is delimited with yellow lines. The ford crosses
the reach almost perpendicularly (tire tracks are visible in the images). The Fitterizzi gauge and
weather station are indicated with a white dot.

The selected reach, located at 39.5214◦ N and 16.1346◦ E (200 m a.s.l.), is characterized
by a width of the riverbed varying approximately from 1.0 m to 2.5 m and a gentle slope.
The Thalweg elevation varies from 198.2 m a.s.l. to 197.8 m a.s.l. at the upstream and
downstream sections of the 24 m long reach, respectively, leading to an approximate slope of
1.7% (a high–resolution 3D representation of the DTM of the whole area is represented in the
Supplementary Materials Figure S1). As frequently observed in Mediterranean catchments,
the riparian zone (i.e., the interface between the river reach and the surrounding territory)
is mostly densely vegetated with hygrophilous vegetation (reeds, bushes, shrubs, and
even trees–mainly alders, Alnus). However, some portions of the reach are visible both
from above and from the ground, allowing for a direct visual inspection of the underlying
hydrologic conditions. To generalize the analysis as much as possible, the reach was
selected also for the presence of a ford, in correspondence of which the boundaries of the
geomorphic channel are less sharp.

2.2. Instruments

For the experimental activities, a DJI drone model Matrice 200 V1 was used. It is a
quadcopter equipped with high–performance engines and functions, capable of operating
in various environmental and climatic conditions, thanks also to a compact and hermetically
sealed design, it is resistant to weather and water. The weight of the aircraft (without
payload) is approximately 4.1 kg, with a flight duration of up to approximately 30 min with
a payload of 1.45 kg.

The images were taken with the DJI Zenmuse XT2, a camera equipped with a ra-
diometric thermal sensor and an RGB sensor (Table 1). This camera takes synchronous
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thermal and RGB images. The two sensors have different resolution and optical–geometric
characteristics. This difference, together with the slight physical distance between the
two sensors, requires particular care for image overlay. For our analysis, the RGB images,
having a FOV and resolution greater than thermal images, were preliminarily cropped
to homogenize the areas represented by the two sensors and resampled according to the
thermal sensor resolution to obtain the same GSD.

Table 1. Thermal and RGB sensors specification.

Zenmuse XT2

Thermal sensor type Uncooled VOx Microbolometer
Thermal sensor resolution 640 × 512 pixels

Pixel pitch 17 µm
Spectral band 7.5–13.5 µm

Lens 19 mm, FOV 32◦ × 26◦

Camera visual sensor CMOS, 1/1.7”, 4000 × 3000 pixels
Lens 8 mm, FOV 57.12◦ × 42.44◦

2.3. Field Data Collection

The surveys were carried out on three different dates, i.e., mid–season (22 October
2019), cold season (15 February 2020), and hot season (16 July 2020), to explore the broadest
possible variety of weather conditions. Considering that the ground sample distance
(GSD) depends on the optical–geometric characteristics of the sensor used and the distance
between the sensor and the target (i.e., GSD = (pixel size × h)/f, with h = flight height and
f = focal length of the chamber), two different heights, 22 m and 56 m, were used for image
acquisition, leading to thermal GSDs of 2 cm and 5 cm, respectively, and RGB GSDs of
0.5 cm and 1.3 cm, respectively. Two flight altitudes were also used to evaluate potential
conditioning on the radiance measurements due to atmospheric agents. Table 2 summarizes
all the surveys acquisition data, while Supplementary Table S1 provides further information
about weather conditions in the flight dates.

Table 2. Data surveys collection.

Date Number of
Flights CET/CEST Time Flight

Height (m)
GSD
(cm)

RGB–IR
Image Sets

22 October 2019 1 3 09:15; 12:45; 16:00 6
15 February 2020 2 07:30; 15:30 22; 56 2; 5 4

16 July 2020 1 9 06:00–14:00 2 18
1 CEST time. 2 One flight every hour.

For each flight, the drone was first lifted to 22 m of altitude, and the image set was
taken in nadiral, then, on the same vertical, to 56 m, and the other image set was taken.
The flights were performed in manual driving mode, checking the altitudes directly on the
drone controller, which allows a real–time control of the scene shot by both the RGB and
TIR sensors, making it easier to frame the same area with both sensors. The altitude above
ground was based on the operator’s location, which was the same for all surveys.

During the flights, the kinetic temperatures of the water and air were recorded. Water
temperature was measured with a manual thermometric probe (YSI EXO2 sonde tempera-
ture sensor, having a resolution of 0.001 ◦C and an accuracy of ±0.2 ◦C), air temperature
through the nearby Fitterizzi weather station (resolution of 0.1 ◦C, accuracy of ±0.2 ◦C)
managed by the Regional Agency for the Protection of the Environment (ARPACal). This
station also provided measurements of precipitation, air relative humidity and pressure,
wind speed and direction, and solar radiation, from which reference evapotranspiration
can also be calculated (Allen et al., 1998). Temperature data were used to define the ther-
mal contrasts between water and air (Table 3) at the same time of acquisition of UAV
images. Furthermore, we kept note of the presence of pools of stagnant water outside
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the geomorphic channel, but in the framed area, localizing them through cell phone GPS
measurements.

Table 3. Water and air temperature measurements.

Date CET/CEST
Time Tkw (◦C) Tka (◦C) ∆Tk a–w

(◦C)
∆Tkw
1 (◦C)

∆tka 1

(◦C)

22 October 2019
09:15 14.1 15.8 1.7

2.4 10.012:45 15.9 24.8 8.9
16:00 16.5 25.8 9.3

15 February 2020 07:30 7.6 8.1 0.5
3.2 7.915:30 10.8 16 5.2

16 July 2020

06:00 18.9 18.3 −0.6

3.9 10.2

07:00 18.8 20.5 1.7
08:00 19.2 25.0 5.8
09:00 19.6 27.0 7.4
10:00 20.4 27.6 7.2
11:00 21.1 28.0 6.9
12:00 21.7 28.2 6.5
13:00 22.4 28.5 6.1
14:00 22.7 28.2 5.5

1 maximum difference among all water (∆Tkw)/air (∆Tka) temperatures recorded during the drone flights in the
date indicated.

2.4. Data Processing

Each image set of thermal images, taken in 16–bit TIFF format, and RGB images was
georeferenced on its own using the onboard GPS. Afterwards, the images were overlaid
using the Quantum GIS open–source software. The RGB images were used to (a) support
the direct surveys on the ground and allow the delimitation in the GIS environment of
the morphological channel and (b) recognize sample areas with well–defined land cover.
Specifically, for each RGB image, three as large as possible polygons were drawn enclosing
as many homogenous land cover types (bare soil, vegetated soil, and water, respectively;
Figure 2). Afterwards, the same polygons were overlaid to the TIR images, extracting as
many ‘control matrices’, for which the ranges of DN values (from minimum to maximum)
were calculated. Such ranges were assumed as representative of the thermal signatures of
the three different land covers.

Figure 2. Some examples of the delimitation with polygons of the control matrix of water (yellow dots
polygon), soil (red dashed polygon), and vegetation (yellow polygon) in three different survey days.

The drawing of the polygons followed criteria of simplicity and accuracy. To this aim,
simple shapes (rectangles) were chosen, and the polygons were always located well inside
their reference land cover types to prevent possible problems with imperfect georeferen-
tiation with the UAV onboard GPS (which, in its turn, was preferred to more accurate
georeferentiation with ground control points for the sake of simplicity). Further research
could improve this basic yet flexible approach.
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The DN ranges were compared considering different dates and flight heights and
overlapped to the frequency distribution of the overall DN values in the images. Finally,
the effectiveness of the DN ranges found in the water control matrices was evaluated in
identifying water pixels in different seasons, day times and flight heights.

3. Results

Figure 3 shows the time evolution of the DN range (min–max) of the control matrices
of water (WDN), soil (SDN), and vegetation (VDN) and the kinetic temperatures of water
and air measured for all 14 flights, subdivided for each of the three days of surveys and
flight heights. During the first hours of daylight, water and air temperatures were always
similar, and the WDN ranges overlaid to the VDN and SDN. Then, during the day, in October
and July, surface heating due to radiation increased the air temperature more than water
temperature, and the VDN and (mainly) SDN ranges were higher than the WDN, preventing
any overlapping among the ranges of soil, water, and vegetation. In February, the air
temperature gradient was still higher than water, but all the DN ranges overlapped, except
for the WDN in the afternoon flight with 56 m height.

Figure 3. Time evolution of the DN ranges of the control matrices of water (WDN), soil (SDN), and
vegetation (VDN) and observed kinetic temperatures of water (Tkw) and air (Tka) in the three survey
days: 22 October 2019 (a), 15 February 2020 (b) and 16 July 2020 (c).

Table 4 summarizes the results of all the surveys carried out, distinguishing between
the cases where the WDN ranges overlapped to the other DN ranges (O) or not (NO). The
only situation with differences between flights at 22 m and 56 m occurs in the afternoon of
the winter survey. While at 22 m the WDN maximum value skims the lowest value of the
VDN range, at 56 m these two values are more clearly separated. This difference is an effect
of the slightly different DN ranges captured at different GSDs. The Table also highlights the
instances in which pixels falling in the WDN range were detected outside the geomorphic
channel. These situations can be due either to the presence of pools and very humid areas,
especially in the morning (true detection–TD), or to the similarity of the thermal signatures
of water and vegetation/soil (false detection–FD).
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Table 4. Summary of the results concerning overlapping of WDN to VDN or SDN and true or false
detection of water pixels outside the geomorphic channel. O: WDN overlapped; NO: WDN not
overlapped. TD: true detection; FD: false detection. In some experiments both true and false water
pixels were detected (TD–FD).

Date CET/CEST Time
WDN Overlapped with VDN and SDN

22 m Flight Height 56 m Flight Height

22 October 2019
09:15 OTD–FD OTD–FD

12:45 NOTD NOTD

16:00 NO NO

15 February 2020 07:30 OTD–FD OTD–FD

15:30 OTD–FD NOTD–FD

16 July 2020

06:00 OTD–FD OTD–FD

07:00 OTD–FD OTD–FD

08:00 NOTD–FD NOTD–FD

09:00 NOTD–FD NOTD–FD

10:00 NO NOTD–FD

11:00 NO NO
12:00 NO NO
13:00 NO NO
14:00 NO NO

Figures 4–6 show a set of representative examples of different situations observed
during each of the three field surveys (all survey images are shown in the Supplementary
Materials Figures S2–S13). Every Figure is composed of different panels, showing for the
analyzed flights the following information: (i) the RGB image, with the delimitation of
the geomorphic channel; (ii) the corresponding IR thermal image in false color, with the
delimitation of the geomorphic channel; (iii) the pixels within the WDN range (water pixels,
hereafter); (iv) the frequency distributions of the DN values of the thermal images, high-
lighting the WDN, SDN, and VDN ranges. Furthermore, information is provided about the
date, time, and height of the flight; kinetic water and air temperatures and related difference
(∆Tk a–w), and minimum and maximum values of the WDN, SDN, and VDN ranges.

In the survey carried out on 22 October 2019, the presence of water was unambiguously
identified by extracting the pixels falling in the WDN range both in the second (performed at
12:45) and in the third (at 16:00) flights, while in the morning, flight several false detections
occurred (Figure 4). This result was achieved regardless of the flight height.

In the morning flight, the low thermal contrast between the water and the surround-
ing environment (∆Tkaw = 1.7 ◦C, Table 3) determined an overlap of the water and
soil/vegetation DN values, as highlighted by the DN frequency distributions shown in
Figure 4d. Several shaded soil areas were incorrectly classified as water pixels, as shown by
the comparison between Figure 4a,c. As the atmospheric temperature increased during the
day, with consequent drying of soil and vegetation, the WDN range differentiated clearly
from VDN and SDN ranges (Figure 4h,l), allowing more precise identification of water pixels,
even outside the geomorphic channel. Figure 4e–h shows the results achieved at 12:45 with
a flight height of 22 m, i.e., providing higher detail. The water pixels identified outside the
channel (Figure 4f,g) are due to muddy (and therefore colder) bare soil areas, located in
correspondence of the tires track of the ford crossing the reach. Such clusters can be easily
discarded if the primary interest is detecting the active portion of the geomorphic network.
The discontinuity of water pixels in the channel is due to the presence of vegetation that
beclouds the thermal signature of the underlying water. The sections of the reach visible
from the sensors can be assumed as river network active “nodes” (i.e., with the presence
of water), as suggested by Durighetto et al. [22] and Senatore et al. [23]. If a stretch whose
visibility is obstructed by vegetation is characterized upstream and downstream by active
nodes, the whole stretch is likely active.
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Figure 4. Surveys performed on 22 October 2019. For 09:15 (a–d), 12:45 (e–h), and 16:00 (i–l), the
following images are shown: RGB image, with the delimitation of the geomorphic channel (a,e,i);
the corresponding IR thermal image in false color, with the delimitation of the geomorphic channel
(b,f,j); the pixels within the WDN range (c,g,k); the frequency distributions of the DN values of the
thermal images, with three bands highlighting the WDN, SDN, and VDN ranges (d,h,l). Furthermore,
information is provided about the date, time, and height of the flight; Tka, Tkw, and ∆Tk a–w;
and minimum and maximum values of the WDN, SDN, and VDN ranges. Images of all the flights
performed during this day are provided in the Supplementary Materials.

The image taking distances (i.e., the flight altitude) did not significantly affect the
results, apart from the obvious impact on the resolution. Conversely, the level of signal
noise recorded by the thermal sensor depending on the survey time should be considered:
in the morning, operating at an air temperature of 15.8 ◦C (Table 3), the signal had a high
noise level, with the frequencies of the DN values very close to each other and oscillating
notably (Figure 4d). Such noise is significantly reduced in the surveys performed with
warmer weather conditions (Figure 4h,l). This demonstrates the enhanced sensitivity of the
microbolometric thermal sensors to the temperatures outside and inside the camera.
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Figure 5. Surveys performed on 15 February 2020. At 07:30 (a–d), 15:30, 22 m flight altitude (e–h),
and 15:30, 56 m flight altitude (i–l). For each row, the following images are shown: RGB image, with
the delimitation of the geomorphic channel (a,e,i); the corresponding IR thermal image in false color,
with the delimitation of the geomorphic channel (b,f,j); the pixels within the WDN range (c,g,k); the
frequency distributions of the DN values of the thermal images, with three bands highlighting the
WDN, SDN, and VDN ranges (d,h,l). Furthermore, information is provided about the date, time, and
height of the flight; Tka, Tkw, and ∆Tk a–w; and minimum and maximum values of the WDN, SDN,

and VDN ranges.

Figure 6. Cont.
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Figure 6. Surveys performed on 16 July 2020. At 07:00 (a–d), 08:00 (e–h), 10:00, 22 m (i–l), 56 m flight
altitude (m–p), and 14:00 (q–t). For each row, the following images are shown: RGB image, with
the delimitation of the geomorphic channel (a,e,i,m,q); the corresponding IR thermal image in false
color, with the delimitation of the geomorphic channel (b,f,j,n,r); the pixels within the WDN range
(c,g,k,o,s); the frequency distributions of the DN values of the thermal images, with three bands
highlighting the WDN, SDN, and VDN ranges (d,h,lp,t). Furthermore, information is provided about
the date, time, and height of the flight; Tka, Tkw and ∆Tk a–w; and minimum and maximum values
of WDN, SDN, and VDN ranges.

In the winter survey (15 February 2020), only two flights were performed (Figure 5).
These flights were scheduled at times coinciding roughly with the minimum and maximum
atmospheric temperature foreseen during daylight (07:30 and 15:30, respectively). In both
cases, several water pixels outside the river network were detected by the developed
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algorithm. The incorrect classification can be attributed to different reasons. The conditions
at the beginning of the day were generally moister than the previous survey, given a small
rain event in the previous afternoon (almost 12 mm, Table S1). In the morning (07:30), the
kinetic temperatures of the water and air were very similar (only 0.5 ◦C difference, Table 3).
In such a context, the WDN range included the DN values in the upper percentiles of the
overall frequency distribution of the observed SDN (Figure 5d), thereby overlapping the
VDN range. At that time, the soil surface was not yet reached by sunbeams (Figure 5a),
and it was generally colder than flowing water (Figure 5b), while vegetation started to
heat. Accordingly, the detection of false water pixels mainly concerned vegetation pixels
(Figure 5c). Nevertheless, some features concerning flowing water were correctly detected
even outside the geomorphic channel. For example, the small rivulet entering the main
course from its right bank (Figure 5c, probably an effect of the precipitation that occurred
the previous day) represents real flowing water within the tire tracks of the ford. At 15:30,
despite a temperature difference between air and water of 5.2 ◦C (Table 3), many soil and
vegetation pixels were incorrectly classified as water pixels using the images taken during
the flights performed at both 22 m and 56 m, despite in the last case the WDN range was not
overlapped to the VDN and SDN. In both cases, the WDN range did not correspond to the
lower (left hand side) values of the frequency distributions (Figure 5h,l). Lower DN values
were associated with several shaded areas (especially vegetated) in the frame. As a result,
water was correctly detected in the channel only around the control matrix, with many
false detections in the surrounding regions. As regards the quality of the data collected
by the sensor, due to the relatively low air temperatures, all the observed DN frequency
distributions were very noisy.

The third survey was carried out on 16 July 2020, scheduled on an hourly basis from
06:00 to 14:00. The flights made at 06:00 and 07:00 broadly reproduced the same situation
of the first surveys performed on 22 October 2019 and 15 February 2020, with low ∆Tk
a–w values (even negative at 06:00), overlapping of the WDN range with the VDN and SDN
ranges, and several false water pixel detections (an example is given in Figure 6a–d). Then,
the sudden increase in air temperature recorded from 07:00 to 08:00 (from 20.5 ◦C to 25.0 ◦C,
Table 3 and Figure 3) quickly led to an air/water thermal contrast of 5.8 ◦C. The WDN range
no longer overlapped to the VDN and SDN ranges and started to locate on the left end of
the frequency distribution (e.g., Figure 6h), but some false detections outside the channel
still occurred, both in the 22 m and 56 m flights. As Figure 6e–g show, false detections are
due to the shadowed vegetated areas. The same example also shows some true detections
along the tire tracks of the ford, with the presence of stagnant water, not yet dry.

The only slight difference between 22 m and 56 m flights was found at 10:00. At such
time, while no water pixels outside the geomorphic channel were found in the higher–
resolution scene (Figure 6i–l), the 56 m flight framing a wider area (Figure 6m–p) detected
both true water pixels (i.e., the pools in the tire tracks of the ford) and few false water
pixels (shadowed vegetation, the top left corner of Figure 6p). From 11:00 onwards, the
drying of soil and vegetation facilitated a reliable distinction of the water pixels in the scene
during all the performed flights (as shown in the example of Figure 6q–t). Neither true
nor false water pixels outside the channel were detected, except for some small areas in
correspondence of the ford where the geomorphic borders were slightly overcome (e.g.,
Supplementary Materials Figures S10–S12).

The quality of the thermal sensor signal on this day was quite variable, i.e., in the
measurements taken from 06:00 to 09:00, with the atmospheric temperature varying from
18.3 to 25 ◦C, the frequency distributions were not very noisy (especially at 07:00, with an
atmospheric temperature of 20.5 ◦C, Figure 6d). For the later surveys after 10:00, which
were performed at atmospheric temperatures above 27 ◦C, the noise is more pronounced,
as in the example of Figure 6t.

To summarize the reliability of the different experiments performed in this paper
and to extrapolate general information about the conditions that ensure remote surveys
without ambiguous detections, the two situations of (i) a possible overlapping of the
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WDN range with SDN and VDN ranges and (ii) a possible occurrence of false detections
are represented in 2D graphs (Figure 7). The graphs consider both the thermal contrast
between water and atmosphere (∆Tk a–w) and other measurable quantities, such as Tka,
Tkw, solar radiation (Rs), and reference evapotranspiration accumulated during the focus
day until the flight time (ETacc). While Tka, Tkw, and Rs provide information about the
actual atmospheric conditions during the flight, ETacc is a proxy of the cumulative effects
of surface–atmosphere interactions in the daylight hours prior to the flight.

Figure 7. For each of the 14 flights performed, several variables are shown against the thermal con-
trasts between water and air (∆Tk a–w): (a) kinetic temperature of air (Tka); (b) kinetic temperature
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of water (Tkw); (c) solar radiation (Rs); (d) accumulated evapotranspiration (ETacc). Red symbols
represent the cases with overlapping of the WDN range with SDN and VDN ranges. Among the cases
without overlapping (blue symbols), those where unambiguous detection of water presence was
not possible are black contoured. The Figure shows one point for each date and time, despite the
two different flight heights. In the only two cases in which the flights at 22 m and 56 m height
provided different indications in Table 3 (i.e., 15 February 2020 at 15:30 and 16 July 2020 at 10:00),
the worst condition was represented in the Figure (that is, 22 m and 56 m for the first and second
date, respectively). The dashed lines divide the graphs so that the top right area (white background)
includes the highest possible number of blue uncontoured symbols, based on the combined conditions
∆Tk a–w > x and [Tka;Tkw;Rs;ETacc] > y, where x and y are selected threshold values.

Figure 7 identifies the flights with the WDN range overlapping to the SDN and VDN
ranges with red symbols, while blue symbols are used for the remaining flights (the same
information is provided in tabular form in the Supplementary Table S2). In all red flights,
false water pixel detections occurred jointly with the observed overlapping of the DN ranges
(Table 4), thereby implying that in those flights unambiguous detection of water presence
was not possible. False detections occurred even in some blue flights. These are shown
in the Figure as dots with a black contour. Therefore, optimal (i.e., with unambiguous
detection) flights for the water presence identification using TIR images are represented as
blue dots without any contour line (6 points out of 14).

Optimal flights were all characterized by high Tka, Tkw, and ∆Tk a–w values, but
high Tka, Tkw, and ∆Tk a–w values did not always imply surveys with unambiguous
detection. In particular, for Tka ≥ 24.8 ◦C and ∆Tk a–w ≥ 5.5 ◦C only blue flights, with a
different thermal response of water from other sources, were found. The afternoon flight in
February 2020 occurred with ∆Tk a–w = 5.2 ◦C, but with relatively low Tka (16 ◦C) and
low radiation (Rs < 300 W m2). Among the blue flights, those producing false detections
were three morning flights in July 2020, from 08:00 to 10:00. The last two flights occurred
with ∆Tk a–w > 7 ◦C and Rs ≥ 700 W m−2 (higher than the October 2019 flights); however,
at that time of the day, the sunbeam was not yet able to sufficiently dry the bare soil surface
and canopy (ETacc < 2.5 mm). On the other hand, the flight performed in October 2019 at
16:00 occurred with low radiation (Rs < 200 W m2), but at that time of the day significant
evapotranspiration fluxes had already occurred (ETacc > 4.5 mm), resulting in the highest
∆Tk a–w value (9.3 ◦C). Overall, in the analyzed case study, only a combined threshold of
∆Tk a–w and ETacc (i.e., ∆Tk a–w ≥ 5.5 ◦C and ETacc ≥ 2.4 mm) could detect all and only
the blue uncontoured flights (Figure 7d).

The results shown in Figure 7 implicitly depend on the time of the day, i.e., on the time
needed by vegetation cover and soil surface to dry. In both October 2019 and July 2020,
when the air temperature was high enough, the thermal response of water in the afternoon
was sufficiently different from other soil covers, even with low values of radiation (October
2019 at 16:00). On the other hand, with the temperatures observed in February, a survey
performed at the end of daylight (15:30) with low Rs values did not provide satisfactory
results, despite the relatively high ∆Tk a–w and ETacc values. All surveys performed from
late morning onwards with Tka ≥ 24.8 ◦C provided reliable results.

4. Discussion

In this contribution, we have proposed a method for the remote detection of water
presence in river reaches based on combined TIR and RGB images, which requires the iden-
tification of suitable control matrices at the ground, representative of the water signature in
the TIR band, for subsequent recognition of the wet river network in the whole surveyed
area. Within the range of scenarios analyzed, we have demonstrated the validity of the
method in warm and mid seasons, especially when the surveys were performed at times of
the day when weather conditions allowed sufficient drying of the bare soil and vegetation.
Furthermore, those surveys performed not too long after midday helped to minimize the
shading effect [45]. Conversely, in the cold season survey, the methodology did not allow
unambiguous recognition of the water pixels in either of the two flights carried out.
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The main factor affecting reliable water pixel detection with TIR images is the differ-
ence between the temperatures of water and other typologies of surface objects targeted.
The higher this difference, the higher the representativeness of the control matrices and the
possibility that the thermal signatures of the different targets (in both the control matrices
and the whole scene) do not overlap. Air temperature and, consequently, the thermal con-
trast between water and air are indicators of the magnitude of this difference. The results
achieved in this study mostly depend on the significantly higher specific heat capacity of
water as compared to bare soil (mainly sandy and sandy–pebbly material, in our case) and
vegetation. When the land surface is sufficiently heated, the faster thermal response time
of soil and vegetation allows clear detection of the colder water pixels.

The optimal timing of the surveys needs to be planned based on the expected variations
in the thermal contrast between water and the surrounding landscape. These variations
can be estimated using tools characterized by a different level of complexity. If the thermal
features of the materials covering the surface are known (or hypothesized), a very detailed
analysis could be achieved using land surface models (e.g., [46]), either in real–time or in
forecast mode, to simulate surface temperatures of both water and other surface elements.
Alternatively, as an intermediate level of detail, some weather variables could be monitored,
like the air temperature and the stream temperature (if the latter is inspectable). Otherwise,
as a rule of thumb, flights over Mediterranean catchments should be performed in the early
afternoon (i.e., not too long after midday).

The operational hints are mainly valid for warm climates and need to be generalized
for other climates where, for example, the water temperature can be higher than the
surrounding surface for a great part of the day (e.g., frozen soils). Also, the actual reduction
of informative content associated with false detections outside the geomorphic channels
needs to be better addressed. In this study, false detections were used as an index of
the reliability of the survey. However, the presence of many false water pixels might not
represent an insurmountable problem. If the WDN range persists in the geomorphic channel,
delineating the river network well, one can assume that the information provided by the
UAV sensor is valid and useful, being possibly supported by RGB images. An example of
that is provided by Figure 5c, where the water temperature is warmer than the soil and
similar to vegetation. In that Figure, which can configure a typical situation of cold climates
with ∆Tk a–w = 0.5 ◦C, an accurate analysis of the combined RGB and thermal images not
only allows one to infer water presence in the main channel but also the rivulet entering it.
In future research, winter surveys should be increased and performed, differently from this
study, also during hours of the day when the shading effect is minimized.

Support of RGB images becomes essential when surveys concern completely inaccessi-
ble areas. In these situations, remote visual inspection (i.e., using the visible band) of active
river reaches not hidden by vegetation, if existing, is the only way to identify a suitable
water control matrix in the corresponding TIR images. In such a context, every portion of
the river network visible to the UAV sensors is a node to monitor. If the surveyed area is
wide, making for a high probability of significant differences in flowing water temperatures
along the stream, the water control matrices should be identified at regular distances, and
the related WDN ranges should be considered as representative of well–defined subzones.
The definition of the subzone extent depends on the thermal features of the water in the
river network analyzed and needs further investigation.

Our experiments also provided other useful indications concerning the coupled use
of UAVs and thermal sensors. Changes in the flight height did not produce a significant
impact on the signal recorded by the thermal sensor. Indeed, the response of the thermal
camera was similar regardless of the thickness of the atmospheric layer involved in the
sensing procedure (Figure 3 and Table 4). The possibility of surveying objects at higher
altitudes represents an important operational prospect since it allows the coverage of
wider areas in less time. Conversely, the well–known problems induced by the use of an
uncooled microbolometer thermal sensor occurred during several flights. The mounted
microbolometer sensors are very sensitive to internal temperature variations [47,48] and
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are influenced by changing weather and climatic conditions, leading to inaccuracies in the
measurements correlated to sensor noise. The thermal imaging camera in general produced
less noise for intermediate air temperatures (roughly, between 18 and 25 ◦C, as the frequency
distributions show). This disturbance did not lead to significant drawbacks during this
application, in the light of the specific aims of the study. However, this would become a
crucial issue if the objective were the exact measurement of the radiometric temperatures
of the sensed objects [44,49]. In this case, a careful calibration of the TIR images with
ground thermal references would be required for each type of target shot. Processing and
interpreting TIR thermal images from UAVs are far from being straightforward [45,48–53].
The major issues associated with the processing of TIR images gathered via UAVs include
shading effects and potential variations of weather conditions during the flight, which
would vary the underlying thermal contrasts. While these problems are partially overcome
by the proposed methodology, which considers only the relative difference in the thermal
signature of the targeted objects, the presence of cooling systems in the thermal cameras
mounted on UAVs would considerably increase the accuracy of surveys. This expected
improvement, which nowadays has been mainly applied on systems operating in the mid–
wave infrared (MWIR, i.e., approximately 3–5 µm) and requires high payloads (>2–3 kg),
will be decisive in those cases with low thermal contrasts, making the proposed method
more generally applicable, including to different climatic and environmental conditions.

5. Conclusions

In this study, we tested the efficiency of combined TIR and RGB images taken by drone
to reliably detect the presence of water in a Mediterranean headwater catchment located in
Southern Italy. Fourteen flights were performed at two different heights (22 m and 56 m)
over a reach characterized by a permanent flow in three different periods, namely, October
2019, February 2020, and July 2020. The methodology consisted in taking TIR and RGB
images simultaneously, using a double sensor camera (one thermal IR and one RGB) and
analyzing raw data, without the need for detailed calibrations. For each image set, three
“control matrices” representing water, vegetation, and bare soil thermal signatures were
identified. For each control matrix, the minimum and maximum radiometric values were
extracted, which were assumed as representative of the related cover type. The methodol-
ogy allowed a correct detection of the water presence if applied to scenes characterized by
an enhanced thermal contrast between flowing water and the surrounding environment.
Our results also show that the difference between the thermal signature of water and other
cover types was mainly related to the thermal contrast between water and air. Therefore,
for a correct and unambiguous water pixel detection, sufficient drying of other cover types
is needed, which is promoted by prolonged solar radiation and surface heating. As a result,
late morning and early afternoon were the most suitable times to perform the surveys in
autumn and summer. Conversely, the method failed in isolating the thermal signature
of water in the surveys performed during winter, even though useful information could
still be extracted from the related thermal images. In winter and all conditions with low
thermal contrast, future research could move from using uncooled long–wave infrared
(LWIR) sensors, such as those used in this research, to cooled MWIR sensors ensuring
higher accuracy.

The proposed method represents a simple and effective alternative to existing methods
for water detection. The main advantage of the proposed procedure is that it does not rely
on any photogrammetric process, and it minimizes postprocessing efforts. The preliminary
results discussed in this paper suggest a good potential of the tool for a range of important
environmental applications, including the monitoring of the expansion and contraction
dynamics of headwater stream networks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14010108/s1, Figure S1. (a) Three-dimensional representation
of a high-resolution (20 cm) Lidar-derived digital terrain model of the study area (red borders).
(b) Overlay of the study area on Lidar-derived high-resolution orthophoto. Elevation is represented

https://www.mdpi.com/article/10.3390/rs14010108/s1
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by black contour lines. Figure S2. Surveys performed on 22 October 2019 at 09:15, 22 m flight altitude,
the following images are shown: RGB image, with the delimitation of the geomorphic channel (a); the
corresponding IR thermal image in false color, with the delimitation of the geomorphic channel (b); the
pixels within the WDN range (c); the frequency distributions of the DN values of the thermal images,
with three bands highlighting the WDN, SDN, and VDN ranges (d). Furthermore, information is
provided about the date, time, and height of the flight; Tka, Tkw, and ∆Tk a–w; and minimum and
maximum values of the WDN, SDN, and VDN ranges. Figure S3. Surveys performed on 22 October
2019 at 12:45, 56 m flight altitude, the following images are shown: RGB image, with the delimitation
of the geomorphic channel (a); the corresponding IR thermal image in false color, with the delimitation
of the geomorphic channel (b); the pixels within the WDN range (c); the frequency distributions
of the DN values of the thermal images, with three bands highlighting the WDN, SDN, and VDN
ranges (d). Furthermore, information is provided about the date, time, and height of the flight;
Tka, Tkw, and ∆Tk a–w; and minimum and maximum values of the WDN, SDN, and VDN ranges.
Figure S4. Surveys performed on 22 October 2019 at 16:00, 56 m flight altitude, the following images
are shown: RGB image, with the delimitation of the geomorphic channel (a); the corresponding IR
thermal image in false color, with the delimitation of the geomorphic channel (b); the pixels within
the WDN range (c); the frequency distributions of the DN values of the thermal images, with three
bands highlighting the WDN, SDN, and VDN ranges (d). Furthermore, information is provided
about the date, time, and height of the flight; Tka, Tkw, and ∆Tk a–w; and minimum and maximum
values of the WDN, SDN, and VDN ranges. Figure S5. Surveys performed on 15 February 2020 at
07:30, 22 m flight altitude, the following images are shown: RGB image, with the delimitation of the
geomorphic channel (a); the corresponding IR thermal image in false color, with the delimitation of
the geomorphic channel (b); the pixels within the WDN range (c); the frequency distributions of the
DN values of the thermal images, with three bands highlighting the WDN, SDN, and VDN ranges
(d). Furthermore, information is provided about the date, time, and height of the flight; Tka, Tkw,
and ∆Tk a–w; and minimum and maximum values of the WDN, SDN, and VDN ranges. Figure S6.
Surveys performed on 16 July 2020 at 06:00, 22 m and 56 m flight altitude, the following images
are shown: RGB image, with the delimitation of the geomorphic channel (a,e); the corresponding
IR thermal image in false color, with the delimitation of the geomorphic channel (b,f); the pixels
within the WDN range (c,g); the frequency distributions of the DN values of the thermal images,
with three bands highlighting the WDN, SDN, and VDN ranges (d,h). Furthermore, information is
provided about the date, time, and height of the flight; Tka, Tkw, and ∆Tk a–w; and minimum and
maximum values of the WDN, SDN, and VDN ranges. Figure S7. Surveys performed on 16 July 2020
at 07:00, 56 m flight altitude, the following images are shown: RGB image, with the delimitation of
the geomorphic channel (a); the corresponding IR thermal image in false color, with the delimitation
of the geomorphic channel (b); the pixels within the WDN range (c); the frequency distributions
of the DN values of the thermal images, with three bands highlighting the WDN, SDN, and VDN
ranges (d). Furthermore, information is provided about the date, time, and height of the flight;
Tka, Tkw, and ∆Tk a–w; and minimum and maximum values of the WDN, SDN, and VDN ranges.
Figure S8. Surveys performed on 16 July 2020 at 08:00, 22 m flight altitude, the following images
are shown: RGB image, with the delimitation of the geomorphic channel (a); the corresponding IR
thermal image in false color, with the delimitation of the geomorphic channel (b); the pixels within
the WDN range (c); the frequency distributions of the DN values of the thermal images, with three
bands highlighting the WDN, SDN, and VDN ranges (d). Furthermore, information is provided
about the date, time, and height of the flight; Tka, Tkw, and ∆Tk a–w; and minimum and maximum
values of the WDN, SDN, and VDN ranges. Figure S9. Surveys performed on 16 July 2020 at 09:00,
22 m and 56 m flight altitude, the following images are shown: RGB image, with the delimitation of
the geomorphic channel (a,e); the corresponding IR thermal image in false color, with the delimitation
of the geomorphic channel (b,f); the pixels within the WDN range (c,g); the frequency distributions of
the DN values of the thermal images, with three bands highlighting the WDN, SDN, and VDN ranges
(d,h). Furthermore, information is provided about the date, time, and height of the flight; Tka, Tkw,
and ∆Tk a–w; and minimum and maximum values of the WDN, SDN, and VDN ranges. Figure S10.
Surveys performed on 16 July 2020 at 11:00, 22 m and 56 m flight altitude, the following images
are shown: RGB image, with the delimitation of the geomorphic channel (a,e); the corresponding
IR thermal image in false color, with the delimitation of the geomorphic channel (b,f); the pixels
within the WDN range (c,g); the frequency distributions of the DN values of the thermal images,
with three bands highlighting the WDN, SDN, and VDN ranges (d,h). Furthermore, information is
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provided about the date, time, and height of the flight; Tka, Tkw, and ∆Tk a–w; and minimum and
maximum values of the WDN, SDN, and VDN ranges. Figure S11. Surveys performed on 16 July
2020 at 12:00, 22 m and 56 m flight altitude, the following images are shown: RGB image, with the
delimitation of the geomorphic channel (a,e); the corresponding IR thermal image in false color, with
the delimitation of the geomorphic channel (b,f); the pixels within the WDN range (c,g); the frequency
distributions of the DN values of the thermal images, with three bands highlighting the WDN, SDN,
and VDN ranges (d,h). Furthermore, information is provided about the date, time, and height of
the flight; Tka, Tkw, and ∆Tk a–w; and minimum and maximum values of the WDN, SDN, and
VDN ranges. Figure S12. Surveys performed on 16 July 2020 at 13:00, 22 m and 56 m flight altitude,
the following images are shown: RGB image, with the delimitation of the geomorphic channel (a,e);
the corresponding IR thermal image in false color, with the delimitation of the geomorphic channel
(b,f); the pixels within the WDN range (c,g); the frequency distributions of the DN values of the
thermal images, with three bands highlighting the WDN, SDN, and VDN ranges (d,h). Furthermore,
information is provided about the date, time, and height of the flight; Tka, Tkw, and ∆Tk a–w; and
minimum and maximum values of the WDN, SDN, and VDN ranges. Figure S13. Surveys performed
on 16 July 2020 at 16:00, 22 m flight altitude, the following images are shown: RGB image, with the
delimitation of the geomorphic channel (a); the corresponding IR thermal image in false color, with
the delimitation of the geomorphic channel (b); the pixels within the WDN range (c); the frequency
distributions of the DN values of the thermal images, with three bands highlighting the WDN, SDN,
and VDN ranges (d). Furthermore, information is provided about the date, time, and height of the
flight; Tka, Tkw, and ∆Tk a–w; and minimum and maximum values of the WDN, SDN, and VDN
ranges. Table S1. Weather conditions during flight days (data from the Fitterizzi weather station).
Highlighted lines refer to the hours when the flights are performed. Table S2. Results Summary.
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