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Abstract: This paper presents a method for integrating data acquired by unmanned surface vehicles
and unmanned aerial vehicles. The aim of this work was to create a uniform bathymetric surface
extending to the shoreline. Such a body of water is usually characterized by ultra-shallow depths,
which makes measurement impossible even with hydrographic autonomous vessels. Bathymetric
data acquired by the photogrammetric method are, however, characterized by large errors with
increasing depth. The presented method is based on processing of two data sets using a bathymetric
reference surface and selection of points on the basis of generated masks. Numerical bathymetric
models created by interpolation methods confirmed the usefulness of the concept adopted.

Keywords: USV; UAV; digital bathymetric model; bathymetry; spatial interpolation; data fusion;
hydrography; surface modeling

1. Introduction

Shallow waters are among the most interesting and exploited areas on the Earth. They
are accessible and have multiple uses, for example, for unique environmental observation
and tourist activities, but also pose a number of technological and research challenges.
They cover not only areas in the coastal zones of the seas and oceans but also inland waters,
such as lakes, rivers, and artificial reservoirs. Taking into account the management and
exploitation of coast zones, as well as ecology issues, it is important to know the shape
and structure of the terrain, of both the sea and the shore. Thus, many techniques have
been developed over the years to present topography and bathymetry in the coastal zones
and shallow waters. However, these issues are still a research challenge, and as a result
numerous publications with various approaches to solve them are published. Exemplary
approaches have been provided in [1] or [2]. In this paper, we are undertaking the problem
of building a digital bathymetric model (DBM) [3] based on integrated data from novel
measurement techniques on unmanned vehicles.

The traditional method of data gathering in shallow water was manual measurements
with a pole. In time, with development of engineering, it was replaced by acoustic methods,
first with a single-beam echosounder and then with a multi-beam echosounder. These hy-
droacoustic methods are presently the basis of most hydrographic works, as mentioned, for
example, in [4,5]. They provide the most accurate results [6], and in many research works,
they became a reference for assessing other methods’ accuracy, e.g., [1,7]. In some works,
such as [8], the key disadvantages of these solutions were indicated, which are mostly
their labor-intensive nature, relatively small coverage (in shallow waters), and relatively
complicated processing of data. Thus, alternative methods of bathymetry measurements
in coastal zones have been proposed, such as the photogrammetric (mostly multispectral)
method and light detection and ranging (LIDAR), in both aerial and satellite approaches.
Remote sensing of river depths has traditionally relied upon passive optical image data [9].
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Many studies have proven that passive optical spectrally based approaches to depth re-
trieval perform well in shallow waters. Examples of use of these techniques for coastal area
bathymetry can be found, especially when the mapped area is large and a classical survey
would be economically ineffective. They can perform well in many applications; however,
there are also some disadvantages, related mostly to technological and environmental
issues. Optical methods are highly vulnerable to environmental conditions, and they are
able to penetrate only relatively shallow waters. Factors such as water turbidity and color
or atmospheric disturbances affect the quality and availability of measurements.

In the traditional approach, based on passive optical image data, the key issue is to
estimate depth from multi- or hyperspectral images, which typically involves establishing a
relationship between depth and reflectance at one or more wavelengths. The most common
means of calibrating such a relation is to link georeferenced image pixels to field-based
depth measurements [9]. One of the most interesting approaches presented in literature is
the use of optimal band ratio analysis (OBRA) for this purpose, presented in [10]. Other
approaches are extraction of pixel values and regression of depth measurements against
them [11], some of them also taking into account light attenuation in a water column [12].
These methods generally perform well. However, as mentioned in [13], as the use of
remote sensing techniques for mapping shallow river waters continues to expand, so must
awareness of the inherent limitations of this approach. This paper shows the need for a
hybrid approach combining remote sensing with field-based methods, such as multibeam
echosounder surveys, to obtain thorough, complete maps of the bathymetry of large rivers.

Among other photogrammetric approaches, the most important technique is the so-
called structure from motion (SfM), which allows the elaboration of a 3D model based
on computation that includes camera motion. The guidelines of the National Oceanic
and Atmospheric Administration (NOAA) for using this methodology for bathymetric
mapping of coastal areas are included in [14]. It was indicated in this work that the accuracy
and reliability of the measurements depend on many environmental issues, such as water
clarity, seafloor surface texture, and active wave breaking. Water clarity is also crucial
for determining the effective measurement depth, which is usually about a few meters.
In [15], accuracy better than 30 cm for the digital terrain model (DTM) was achieved,
which in the case of shallow waters fulfills IHO special order requirements. However,
simultaneously, it was stated that the results show that SfM through water can be a complex
proposition. It was also proved in [6] that the quality of the bathymetric SfM is highly
sensitive to flow, turbidity, and color. Other factors can also affect the development of
any photogrammetric products, such as specific atmospheric conditions affecting the
quality of the photo radiometry [16]; blurs appearing on the images [17]; water surface
reflections [18]; and sea state, sunglint, and solar elevation angles [19]. In [20], refraction
issues are additionally raised. It is claimed that using the SfM approach for submerged
areas faces additional challenges, posed by the presence of water and, in particular, the
effects of refraction. In this work, a direct comparison of two methods [21,22] of tackling
this issue is included, showing that there is minimal difference in results produced by
different refraction correction procedures. Other examples of using photogrammetrical
SfM for river bathymetry can be found in [23–25]. Studies considering refraction can also
be found in [26–28].

Another example of modern systems for bathymetry measurements is bathymetric
LIDAR, usually making use of green laser for bathymetric survey. However, as given
in [29], the availability of these devices is still relatively low, mostly due to high prices.
Nevertheless, in some publications, this approach is presented as functional and in [30], it is
presented as an important and developmental data source for coastal areas. In [31,32], it is
said that although LIDAR is only feasible for relatively shallow and clear waters, due to the
significance of such regions there are many airborne LIDAR systems specifically developed
for bathymetry. In [33], based on LIDAR bathymetry measurements on two lakes in Poland,
it was concluded that this sensor can be used for measurements in the littoral zone (up
to 1.6 m), while above this depth, data can be acquired by hydroacoustic sensors. In the
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study case of rivers, the maximum obtained depth was 2 m [25]. Topobathymetric LIDAR,
which can simultaneously survey land and water areas, is presented as a prospective
solution in [34,35].

Satellite technology can also be used for bathymetric survey in coastal areas. Descrip-
tions of various techniques (optical, radar, and laser) can be found in some publications. A
fine survey on the technology is provided in [36]; the methods presented are interesting;
however, they are mostly used for large areas on a world scale. Another non-obvious exam-
ple is the method of indirect bathymetry calculation based on gravimetry measurements,
given, for example, in [1,37].

Each of the methods above has its advantages and disadvantages and is suitable for
various conditions and in different areas. Thus, in many studies, data from various sources
are combined in a fusion process to obtain an integrated model. In some works, described,
for example, in [30], the wider concept of topobathymetry is included. A recent example is
given in [38] in the form of an updated methodology for the topobathymetry survey by
United States Geological Survey (USGS). The core idea is to combine geospatial products
derived from single sources in raster form. The measurements have to be preprocessed
before they are combined based on prioritizing and filling gaps in data sets. In most of
the research, data from acoustic measurements are combined with other data sources.
In [39], aerial photos and multispectral images are combined with a digital elevation model
(DEM) from echosounder measurements based on a pixel- and object-level fusion strategy.
Another approach is used in [40], in which a lot of time was spent on preprocessing of
data from various sources (echosounder, cartographic data, manual survey), which were
then combined into one data set, for which a joint DEM was provided. In [41], a raster
from echosounder data is combined with a model elaborated based on IKONOS images.
In [42], geoswath bathymetry is combined with LIDAR as spatially complementary data
sets, with the analysis of various interpolation methods. In [8], acoustic measurements
are combined with data from a photogrammetric survey (SfM) by an unmanned aerial
vehicle (UAV). The final product is an interpolated raster with a spatial resolution that
depends on the point spacing from the sampling process. For achieving a smooth transition
between SfM and echo sounding measurements, each bathymetric raster is classified by
its corresponding range of high-precision scanning depths. A similar approach is also
provided in [2] for combining data for a topobathymetric model. Another approach for
combining acoustic and photogrammetric survey is given in [43], where a photogrammetric
survey is used for determining the coastline, while the DEM itself is prepared based on
single-beam acoustic measurements.

A complex approach to the integration of data from various sources is presented
in [44], in which many databases and sources are used. The basis is the integration of
LIDAR and hydroacoustic data, any gaps therein are supplemented by data from various
databases, such as Electronic Navigational Chart (ENC), General Bathymetric Chart of the
Oceans (GEBCO), and legacy systems. A common database is prepared, and a common
DEM is created. As the input data for the model are characterized by high density, the
binning minimum value (BMV) method is used for smoothing and denoising.

Unmanned vehicles are being increasingly used in many survey techniques. The
main reason for and advantage of this is reducing the workload of surveyors. UAVs as
the platform for photogrammetric equipment have been used, for example, in [2,6,14,45]
and also for rivers, for example, in [20,46,47], while a survey with LIDAR mounted on
a UAV is presented, for example, in [29]. A review of such an application can be found
in [48]. An interesting approach is also proposed in [8,49], where a bathymetric survey
was performed with an echosounder towed by a low-level UAV. Various echosounders
mounted directly on unmanned surface vehicles (USVs) are presented in research given
in [50]. In works [2,6,51], the use of UAVs for photogrammetric measurements and USVs
for hydroacoustic measurements has been presented. A novel and interesting approach for
planning and performing an integrated mission by UAVs and USVs is explained in [52].
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The method of combining data is another component in the development of an inte-
grated digital bathymetric model, apart from measurement techniques. In most works, the
areas for various data are defined. Usually, some kind of priority is proposed for them,
indicating the most reliable source (echosounder in most cases), and then the gaps are filled
by data from other sources. Such an approach has been used, for example, in [8,40,42,44].
The main problem with this approach is the ambiguity in the neighboring areas, where
models of different qualities (resolution and accuracy of measurement) are fused. Other
problems are the necessity of cutting of overlapping areas and the ambiguity of point
classification. For example, in [8], for achieving a smooth transition between SfM and echo
sounding measurements, each bathymetric raster is classified by its corresponding range of
high-precision scanning depths. In some works, after the identification of areas jointly cov-
ered, a combination of input data in them is proposed. This approach is used, for example,
in [34] for LIDAR data or in [2] for photogrammetric data. The main issue then is the way
of combining data of different types. The works involving this approach are in minority,
showing research potential in this area. A joined DEM can then be elaborated as one model
for integrated input data set [44] or as the integration of a few raster surface models [38].

The development of a digital bathymetric model also involves choosing the method
for interpolation, apart from the input data set. In [38], the geostatistical empirical Bayesian
kriging method is proposed for this purpose. Kriging has also been used in [6,40]. Tri-
angulation, after local smoothing, is used in [44], while the nearest neighbor method is
proposed in [8]. In [2], three methods are analyzed, inverse distance weighted (IDW),
kriging, and natural neighbor, and IDW is indicated to give the best results. In [53], the
proposal of modification dedicated to bathymetric modeling of IDW is proposed, based on
bathymetric data, and in [54], the need for big data set reduction prior to interpolation is
emphasized. As seen, a variety of methods can be used for interpolation in modeling, with
satisfactory results.

Most of the research focusing on issues with modeling a shallow water surface refers to
sea coastal areas, leaving a void in inland areas. Additionally, modern methods should use
unmanned vehicles as the most effective survey solution and data should be integrated from
various sources. The most reliable is usually derived from hydroacoustic measurements,
while the most popular sensor for UAVs is a multispectral camera. In this case, the SfM
methodology is usually used, allowing the most effective modeling. Data sets derived
from various sources should be integrated taking into account their quality, and then
the final digital surface model should be developed. Following these conclusions from
literature analysis, we decided to elaborate the method of developing an integrated digital
bathymetric model for shallow waters, based on hydroacoustic measurements done with a
USV and photogrammetric measurements made with a UAV. In both large-hydrographic-
vessel and USV surveys, there is always some part of the area inaccessible for an acoustic
survey. As shown in [45], the development of the bathymetric surface in areas with no
data, based on interpolation techniques, has low effectiveness and has much bigger errors
compared with the surface modeled with measured data. The results from this work were
the basis for performing the research on the use of UAVs to gather the data remotely in areas
inaccessible for survey surface vehicles and to integrate these data with USV measurements.

The main contribution of this study is the development of a method to combine bathy-
metric data acquired by hydroacoustic and optical sensors to create a digital bathymetric
model for shallow water areas up to the shoreline boundary. Depending on the type of wa-
ter body, these two methods have limitations related to the acquisition of bathymetric data
in shallow water areas. In the case of USVs, the main restrictions are the vehicle’s draught,
maneuvering capabilities in close vicinity to shoreline, submerged aquatic vegetation, and
other dangerous objects (fishing nets, trees, etc.). An identified problem for UAVs is the
limited possibility of using optical sensors in bathymetric measurements, which is caused
by factors such as depth, water transparency, and others previously mentioned. The main
research problem related to the use of photogrammetric data is the answer to the question,
to what depth can these data be used to develop a digital bathymetric model? For this pur-
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pose, we propose a solution based on the creation of a bathymetric reference surface, which
was developed from data acquired by a single-beam echo sounder mounted on a USV. With
respect to this surface, UAV measurement points were selected based on the proposed data
geoprocessing method, which were then combined with data acquired by hydroacoustic
sensors. The UAV bathymetric data were developed based on a photogrammetric method
using an underwater control network. In our work, we assumed that it is possible to obtain
accurate bathymetric data based on SfM and an underwater control network without taking
refraction into account. The final product was qualitatively and quantitatively analyzed.
Based on the results, we confirmed that the assumptions (bathymetric data generation using
an underwater photogrammetric network, data fusion based on a bathymetric reference
surface, and dataset processing based on developed masks) make it possible to create a
digital bathymetric model from hybrid data using the proposed methodology. The method
was widely assessed with multivariate analysis. Various combinations of input data sets
and interpolation methods were considered in the research. The measurements themselves
were performed in inland waters covering shallow and ultra-shallow areas. Such a location
is also unique in terms of analyzed works. However, the achieved results and the proposed
method can be used for any coastal and shallow waters.

2. Materials and Methods
2.1. Study Area

The study area is located within the village of Czarna Łąka (Poland), situated in
Western Pomeranian Voivodeship, Goleniów District (Figure 1). The study area is a part of
Dąbie Lake, which is a water body with an average depth of 2.61 m [55]. It includes a small
bay with the Bystra beach. The water area from the northern and southern side is densely
covered with aquatic vegetation and has a sandy beach on the eastern side. The area of
the investigated water covers 0.0271 km2 (2.71 ha). The bottom of the water area is flat for
the most part, with a larger depression at the entrance to the bay. The average depth of
the water area is about 1 m, and the maximum depth is 3.95 m. During the survey, the sky
was slightly overcast; during the UAV flight, the sun was shining. The water surface was
slightly wavy. The measurement campaign took place on 4 August 2021, between 7:30 a.m.
and 1:00 p.m. UTC.
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2.2. UAV Photogrammetric Data Acquisition

The photogrammetric data were acquired using an unmanned aerial system, a DJI
Phantom 4 Pro quadrocopter. One of the advantages of this system is a camera integrated
with a three-axis gimbal that allows recording of camera angles while taking pictures.
The camera has a CMOS sensor that can take 20-megapixel images. The focal length of
the camera is 8.8 mm (35 mm equivalent: 24 mm), and the field of view of the camera
is 84 degrees. Images are saved in JPEG format on a microSD card. The system allows
autonomous missions to be performed using dedicated software. The flight was taken
from an altitude of 120 m using a basic ultraviolet (UV) filter. The UAV uses a dual
positioning system: Global Positioning System and Global Navigation Satellite System
(GPS-GLONASS); the positioning accuracy specified by the manufacturer for the hover is
±0.5 m vertically and ±1.5 m horizontally [56].

Before the flight, a temporary, signalized photogrammetric network was stabilized,
consisting of 10 ground control points (GCPs): 6 on land and 4 underwater. Two types
of survey GCPs were used: round white discs 27 cm in diameter (fixed with a centered
surveyor’s nail) to stabilize the land survey network and orange-black survey discs 91 cm
in diameter as an underwater network, stabilized with surveying pins to the lake bottom.
The distribution of the network was designed during an investigation based on a field
inspection. The network points were distributed evenly and on the boundaries of the
survey area. The photogrammetric network was measured with a Sokkia GRX-1 receiver
operating in the real-time kinematic (RTK) positioning mode.

In addition to the photogrammetric network, check points (CPs) were measured with
an RTK receiver and used for height control of the DTM and the DBM. The check points
for the land area were distributed evenly over the survey area, where 29 check points
were measured. The underwater control points were measured as an underwater profile,
where the distance of each successive point was approximately 8–9 m from the previous
point; 23 such points were measured. During the flight, which lasted 18 min, 439 images in
12 stripes were acquired for an area with a coverage of 0.3207 km2. Overlap and sidelap
image coverage was 85%.

Figure 2 illustrates the locations of the underwater and land GCPs, check points, USV
soundings, the developed UAV orthomosaic, and the study area. In addition, a photograph
of the underwater GCP is included.
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2.3. USV Hydroacoustic Data Acquisition

USVs are remotely operated floating platforms usually designed for surveys in ex-
tremely shallow water areas [57,58], where the use of standard survey boats is not viable or
is risky. The Gerris ASV used within this study is dedicated to single-beam echosounder
surveys. It can operate in manual and autonomous control mode on designed survey lines.

The vehicle is equipped with two electric motors driving the vehicle and a wireless
radio link for control and telemetry data. The measurement system based on the Echologger
EU400 single-beam echosounder and the Emlid Reach M2 RTK positioning receiver is
integrated in the USV platform industrial computer. HYPACK 2021 hydrographic software
is responsible for the integration of bathymetric and position data.

The echosounder transducer is mounted to the pole and connected to the industrial
computer. The echosounder is equipped with an inertial measurement unit (IMU) for
platform motion correction [59]. The most important parameters of the echosounder are
a high acoustic frequency and a small acoustic beam size, which affects the precision of
depth measurements in shallow water areas. The GNSS receiver antenna is mounted on top
of the echosounder pole. RTK corrections are provided by the Internet module via Global
System for Mobile Communications (GSM). Basic parameters of the measurement system
used are shown in Table 1. Picture of USV used in the study is in Figure 3.

Table 1. USV survey system parameters.

Single-Beam Echosounder Unmanned Survey Vehicle Positioning System

Frequency 450 kHz Length 1200 mm Static accuracy

Static horizontal
4 mm + 0.5 ppm

Static vertical
8 mm + 1 ppm

Beam width 5◦ Conical
(−3 dB) Width 1000 mm Kinematic

accuracy

Kinematic vertical 14
mm + 1 ppm

Kinematic horizontal
7 mm + 1 ppm

Transmit pulse
width

10~200 µs
(10 µs step) Height 360 mm (without mast) Signals tracked

simultaneously
GPS/QZSS, GLONASS,

BeiDou, Galileo

Ranges 0.15~100 m Survey speed 1.2 m/s

Data output format ASCII TXT,
NMEA0183 Thrusters 2× T200 Blue RoboticsRemote Sens. 2021, 13, x FOR PEER REVIEW 8 of 30 
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2.4. Research Methodology

The research concerns full bathymetric imaging, up to the shoreline boundary, includ-
ing shallow and ultra-shallow depths. Considering the operational capabilities of a USV,
its range is limited by the depth of the body of water, which in the case of shallow waters,
often occurring in coastal areas, makes a complete survey impossible.
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In practice, other barriers, often natural, limiting the hydrographic survey can also
be encountered. These may include partially submerged vegetation that creates barriers
preventing a full survey, underwater obstacles, and floating vegetation on the water surface.
Bathymetric data for an area inaccessible to USVs can be acquired using UAVs. Although
there is some overlap between the two methods, UAV data are more heterogeneous and
correct only for a certain depth, below which the values are generated with increasing
errors. At a certain depth threshold value, bathymetric data cannot be acquired using the
photogrammetric method due to attenuation of the electromagnetic radiation, which dissi-
pates completely in the water, preventing it from reaching the bottom and reflecting. The
magnitude of this value will be variable for a given body of water and will depend on many
factors, such as water transparency, surface ripples, and bottom type and structure [60,61].

An identified problem related to the development of a unified bathymetric model
is the correct integration of the data. For this purpose, research has been carried out in
this paper, resulting in the development of a method to conduct this process. The main
idea of the method is to create a bathymetric reference surface (BRS) from echo sounder
measurements, on the basis of which, UAV cloud points are selected within an established
tolerance (maximum vertical deviation from the reference surface). Such a surface was
created using the triangulated irregular network (TIN) method. This surface was created
to carry out multi-variate studies to create a proper UAV data set for the development of
the final digital bathymetric model. The process of creating data sets from the UAV point
cloud is described in Section 2.9.

In the conducted research, a UAV point cloud (created in PIX4D Mapper) developed
from all classes (PCA) and a point cloud with a ground class (PCG) were tested. Three
experimental surfaces (ES) were created from each cloud in raster form. The surfaces were
created using statistical map algebra operations based on individual raster cells [62]. Each
surface was created in a different way, based on the mean, the highest, and the lowest
height values of the points lying within each pixel boundary. These surfaces were further
used to create masks to select points in the UAV cloud based on the maximum allowable
deviation from the reference surface, which we call tolerance. A mask is a polygon covering
an area of the raster where the deviations from the BRS surface are contained within the
tolerance limits. Four types of masks were included in the research process.

In the next stage of the research, four sets of UAV measurement points were prepared
for the PCA and PCG clouds. Masks were used to create these sets, on the basis of which
point selections were made in the point clouds. The result was the creation of four test
sets for the PCA cloud and an analogous four sets for the PCG cloud. After analyzing the
height range and finding significant deviations above the surface, additional filtering was
performed on points located at heights above 0.25 m. Positive depth values were used in
the final model mainly to preserve points that, due to errors in the development of the
numerical bathymetric model, could be above the water surface in areas of ultra-shallow
depth, on the order of a few centimeters.

The data sets prepared in this way were combined with the USV data in a single LAS
format file. In the next step, digital surfaces were created for each data set using different
interpolation methods. These surfaces allowed a qualitative and quantitative assessment of
the created bathymetric surfaces, on the basis of which it was possible to select dedicated
UAV point cloud types for merging with USV data, masks for processing point clouds,
and interpolation methods in terms of creating a digital bathymetric model. The final
quantitative and qualitative analysis formed the basis for discussion and conclusions. Next,
the research is described in detail according to the research process adopted in the study,
illustrated in Figure 4.
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2.5. USV Data Processing

Data acquisition was performed in the Hypack 2021 hydrographic software installed
on the onboard computer. The operator, through a remote desktop and a Wi-Fi network,
had access to all parameters and data recording status in near real time. Planning and
viewing of platform telemetry parameters were performed through radio communications
and Mission Planner software installed on the operator’s computer. On a background chart,
the operator determined the planned route by plotting runlines. In the next stage, data
acquisition, the operator supervised the progress of the mission.

All necessary corrections were applied to the single-beam echosounder system to
acquire reliable bathymetric data before data recording began. Vertical and horizontal
offsets were entered relative to the platform’s center reference point (CRP). The draft of
the echosounder transducer was taken into account, and the average value of the speed of
sound in water was included. The correctness of the entered parameters was confirmed by
performing a calibration of the echosounder using the bar check method [63]. Positioning of
the platform was performed with the RTK system. For data acquisition, depth data and raw
echogram data were recorded. The recorded data set from the single-beam echosounder
system was processed in the SBMAX64 module of the Hypack software. First, the data from
the GNSS positioning system were analyzed after data import. The trajectory of the moving
surveying platform in places of temporary loss of delivered RTK corrections was corrected.

In the second step of bathymetric data analysis, manual analysis of the echograms was
performed against the indications of the bottom tracking algorithm [64] of the echosounder
(Figure 5), which is based on the amplitude of the reflected signal. Due to the heavily
vegetated bottom, especially in the nearshore zone, the study required manual digitization
of the echogram. The processed data set was vertically referenced to the nearest water-
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level gauge, Most Długi Szczecin (Długi Bridge in Szczecin). An offset for depth was
implemented using the water-level gauge zero as the chart datum.
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2.6. UAV Data Processing

The data acquired from the UAV platform were processed in PIX4D Mapper software
(v. 4.4.12), designed for low-altitude data processing. The project was georeferenced by
measuring the GCPs signalized in the field before the aerial flight and then measured on
the images. A dense point cloud was created from the photographs, which was the input
product for the development of the DTM. Point cloud classification was also performed
in PIX4D Mapper software to separate ground points from the full point cloud. The clas-
sification is performed based on the algorithm proposed by [65], which uses geometric
and color features for the classification process, allowing each point in the point cloud
to be assigned to one of six predefined classes: unclassified, ground, road surface, high
vegetation, buildings, and human made object. In the software, it is not possible to select
the parameters for the point cloud classification; it is only possible to choose whether the
classification process should be performed (this is recommended by the developer if one of
the products is to be a DTM) or whether the cloud should be left unclassified in order to
build a digital surface model (DSM).

When determining the bathymetry of a water body using UAVs, a land-based survey
network is usually set up [66–68]. Other approaches are also reported, e.g., [69] land-based
GCPs are used and two buoys are placed on water for the study. Another approach is to
use both land and underwater GCPs [70]. The authors of [70], while conducting surveys in
the coastal waters of one of the Maldives islands, pointed out that the best results can be
obtained using an underwater network without refraction corrections. In the present study,
we used this option, taking into account the underwater photogrammetric network. Our
case can be regarded as an extension of this type of research in another type of water body.
The study area included inland waters with lower transparency (darker color). Another
method of assessing the accuracy of the elevation models was used, measuring the CPs’
coordinates along the underwater profile.

To assess the applicability of a photogrammetric underwater network, the process of
data alignment was carried out according to two independent measurement scenarios. The
first measurement scenario assumed using only a land control network (6 land GCPs) for
data alignment. The second scenario assumed using both land and underwater network
points (10 GCPs) for data alignment. Table 2 summarizes the results for the data georefer-
encing process using the two measurement scenarios described. Obtained RMSE errors
for X- and Y-coordinates have values below or around a centimeter for both scenarios. The
Z-coordinate for the method using land GCPs gives a smaller error, about 3 cm, while the
Z error (RMS) for the second scenario gives an error of about 6 cm. In addition, errors for
underwater GCPs are included, which are similar for scenario 2.
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Table 2. GCP errors for two scenarios of photogrammetric data acquisition.

GCP Type RMS Errors [m]

Land GCP X = 0.004, Y = 0.005, Z = 0.031

Land and underwater GCP X = 0.007, Y = 0.012, Z = 0.059

Underwater GCP X = 0.005, Y = 0.013, Z = 0.057

The final products obtained in the form of DTMs were checked for accuracy (height
deviation) on the basis of the bottom points measured on the profile with an RTK receiver
(Figure 2). Figure 6 summarizes the results showing the height differences on the profile
obtained between these points and the height points measured on the DTM.
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The minimum deviation, the maximum deviation, and the mean deviation for the
survey with the land and underwater control networks were 0.00, 0.04, and 0.01 m, respec-
tively. In a study for land GCPs only, the values were 0.11, 0.39, and 0.24 m, respectively.
It should be noted that as the depth increases, the deviations for the two cases tend to
increase. As an additional DTM control, an altitude check of the models on the land area
was performed. The verification was performed on 29 independent control points. The
minimum deviation was 0.00. The maximum deviation and the mean deviation for the
study with underwater network were 0.45 and 0.05 m, respectively. For the survey without
an underwater network, the values were 0.003, 0.23, and 0.04 m, respectively. Analysis of
the height control points confirms the high accuracy of the developed products not only in
the underwater area but also in the land area. On the basis of the above results, it can be
stated that determining bathymetry by the photogrammetric method with an underwater
control network without taking into account refraction correction gives good results.

2.7. Characteristics of Data Sets

In the study, it was assumed that the surface reconstruction would be carried out in the
final stage using interpolation techniques. The analysis of spatial distribution and density
of data is important in this case, as it may affect the accuracy of the modeled surfaces. It is
especially important in the case of interpolation methods with parameters usually adjusted
to the measurement set of similar or the same spatial distribution. In our case, we have
a data set with varying spatial distribution and density. In the part of the body of water
accessible to the USV platform, data were acquired on planned parallel profiles 10 m apart.
On the profile, the data were spaced every 30–40 cm. Such a distribution can be considered
as regular with a high density of equally spaced data. The situation was different for the
UAV data. The data had a scattered spatial distribution with a high density per square
meter, ranging from 1 to over 300 points. It should be noted here that this density was
variable over the UAV data coverage area, which was related to the processing of the full
point cloud. This resulted in two point clouds, the PCA cloud and the PCG cloud, with
different densities. The second factor of density change was the depth, which was related
to the possibility of data acquisition by the photogrammetric method. With its increase,
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the density of points decreased. The densities of the data are shown in Figure 7, while the
spatial distributions are shown in Figure 8.
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Analysis of the vertical characteristics of the data is also important, especially in
terms of creating a bathymetric surface. Analyzing the data sets, it was found that USV
data after processing do not have local extremes or major deviations. In the case of UAV
data, the situation is different. These data are characterized by height variation, creating a
layer of points. A comparison between USV and UAV data is illustrated in Figure 8. The
high roughness of the point cloud may indicate the presence of submerged vegetation,
bottom microtopography, or imprecise matching of the images. It is also important to
consider the way the point cloud is created, which is based on the collinearity equation and
epipolar geometry, where it is important to find homologous points in at least two images.
When mapping shallow water areas, it is important to take measurements under favorable
conditions, such as clear water, a calm water surface, and visible bottom texture [71],
which should facilitate the acquisition of reliable height information from the point cloud.
However, given the frequent variability of weather conditions during measurements and
the diversity of water bodies, it is difficult to assess which parameters influence the height
determination of the measurement points.

2.8. Creation of a Bathymetric Reference Surface

To carry out the surveys, a reference surface was created from the USV data, against
which the deviations were calculated in subsequent steps, the motive being that bathymetric
data generated from photogrammetric material have greater errors with increasing water
depth, until they disappear. The second factor is that they are quite noisy. Therefore, in this
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case, it is difficult to determine to what depth they are generated correctly and what depth
value should be taken as a reference. In the case of USV data, such a problem does not exist
as the measurement is performed using hydroacoustic methods, which are recognized and
proven measurement techniques. Additional recording of the echogram enables accurate
processing of the depth data and removal of noise or measurement errors [72]. It also has
the advantage of recording data on profiles, which facilitates the final data processing.

The BRS surface was created in the USV measurement point domain using the TIN
method, in a GRID structure with a 0.5 m resolution. The Delaunay algorithm was used
in the creation of the TIN mesh. Delaunay triangulation has the following properties: in
the area of the circle described on any points of an elementary triangle, there is no other
point from the whole set of measurements; it maximizes the smallest angles of elementary
triangles, which makes their shape the best fit to the set of depth points [73]. The reference
surface from the USV data and the surface from the UAV data are illustrated in Figure 9.
As can be seen, the TIN surface is characterized by smoothness and continuity of the
bathymetric data, while the surface created from the UAV cloud has a rough structure and
generation is not possible at greater depths.
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A characteristic of the bathymetric surface developed with the UAV is also that in
deeper waters, the amount of erroneous data increases significantly. In Figure 10, large
deviations, both positive and negative, can be observed at these locations, ranging from
−2.79 to 3.21 m.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 30 
 

 

correctly and what depth value should be taken as a reference. In the case of USV data, 
such a problem does not exist as the measurement is performed using hydroacoustic 
methods, which are recognized and proven measurement techniques. Additional 
recording of the echogram enables accurate processing of the depth data and removal of 
noise or measurement errors [72]. It also has the advantage of recording data on profiles, 
which facilitates the final data processing. 

The BRS surface was created in the USV measurement point domain using the TIN 
method, in a GRID structure with a 0.5 m resolution. The Delaunay algorithm was used 
in the creation of the TIN mesh. Delaunay triangulation has the following properties: in 
the area of the circle described on any points of an elementary triangle, there is no other 
point from the whole set of measurements; it maximizes the smallest angles of elementary 
triangles, which makes their shape the best fit to the set of depth points [73]. The reference 
surface from the USV data and the surface from the UAV data are illustrated in Figure 9. 
As can be seen, the TIN surface is characterized by smoothness and continuity of the 
bathymetric data, while the surface created from the UAV cloud has a rough structure 
and generation is not possible at greater depths. 

 
Figure 9. BRS surface developed by the TIN method from USV data in the sounding domain (a) and 
the corresponding surface developed from UAV data (b). View within the limits of the complete 
development of the digital bathymetric model. 

A characteristic of the bathymetric surface developed with the UAV is also that in 
deeper waters, the amount of erroneous data increases significantly. In Figure 10, large 
deviations, both positive and negative, can be observed at these locations, ranging from 
−2.79 to 3.21 m. 

 
Figure 10. Deviation of depth values between photogrammetric surface and BRS. 
Figure 10. Deviation of depth values between photogrammetric surface and BRS.



Remote Sens. 2022, 14, 105 14 of 29

2.9. UAV Point Cloud Processing

As mentioned earlier, low-altitude photogrammetry methods are characterized by
limited possibilities for obtaining bathymetric data. Analyzing our case, we can state that
the range of larger discrepancies starts from a depth of 0.7 to 1 m and the approximate
limit of depth generation is 1.3 m. The purpose of this stage of data processing is to remove
points from the data set that do not fall within the assumed threshold value (vertical
tolerance). In this study, the threshold value was assumed at the uncertainty level for the
special category area according to the IHO regulations published in Publication No. 44 [74],
which for depths of 4 m and less is 0.25 m. In the final stage of the study, eight data sets
were prepared, which differed in the way that the points were removed using developed
masks based on the assumed tolerance. The subsequent stages of point cloud processing
are presented below.

Stage 1: Creation of experimental bathymetric surfaces (ES)
These surfaces were created in raster form with a resolution of 0.5 m. Rules for

aggregation of points in the resulting raster cell were based successively on three statistical
operations: arithmetic mean value (M), highest value (H), and lowest value (L). Surface
generation was performed for both PCA and PCG clouds. Six bathymetric models were
developed, denoted successively for the PCA cloud as ES(A) M, ES(A) H, and ES(A) L and
for the PCG cloud as ES(G) M, ES(G) H, and ES(G) L. The data processing is illustrated
in Figure 11.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 30 
 

 

2.9. UAV Point Cloud Processing  
As mentioned earlier, low-altitude photogrammetry methods are characterized by 

limited possibilities for obtaining bathymetric data. Analyzing our case, we can state that 
the range of larger discrepancies starts from a depth of 0.7 to 1 m and the approximate 
limit of depth generation is 1.3 m. The purpose of this stage of data processing is to remove 
points from the data set that do not fall within the assumed threshold value (vertical 
tolerance). In this study, the threshold value was assumed at the uncertainty level for the 
special category area according to the IHO regulations published in Publication No. 44 
[74], which for depths of 4 m and less is 0.25 m. In the final stage of the study, eight data 
sets were prepared, which differed in the way that the points were removed using 
developed masks based on the assumed tolerance. The subsequent stages of point cloud 
processing are presented below. 

Stage 1: Creation of experimental bathymetric surfaces (ES)  
These surfaces were created in raster form with a resolution of 0.5 m. Rules for 

aggregation of points in the resulting raster cell were based successively on three 
statistical operations: arithmetic mean value (M), highest value (H), and lowest value (L). 
Surface generation was performed for both PCA and PCG clouds. Six bathymetric models 
were developed, denoted successively for the PCA cloud as ES(A) M, ES(A) H, and ES(A) 
L and for the PCG cloud as ES(G) M, ES(G) H, and ES(G) L. The data processing is 
illustrated in Figure 11. 

 
Figure 11. Creation of an ES surface based on the aggregation of values in the resulting raster cell 
based on the statistics M (mean value), H (highest value), and L (lowest value). 

Stage 2: Calculation of deviations from the BRS 
The operation was carried out using raster algebra tools, subtracting successive 

rasters of experimental surfaces with M, H, and L values from the cell values of the 
reference surface raster. The result of this operation was a raster with deviation values. 
The task was carried out using ArcGIS Pro software. 

Stage 3: Creation of masks 
Rasters with deviation values were the basis for determining the set of pixels with 

acceptable deviation values. These ranges were determined using the quantization 
method, setting two threshold levels for raster pixels: +0.25 and −0.25 m. The determined 
raster area based on pixels with acceptable deviations was used to create masks with M, 
H, and L values. One more mask type, HL, was included in the study, which was a 
common part of H and L masks. The motivation for its creation was that the resulting 
pixel in this case had to meet a threshold condition for both maximum and minimum 
values. In the final stage, four masks were created based on ES(A) surfaces, MASK(A) M, 
MASK(A) H, MASK(A) L, and MASK(A) HL, and four masks based on ES(G) surfaces, 
MASK(G) M, MASK(G) H, MASK(G) L, and MASK(G) HL. 

Stage 4: Processing of point clouds using masks 

Figure 11. Creation of an ES surface based on the aggregation of values in the resulting raster cell
based on the statistics M (mean value), H (highest value), and L (lowest value).

Stage 2: Calculation of deviations from the BRS
The operation was carried out using raster algebra tools, subtracting successive rasters

of experimental surfaces with M, H, and L values from the cell values of the reference
surface raster. The result of this operation was a raster with deviation values. The task was
carried out using ArcGIS Pro software.

Stage 3: Creation of masks
Rasters with deviation values were the basis for determining the set of pixels with

acceptable deviation values. These ranges were determined using the quantization method,
setting two threshold levels for raster pixels: +0.25 and −0.25 m. The determined raster
area based on pixels with acceptable deviations was used to create masks with M, H, and L
values. One more mask type, HL, was included in the study, which was a common part of
H and L masks. The motivation for its creation was that the resulting pixel in this case had
to meet a threshold condition for both maximum and minimum values. In the final stage,
four masks were created based on ES(A) surfaces, MASK(A) M, MASK(A) H, MASK(A) L,
and MASK(A) HL, and four masks based on ES(G) surfaces, MASK(G) M, MASK(G) H,
MASK(G) L, and MASK(G) HL.
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Stage 4: Processing of point clouds using masks
The PCA and PCG clouds were processed using masks, which finally enabled the

preparation of eight sets of UAV points: PCA M, PCA H, PCA L, PCA HL, PCG M, PCG H,
PCG L, and PCG HL. The points contained by the corresponding mask were preserved in
the geodata sets. This process is illustrated in Figure 12.
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Stage 5: Filtration of points
The next step was to analyze points above the water level. The height of the water

level was determined by referencing to a water gauge (a hydrographic reference was used).
For photogrammetric surveys, water surfaces generate noise in the form of points above
their surface. These were reduced in the proposed data processing. The threshold filtering
value for such points was set at a predetermined tolerance of 0.25 m, the aim being to
preserve points that are part of the bathymetric surface but may be above the water surface
due to a model elaboration error in the z-axis. This approach allows the continuity of the
model to be maintained without removing points above the water surface in ultra-shallow
parts of the water area. In addition, a higher number of such points were observed near the
shoreline. The reason for this is, in most cases, the problem of spectral separation of the
water boundary and the presence of organic objects (e.g., sediments of dead vegetation)
that accumulate there due to the wave impact. A schematic of this data processing step
is shown in Figure 14. The prefix F in front of the point cloud names denotes the data set
with the points above the water surface removed according to the assumed criteria.
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Figure 15 illustrates the spatial distribution of points above the water surface. As can
be seen, the mask created from the mean values, MASK(A) M, leaves most such points.
Significantly fewer points of this type remain for PCG clouds. An interesting observation is
that for two types of point clouds, PCA and PCG, masks of H and HL type do not leave
such points in the BRS surface domain. Quite a number of such points, however, can be
observed in a narrow strip of the shoreline, although in most cases, their deviations from
the water surface do not exceed 3 cm.
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Stage 6: Merging data in a file
To create a single file integrating data from the two sensors, the USV data were

converted to LAS format and merged with the UAV data set in Global Mapper software
(v.21). The input photogrammetric data sets were FPCA and FPCG point clouds, into which
the USV bathymetric data were imported. The final result was eight combined sets (CSPCA
and CSPCG), which are the material for creating digital surface models by interpolation
methods. The scheme for merging the data sets is illustrated in Figure 16, while the final
data sets are shown in Figure 17.
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were used).

2.10. Creation of Digital Bathymetric Models Using Interpolation Methods

The combined sets of USVs and UAVs data were used to model the surfaces using
different interpolation methods. Five interpolation methods were tested: triangulation
(TRI) [75], natural neighbor (NAN) [76], inverse distance to a power [77], kriging (KRI) [78],
and radial basis function (RBF) method [79]. Considering the complex spatial structure of
the geodata, consisting of regular survey profiles and a point cloud with a high density
and scattered distribution, this case was also included in the research. The first two of
the mentioned methods are parameter-free methods, while the others require them. From
the operator’s point of view, the parameter-free methods are certainly a better choice,
as they do not require knowledge of the influence of parameters on the final shape of
the modeled surface. This advantage can also be considered as a disadvantage because
parameters usually allow for a better fit of the model to the real surface. In contrast,
methods with parameters require the knowledge of parameters and an assessment of their
influence on the final shape of the model. Due to the multivariate nature of the research
carried out in this study, the influence of the values of various parameters of such methods,
such as kriging, IDW, and RBF, was not analyzed, but the default values were used. The
study of these parameters can be a further development of the research undertaken in
this paper. The method parameters used were as follows: IDW power = 2; KRI, linear
semi-variogram model, point kriging type, polynomial drift order = 0; and RBF, kernel type
multiquadric, shape factor (R2) calculated according the formula (length of diagonal of the
data extent)2/(25 × number of data points). IDW, KRI, and RBF methods used a four-sector
search, 12 points per sector, resulting in interpolations from a total of 48 measurement
points. The four-sector search divides the GRID mesh node space into four equal sectors
with an opening angle of 90◦, which makes it possible to select samples for interpolation
evenly distributed around it. The usefulness of this way of searching samples was indicated
in the work [45]. Modeling was carried out in Surfer 20 software. Figure 18 illustrates the
basic steps involved in processing USV and UAV data.
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3. Results
3.1. Qualitative Analysis

To perform a qualitative analysis considering the influence of all completed operations
on the final surface models, a scheme was developed and is presented in Steps 1–5.

1. Evaluate interpolation methods for their ability to filter out points above the water surface.
2. Select a data set (CSPCA or CSPCG) with better visual effect.
3. Select the best interpolation method(s) on the data set selected in Step 2.
4. Select a mask based on the conclusions of Steps 2 and 3.
5. Return to Step 1 and apply Steps 2, 3, and 4 to the second data set rejected in the

first approach.

As interpolation methods are also considered as filtering methods, in a first step,
the possibility of filtering points above the water surface was analyzed. Two cases were
considered: the occurrence of positive depth values in the BRS surface domain and that in
the shoreline area. In the case of the BRS surface domain, CSPCA points above the water
were observed for mask M and L. After the modeling process, it was found that the natural
neighborhood method and the IDW method coped with this problem for mask M. In the
case of a cloud formed from a class of ground-type points (CSPCG), no points above the
water surface were observed in the BRS domain area for all cases and methods except for
the RBF method. In contrast, a few positive values were observed near the shoreline for
both cases. The percentage of pixels with positive values is summarized in Table 3. As seen,
with the exception of the RBF method, they represent a small percentage of the total area.
For CSPCA sets, they range from 0.04% to 0.12%. For CSPCG, these values range from
0.04% to 0.07%. Considering this criterion, the use of the CSPCG cloud is preferable.

Table 3. Summary of the contribution of pixels with positive depth values in percentage (%).

Point
Cloud
Type

TIN NAN KRI RBF IDW

M H L HL M H L HL M H L HL M H L HL M H L HL

CSPCA 0.08 0.06 0.11 0.06 0.06 0.06 0.08 0.06 0.09 0.07 0.12 0.07 0.88 0.75 1.06 0.91 0.04 0.04 0.05 0.04
CSPCG 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.62 0.71 0.79 0.86 0.04 0.04 0.04 0.04

For the CSPCA data set with regard to the choice of interpolation method, the surfaces
obtained with the RBF method do not give satisfactory results, while the other interpolation
methods tested (KRI, IDW, TRI, and NAN) allow one to obtain qualitatively similar models
with correct plasticity, which we define as the visual reasonableness of the generated
surface shape, without the occurrence of local distortions or other artefacts. The use of
L and H masks results in rough surfaces, while the use of the HL mask results in the
smoothest surfaces. Mask M provides slightly better results than masks L and H, but
worse than mask HL. The use of this mask with the IDW method provides a model with
reasonably good plasticity of the terrain with a small amount of roughness.

The CSPCG data set helps obtain surfaces with a largely uniform structure. Consider-
ing interpolation methods, the best surfaces are obtained for kriging, triangulation, and
IDW methods. The models obtained with these methods are similar in terms of quality.
Surfaces obtained using the NAN method produce correct models, but the terrain plasticity
at the interface between USV and UAV data is characterized by low smoothness. The RBF
method visually produces the roughest surfaces. Analyzing the use of masks, the best
visual surfaces for each of the selected methods are given by the HL mask, although the M
and L masks also help achieve a satisfactory final effect of the modeled surfaces.

When analyzing the correctness of the surface reconstruction in the area covered by
USV measurements (profiles), the quality was comparable for all methods. In the case of
the IDW method, a tendency toward a slight curvature of the surface along the profiles
was observed. However, this method preserved the highest real depth, of 0.95 m, and the
positive values of height had the lowest value (0.09 m).

In conclusion, the HL mask can be considered the most effective, as it allows the
correct representation of surfaces derived from both CSPCA and CSPCG clouds. The visual
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evaluation also concluded that creating models using CSPCG point clouds reduces the
extent of UAV points used while increasing the extent of USV points. Considering the
criterion of minimizing the number of pixels above the water surface, the IDW method
performs the best. Figures 19–23 show the final models obtained from the CSPCA and
CSPCG data sets using the masks M, H, L, and HL. The minimum (min) and maximum
(max) values were presented additionally. Figures 19–23, respectively, show the models for
the methods triangulation, natural neighbor, inverse distances, kriging, and radial basis
functions. In Figure 23, due to the large local extrema generated by the RBF method, the
digital bathymetric model is in the brown color range.
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3.2. Quantitative Analysis

Quantitative analysis was performed using points extracted from the USV survey data
set, which included 56 points, distributed evenly across the test area. For the quantitative
analysis, the methods chosen were IDW, KRI, NAN, and TRI, which allow correct surface
reconstruction. For each generated surface from the test data set, the difference between
the heights of the test points and the corresponding points located on the surfaces of the
developed digital surface model was calculated. The maximum error (MaxE), the minimum
error (MinE) and the mean error (ME) were calculated for each analyzed case according
to Equation (1):

ME =
∑n

i=1(Zi − zi)

n
(1)

where Zi is the height measured at the CPi point with coordinates (xi, yi), zi is the height of
the modeled surface at the point with coordinates (xi, yi), and n is the number of CP points.

To assess the precision of the tests carried out, the root mean square error (RMSE) was
also calculated according to Equation (2):

RMSE =

√
∑n

i=1(Zi − zi)
2

n
(2)

The results are presented in Figure 24. Analyzing the MaxEs, the worst results are
obtained for the model interpolated with the IDW method created on the CSPCA data
set and the H mask (0.57 m). High MaxEs are also obtained for all interpolation methods
for models created from CSPCA data set using H mask (0.48–0.57 m). Better results are
obtained for models from this set for mask M, where the biggest error, for the IDW method,
is 0.17 m and the lowest, for the NAN method, is 0.16 m. The use of the HL and L masks
and the IDW, KRI, TRI, and NAN interpolation methods decreased the MaxEs, which are
in the range of 0.09 to 0.12 m. The MaxEs for the CSPCG data set for KRI, IDW, TRI, and
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NAN, regardless of the mask, in the range of 0.11 to 0.16 m. The smallest error for this data
set is obtained for the KRI and TRI methods using the HL and L masks (0.11 m).
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Analyzing the MinEs, the worst results are obtained for the model interpolated with
the KRI method created on the CSPCA data set and the L mask (−0.48 m). High MinEs
are obtained for all interpolation methods for models created from CSPCA data set using
L mask (−0.48–−0.46 m). Better results are obtained for models from this set for mask M,
where the biggest error, for the KRI method, is −0.27 m and the lowest, for the IDW method,
is −0.16 m. The use of the HL and H masks and the IDW, KRI, TRI, and NAN interpolation
methods decreased the MinEs, which are in the range of −0.04 to −0.06 m. The MinEs
obtained using the CSPCG data set for KRI, IDW, TRI, and NAN, regardless of the mask,
are in the range of −0.04 to −0.13 m. The smallest error for this data set is obtained for the
IDW, NAN, and TRI methods using the H mask and IDW using the HL masks (−0.04 m).

The MEs obtained for the CSPCA data set are comparable and are in the range from
−0.01 to 0.04 m. For HL and L masks, their values are the smallest and for all methods and
are in the range of 0.01 m to −0.01. The MEs for the CSPCG data set are smaller, ranging
from 0.01 to 0.02 m, where the best masks for all methods are L and HL (0.01 m).

The value of the RMSE is the largest for the CSPCA data set (0.12 m) for the IDW
method and the H mask. The smallest RMSE values (0.03 m) for this data set are obtained
for all methods (IDW, KRI, NAN, and TRI) for the HL mask. For the CSPCG data set, the
maximum value of the RMSE is 0.05 for the TRI interpolation method and M mask, while
the smallest values (0.03 m) are obtained for HL mask and each interpolation method tested
and L mask for the IDW and KRI method.

Analyzing the MinEs and MaxEs, it can be concluded that they are comparable. The
largest values of these errors for CSPCA datasets are in the range of −0.48 and 0.57 m and
for CSPCG datasets are in the range of −0.13 and 0.16 m. Values for these errors, which are
within the accepted tolerance (+/−0.25 m), were obtained for the CSPCA HL dataset and
all CSPCG datasets. For the above cases they are between −0.13 and 0.16 m. In the case
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of ME for all options, the values are also comparable, which are in the range of −0.01 to
0.04 m. The lowest values were achieved for all methods for CSPCA HL dataset (0.01 m),
CSPCA L dataset (−0.01 m), and for all methods for CSPCG datasets (0.01 m). However,
by analyzing the RMSE, it can be concluded that by far the best results can be achieved
for the CSPCG dataset for HL mask for all methods (0.03 m), L mask for IDW and KRI
(0.03 m), and the CSPCA for the HL mask (0.03 m). Based on the results obtained, it can be
concluded that the most universal mask for all methods is the HL mask.

4. Discussion

More and more studies are being conducted in shallow water areas. This is linked
to technological development and the creation of unmanned platforms that can perform
measurements in areas previously inaccessible to larger hydrographic units. However,
even a small submersion of these units does not eliminate the problems associated with
the survey of shallow and ultra-shallow waters. Remote sensing techniques, such as
bathymetric LIDAR, and passive optical imaging methods, can be used for the tasks of
mapping bathymetry to the boundaries of the coastline. In the first case, the main limitation
is the cost of obtaining data or the ability to measure larger depths in freshwater bodies,
such as rivers [25] and lakes [33], while in the second case, often the optical complexity of
the water bodies requires additional measurements in situ [80]. An additional constraint
is the noticeable decrease in accuracy with increasing depth, water turbidity, and diverse
bottom material [61]. The research undertaken presents a photogrammetric approach
that confirms the possibility of obtaining data using an underwater photogrammetric
control network [70] and fills the gap in coastal water mapping where the opportunities for
obtaining bathymetric data with passive remote sensing sensors are significantly limited.
The need to create hybrid methods using hydrographic and optical methods was pointed
out in [13]. In the present case, the acquisition of bathymetry was limited to the depth of
1.3 m. We have, therefore, proposed an original method for combining hydrographic and
low altitude remote sensing data. Thus, we point to the possibility of mapping bathymetry
with high spatial resolution in shallow waters, which is a limitation in obtaining bathymetric
data for platforms equipped with hydroacoustic sensors. The presented method is also
another technique that complements the research on the fusion of various data types related
to the creation of bathymetric models [44,81,82].

The method presented has been studied in terms of creating the final product, which
is a digital bathymetric model. The results of the proposed method can be considered good
if we take as a criterion the deviation threshold value based on the vertical bathymetric
measurement uncertainty [74]. At the final stage of the quantitative evaluation, the error
values for the selected methods and datasets were low (ME = 0.01 m, RMSE = 0.03 m). The
studies were carried out on data with a complex spatial distribution. The hybrid data set
consisted of USV data recorded along the profiles and scattered points from UAVs. The
results of the studies of the interpolation methods were good for most cases, except for
the RBF method. At the same time, this is an interesting case that should be taken into
account in the creation of digital models. The data set itself is not sufficient material to
create a continuous bathymetric model. The correct modeling process should take into
account appropriate interpolation techniques that can be used to correctly reconstruct the
bottom topography. The impact of data density is also an important factor to consider. In
previous research, interpolation techniques have been studied for various data reduction
methods [45]; the RBF method was one of those that produced good surface modeling
results. This case study showed that the structure of high-density data adversely affects
the interpolation capabilities of the RBF method, which complements the knowledge and
possibilities of practical use of interpolation methods.

The method developed also has operational limitations. The study further confirmed
the importance of the underwater photogrammetric control network included in the
study [70]. However, in some cases, the assumption of such a photogrammetric con-
trol network may prove problematic. Already during the measurements, local bottom
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sediments were found to be an obstacle, which covered and partly covered the GCP when
the water became cloudy. This required looking for a suitable GCP location. Another
limitation related to the establishment of the underwater photogrammetric network in
water bodies with a high degree of siltation or that are difficult to access. Setting it in water
is also more time consuming than on land. Hence, this approach greatly increases the time
of measurements. In addition, for the validation of the final product, check points should be
measured. Practice also shows that a required element is accurate mapping of the location
of GCPs on a mobile device (up to approximately 1 m of horizontal accuracy). Even in
such shallow waters, with low water transparency, it may not be possible to locate the
GCPs again. In summary, the limitations of bathymetry mapping using a photogrammetric
control network are the type of bottom, the accessibility of the measuring site from land,
and the amount of time associated with GCP and CP measurements. Another limitation of
the method is its applicability to large areas due to the technical difficulties and the time
involved in establishing an underwater photogrammetric network.

A disputed area of development is the coastline, covering both water and land. It
usually contains a large variety of vegetation (e.g., submerged, partially submerged, and
organic deposits) as well as large outflows. Given the measurement errors and the presence
of these objects, some of the models developed may have positive depth values. Studies
have shown that pixels containing positive values are small in number, indicating good
results of the modeling process. However, shallow waters can make it difficult to map
bathymetry to the coastline, which will require manual correction in most cases. Therefore,
based on the data modeling process carried out, the possibility of full automation of data
development can be excluded. Coastline variability will also be an additional factor in
the ambiguity of the bathymetric model boundary region. The most common definition
of coastline is that it is the boundary between land and water [83]. This definition is not
precise because it refers only to its instantaneous state. The coastline is characterized by
short-term and long-term variability. Coastline variability in marine areas is affected by
wave movements, tides, winds, erosion, deposition and accumulation [84], and storm
surges. To precisely define the concept of coastline, the authors [83] identified 45 indicators
and divided them into three groups: visual (visible in the image to the operator), tidal
(relating to the intersection of the data on the flows with the digital terrain model or the edge
profile), and digital (identified by automatic algorithms). In [85], the shore is defined as a
zone of water–land interaction, where on the water side, the factors affecting the land are
hydrodynamic factors, while on the land side, they are geodynamic and morphodynamic
factors. Attention should be paid to these factors when carrying out work on other water
types or in other weather conditions.

One imperfection of the proposed method can be considered to be the non-uniformity
of the surface structure of the obtained bathymetric models. This model was created from
data recorded by different sensors, which translated into a differentiated spatial structure
of the measurement sets. The surface obtained from USV data was smoother, while that
from the UAV data was rougher. From the point of view of visualization, a different
structure of the surface can influence the inference regarding, e.g., the shape of the bottom
or its structure.

A key element of the proposed method is the bathymetric reference surface, developed
from echosounder measurements with a USV. The TIN method was used to develop it.
Taking into account that it is one of the interpolation methods used to create, among others,
geographical surfaces, the question can be raised about whether there is a better method.
The application of parametric methods is connected with an appropriate selection of their
values, which influences the final shape of the surface. This aspect opens up further opti-
mization criteria that, on the one hand, can indeed improve the final results, but on the other
hand, increase the uncertainty of the created model. Considering the presented experiment
with the TIN reference surface, it is also important to refer to the results obtained, which
far exceed the requirements related to the uncertainty of the bathymetric measurements.
Nevertheless, further research in this area could bring interesting conclusions, especially in
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cases of a different type of spatial distribution of soundings or bottom shape. Densification
or a different shape and direction of the ASV sounding profiles could be considered.

In the field of interpolation methods, the impact of data reduction on the efficiency
of surface reconstruction using interpolation methods can be studied. Given the spatial
complexity of hybrid data sets (spatial distribution and data density), this will be an
interesting topic.

We also recommend the continuation of research on the harmonization of the structure
of the hybrid model, which should affect the clarity of the visual message and the final
aesthetics of the model. Taking into account the possibility of using different geovisu-
alization techniques of terrain surfaces [86], this is an important aspect of end-use data.
Assuming that the ideal data development process usually involves full automation, further
research should address the problem of bathymetric surface modeling in close proximity
to the coastline. As indicated in the research, the obtained model has some imperfections,
such as the occurrence of few pixels with positive depth values in close proximity to the
coastline. As the main objective was the integration of USV and UAV data, the work did
not include the final process of model development, which could be model cleaning using
mathematical morphology methods or smoothing operations.

It is necessary to continue research related to the development of hybrid methods,
using both photogrammetric techniques, based on an underwater network, as well as
remote sensing, using correction for refraction of electromagnetic waves at the air–water
junction. Taking into account the optical complexity of waters as well as their types (rivers,
lakes, seas, and oceans), one should expect diverse results as well as validation of different
research approaches.

5. Conclusions

According to the results of this study, data integration can be achieved using the
presented geoprocessing process (Figure 25). Important elements of the proposed method
are the acquisition of UAV data using underwater GCP points, the use of a ground class
point cloud, the creation of a mask based on the bathymetric reference surface, and the
filtering of points above the water surface. In the presented methodology, we propose the
use of the HL mask as more universal. The interpolation methods KRI, IDW, NAN, and
TRI were found to be comparable, any of which can be used. The final bathymetric surface
modelling process should be assessed visually.

The advantage of the proposed solution is the development of a digital bathymetric
model within the assumed depth deviations. The analysis of the final results shows that
the values of the obtained average and maximum errors are relatively small. The whole
process of geoprocessing can also be automated in GIS software, provided the presented
functions are available. The developed model of the bottom may be used for creating
navigation charts requiring planning of shallow water USV surveys, e.g., small areas of
archaeological mapping (about 0.03 km2) as well as for the analysis of the shape of the
bottom for hydrotechnical purposes. The data obtained in this way could also be used to
create bathymetric databases for depth mapping in shallow and ultra-shallow waters.
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