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Abstract: Human activities along with climate change have unsustainably changed the land use
in coastal zones. This has increased demands and challenges in mapping and change detection
of coastal zone land use over long-term periods. Taking the Bohai rim coastal area of China as an
example, in this study we proposed a method for the long time-series mapping and change detection
of coastal zone land use based on Google Earth Engine (GEE) and multi-source data fusion. To fully
consider the characteristics of the coastal zone, we established a land-use function classification
system, consisting of cropland, coastal aquaculture ponds (saltern), urban land, rural settlement,
other construction lands, forest, grassland, seawater, inland fresh-waters, tidal flats, and unused
land. We then applied the random forest algorithm, the optimal classification method using spatial
morphology and temporal change logic to map the long-term annual time series and detect changes in
the Bohai rim coastal area from 1987 to 2020. Validation shows an overall acceptable average accuracy
of 82.30% (76.70–85.60%). Results show that cropland in this region decreased sharply from 1987
(53.97%) to 2020 (37.41%). The lost cropland was mainly transformed into rural settlements, cities, and
construction land (port infrastructure). We observed a continuous increase in the reclamation with a
stable increase at the beginning followed by a rapid increase from 2003 and a stable intermediate level
increase from 2013. We also observed a significant increase in coastal aquaculture ponds (saltern)
starting from 1995. Through this case study, we demonstrated the strength of the proposed methods
for long time-series mapping and change detection for coastal zones, and these methods support the
sustainable monitoring and management of the coastal zone.

Keywords: coastal zone; land use; time series; multi-source data fusion; random forest; classification;
change detection; reclamation; aquaculture

1. Introduction

About 75% of the world’s large cities and 70% of industrial capital and population are
concentrated within the 100-km-width coastal zones. Highly concentrated populations and
economic activities lead to significant land-use changes in coastal zones [1–3]. Specifically,
the rapid expansion of human activities such as off-shore aquaculture, coastal tourism,
coastal infrastructure construction, and reclamation has led to great changes in coastal zone
land use, triggering a series of ecological and environmental problems such as contamina-
tion of the coastal zone environment, massive degradation of wetlands, and destruction of
biodiversity and habitats [4,5]. The complicated land-use changes call for remote sensing
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technology to monitor land-use changes for sustainable coastal development [6], especially
the quick and accurate long time-series and high-density classification mapping and change
detection of land use [7–9].

Previous studies of land-use function change detection in traditional coastal zone
regions have generally used classification-based change detection methods. At present,
there are mainly two kinds of methods; one is the more traditional and commonly used
post-classification comparison method, and the other is change detection based on time
trajectory analysis. The former is to firstly classify the images based on a single time
phase, and then compare the classification results of different time phases to obtain change
detection information. The anniversary date or anniversary window (annual cycle or its
multiples) is generally introduced. It is mostly used for the overall analysis of all-element
land-cover types [10], emphasizing the classification accuracy and algorithm research on
single images, and mostly using support vector machines [11], decision trees [12], random
forests [13], and various deep learning methods of neural networks [14]. It minimizes
discrepancies in reflectance caused by seasonal vegetation fluxes and sun angle differences,
allowing rapid access to trending changes between land classes in a particular time period
in a region. However, it is prone to overlooking the detailed features in the same. The latter
method is to detect temporal sudden change points to obtain the transformation of target
features by constructing time-series indices to reconstruct the growth process of features,
capitalizing on their seasonal and cyclical characteristics. It mostly targets single land-cover
types [15] and focuses more on intra- and inter-annual variation at the time-series scale,
such as the convolutional neural network (CNN) model [16], the break for additive season
and trend (BFAST) model [17], and the time-series detection methods based on NDVI
time-series-derived indexes [18]. These methods are effective in capturing the direction
and time of transition between land-cover types and better reflect the shift pattern, but they
also require large amounts of calculation. Due to the rapid rate of land surface renewal and
complex inter-land class transformation relationships in the coastal zone caused by human
activities, it is necessary to combine the advantages of both methods for large-scale, long
time-series, and high-frequency land cover classification and change detection.

The recently developed Google Earth Engine (GEE), a cloud platform for geospatial
data analysis, provides alternatives for analyzing the long-term and large-area land-use
changes [19]. Significant progress has been made in the GEE application for coastal zones,
e.g., coastal mudflats [20,21], wetlands [22,23], mangroves [24,25], shorelines [26–28], and
coastal development activities such as aquaculture nets [29], aquaculture ponds [30–32],
and land reclamation [33,34]. Current studies mainly focus on limited land use in coastal
zones, lacking the full-coverage classification of coastal zone land use, especially the sea-
land integration [13,35,36]. In particular, the water with the same natural attributes in this
area corresponds to different functional attributes, such as seawater, aquaculture ponds,
and inland freshwater, respectively corresponding to ecological, production, and living
functional attributes. At present, for the extraction research of aquaculture ponds, satellite
images with spatial resolution higher than or equal to 10 m are mostly used, including
sentinel-1 SAR [37], SPOT5 [38], and gf-2 [39] images. The extraction methods can be
divided into a traditional semi-automatic classification based on rules, and automatic
classification based on deep learning, which can get good classification results but cannot
carry out long-time monitoring research. In addition, people pay more attention to lakes
for the extraction of fresh water, and the research area is concentrated in inland areas, with
few other types of water interference [40,41]. The sea–land integration requires taking
advantage of the multi-source data integration of the big data platform and the insurance on
reasonable change logic between time series and spatial neighborhoods, which significantly
limits the accuracy of the classification and change detection.

As the largest bay area in China, Bohai rim coastal zone is the most densely populated
and economically concentrated area in northern China, as well as one of the key areas with
the most drastic land-use changes and the most prominent ecological and environmental
problems in China. Previous studies on this region have mostly focused on the detection of
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changes in wetlands [21], vegetation [42], shoreline [26,28], land reclamation, and urban
expansion [34], while studies on long time-series, high-frequency classification mapping
and change detection for solving sustainable development problems caused by human
production and life activities using large data of remote sensing images in this region are still
limited. Thus, taking the Bohai Sea coastal zone region of China as an example, we proposed
a GEE-based land-use function long time-series classification mapping and change detection
method for the coastal zone by improving the land-use function classification for human
production and life in the coastal area and the integration of sea and land. We explored
the combined application of multi-source data fusion, spatial morphological analysis, and
logical consistency of spatial and temporal changes in the process. The final analysis
of the transformation of coastal land use functions and the characteristics of changes in
reclamation construction focused on the salient phenomena of the historical evolution of
offshore aquaculture and salt flats and reclamation.

2. Study Area and Datasets
2.1. Study Area

Bohai rim coastal area is located in the northeast of China, from Panshan County in
Liaoning Province (north) to Rizhao City in Shandong Province (south) (35◦5′~41◦27′ N,
116◦42′~125◦41′ E), with a coastline of about 6050 km, accounting for one-third of coastline
in China [42] (Figure 1). In this study, we focused on 17 coastal cities and 107 coastal
districts and counties, with a land area of 154,000 square kilometers across Shandong,
Hebei, Liaoning provinces, and Tianjin. The Bohai Sea is the only inland sea in China.
It has shallow water, a slow slope, and high nutrient salt content, providing favorable
conditions for fisheries. The Yellow River, the Hai River, and the Liao River flow into the
sea bringing a lot of sediment, forming a vast area of mudflats and a long natural coastline.
The typical landscape of the coastal zone is low-lying plains with a large amount of arable
land, covering the southwestern part of the Yellow and Huaihai Plain [3,43]. According to
the seventh census data of China, Bohai rim coastal area accommodates nearly 5% of the
national population with 1.6% of the national land creating 29.2% national marine GDP. In
the past 30 years, driven by the economic growth targets of various local governments along
the coast, the expansion of offshore aquaculture, industrial parks, ports, infrastructure, and
other construction has been very drastic, and the reclamation activities have been very
significant. The excessive encroachment of production and living space on ecological land
in the region causes offshore pollution, ecosystem destruction, and continuous reduction of
natural shorelines, which is extremely prominent [44].

2.2. Multi-Source Datasets

The historical time-series remote sensing images were selected using the pixel-based
mosaic method [45] from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus
(ETM+), and Operational Land Imager (OLI) with imaging time between June and October,
cloudiness less than 10% for each year from 1987 to 2020. To improve the classification
accuracy, we introduced VIIRS nighttime light data (Nighttime Day/Night Band Com-
posites Version 1), digital elevation data (SRTM), spectral indices (normalized vegetation
index (NDVI), normalized building index (NDBI)), and multiple water indices to enhance
water features in images (normalized difference water index (NDWI), modified normalized
difference water index (MNDWI)) [46,47]. We also retrieved the point of interest (POI)
big data and the remotely sensed land-use coverage products produced by the Resource
and Environment Data Center of the Chinese Academy of Sciences at 5 year intervals for
cross-validation and prior knowledge inputs [42].

2.3. Classification System and Sampling

To detect the land-use changes in both sea and land with coastal characteristics, we
refined the land-use classification system (Table 1). Specifically, for land reclamation and
aquaculture, water was further divided into coastal aquaculture ponds (saltern), inland
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fresh-waters and seawater; impervious surfaces into urban land, rural settlement, and other
construction lands; and unused areas into tidal flats and unused land.
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Figure 1. Location of the study area.

Table 1. Coastal zone landscape function classification system.

Class I Class II Description

Cropland - Refers to land used for growing crops
Grassland - Natural grassland and improved grassland

Forest - Refers to natural and man-made forests with
canopy density >30%

Water

Coastal aquaculture
ponds (saltern)

Shallow artificial water bodies with distinctly
man-made shape for aquaculture production

Seawater Shallow sea within 10 km offshore buffer zone

Inland fresh-waters Rivers, ditches, reservoirs, lakes, and other
natural water bodies

Impervious surface

Urban land Land for urban and built-up areas above
county level

Rural settlement Residential land below county level

Other construction lands

Independent of factories and mines, large
industrial areas, ports, transportation land,

airports, and special land outside cities
and towns

Other land
Tidal flats Beaches, salt marshes, and bare land in

coastal areas
Unused land Land not yet used, including barren land

Samples for training and validation were established based on field trips and manual
labels for each year from 1987 to 2020. We conducted a field trip to the study area in 2020
and recorded the field GPS points for each land-use class. To obtain the sample points for
2019, we changed the map to 2019 and checked whether the land-use type of each sample
had changed to modify them. By analogy, the whole time-series was traced until 1987,
and all sample points were obtained. This sample selection strategy can ensure the overall
accuracy and stability of the sample sets. Finally, there were 1300 sample points for primary
land-use types, evenly distributed throughout the study area, of which 80% were used
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for training and 20% were used for validation. Among the validation samples, 200 were
selected for accuracy evaluation for Class I land-use types.

3. Methods

We proposed a framework for the long time-series mapping and change detection
of coastal zone land use based on GEE and multi-source data fusion. Firstly, a land-use
classification system of coastal zone based on human production, living, and ecology was
constructed, and initial classification of long time-series images was carried out using
random forest algorithms based on multi-source big data. Secondly, the spatial separation
between urban land, rural settlement, other construction lands, and inland fresh-waters,
seawater and aquaculture ponds (saltern) was achieved by using the scan line seed filling
algorithm and geometric feature analysis, and the functional types involved in cropland
transformation, aquaculture ponds (saltern), and reclamation were revised based on the
logic rules of spatio-temporal change. Finally, according to the classification results and the
results of change nodes, the scope of change and temporal stages of cropland, aquaculture
ponds (saltern), and reclamation were extracted. The detailed process can be found in
Figure 2.
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3.1. Initial Classification Based on Random Forest

We used random forest to classify the land use into cropland, impervious surface,
water, forest, grassland, and other lands. To ensure the quality of input images, we
optimized the distribution, texture feature extraction, and window size of input samples for
each year [48]. The input samples aimed to be optimal with the highest accuracy ensured
by random distribution tests. After many years of testing, the average maximum accuracy
difference was up to 5.32%. For texture feature extraction, we introduced MNDWI to
improve the recognition rate of water bodies and combined multi-texture features provided
by GEE [49,50]. The window size for texture features was dynamically selected as 1–9
for each texture feature. There were three selected features of dissimilarity, inertia, and
inverse differential moment that performed better in the multi-year results, and the optimal
window size was mostly 3–5. Through the above optimization steps, we aimed to obtain
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better classification results for the first level of land classes and provide a good database
for subsequent processing.

3.2. Optimal Classification Method Based on Spatio-Temporal Logic

With spatial morphology, we used the scan line seed filling algorithm to distinguish
city and rural settlements from impervious surfaces, and distinguish inland water and
seawater from water. The inland water was further divided into inland fresh-waters and
coastal aquaculture ponds (saltern) using geometric features. We then used temporal
change logic and spatial distribution probability to adjust the classification and detect
change for each year.

(1) Spatial morphology: the scan line seed filling algorithm
The scan line seed filling algorithm used the advantage of boundaries between sea-

water and inland water. These boundaries include the shore embankments for rivers and
lakes, and enclosure dams for aquaculture ponds (saltern). Similar boundaries also exist
between city and rural settlements because of space isolation distance. This means within
the boundary, the same land-use types connect to each other. Therefore, we selected starting
seed points (seedi) for every urban land and rural settlement in m× n images, then assigned
each starting point with coordinates (xi, yi) and then stacked them. For each point, we
filled the corresponding area by visiting all column pixels (A(xi ,yi±n)) of the xi line until a
boundary or all pixels were visited. In this case, we moved to the next line xi ± 1, filled the
new starting point (xi ± 1, yi ± 1) into the stack, and repeated the above steps (Algorithm 1
lines 2–5) until the stack was empty, leading to the image result A.

Next, we distinguished aquaculture ponds (saltern) from inland water, which includes
inland fresh-waters. Unlike inland fresh-waters, aquaculture ponds (saltern) always have
regular shapes. We calculated three geometric features to distinguish them: centerline
length Li, aspect ratio Ri, and convexity Convi, where Li is the sum of Ci, which is the
median value of the left and right contour boundaries of the target Pi, Ri is the ratio of Li to
the total number of pixels Si, and Convi is the ratio of the convex perimeter Pi(c) and the
perimeter Pi(p) ratio [51].

Ci =
Pi(le f t) + Pi(right)

2
(1)

Li =
n

∑
i=1

Ci (2)

Ri =
Li
Si

(3)

Convi =
Pi(c)

Pi(p)
(4)

Aquaculture ponds (saltern) are featured as smaller Li, Ri and larger Convi compared
to inland fresh-waters. We identified the water bodies as aquaculture ponds (saltern) when
and only when the three geometric features met the thresholds at the same time in order to
avoid misclassifying broken rivers (Algorithm 1 lines 10–12). Before doing this, we bina-
rized the image A as 0 or 1 from the last step to obtain individual water bodies B(1,2,...,i) and
the respective boundaries P(1,2,...,i) through eight-neighborhood elimination (Algorithm 1
lines 7–9).

(2) Classification correction and change detection
Some stable land-use types may change a lot in the long-term and high-frequency

mapping data because of classification errors. Artificial land-use types such as aquaculture
ponds (saltern), impervious surface, and cropland usually remain stable, which means it
is impossible for them to change frequently. Based on this logic, we used a bi-directional
spatio-temporal logical consistency algorithm to adjust classification results, which is based
mainly on the probability of distribution of land-use types, Algorithm 1 lines 13–17, where
W denotes the time-series data constructed from B1987 − B2020, Ws is the seed window,
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Wd is the detection window, Wa, Wb are the start and end windows, respectively, Ks is
the land-use type of the seed window, Kd is the dominant land-use type in the detection
window, prob is the distribution probability of a land-use type in the detection window,
count(Wa = Wb) gives the number of consistent land-use types, and Γ denotes the final
results. For bi-direction, we checked if Ks was consistent with Kd or not. If consistent,
the pixel Γb+1 − Γb+d in the detection window was adjusted for Kd, and the seed window
moved forward/back to the end/beginning of the detection window. Otherwise, the seed
window moved forward/back one position to s ± 1, and we checked whether Ks was
consistent with Kd or not again. Here, we determined the dominant land-use type using a
threshold of 0.6 for distribution probability.

Algorithm 1. The whole Algorithm is as follows, A, B, Γ respectively representing the output
image results of different steps.

/* step1: Separation of impervious surface (city, rural settlement, and construction land) and
water (inland fresh-waters, aquaculture ponds (saltern) and seawater) based on scan line seed */
1. stack← [ ], seedi ← (xi, yi), i← 1, x, y ∈ (m, n)
2. repeat
3. if A(xi ,yi±n) 6= 0 then A(xi ,yi±n) is true
4. else xi ± 1
5. stack← [ (xi ± 1, yi ± 1), . . . , (xi ± 1, yi ± n)]
6. Until stack is null
/* step2: Separation of inland fresh-waters and aquaculture ponds (saltern) based on spatial
morphology */
7. if A > σ = 1 else = 0
8. B(1,2,...,i) ← A
9. P(1,2,...,i) ← the 8-connectivity neighborhood outlines B(1,2,...,i)

10. Ci ←
Pi(le f t)+Pi(right)

2

11. Li ←
n
∑

i=1
Ci , Ri ← Li

Si
, Convi ←

Pi(c)
Pi(p)

12. if count(Li + Ri + Convi) = 3 then Pi is true
/* bi-directional spatio-temporal logical consistency check */
13. W ← (B1987 − B2020)

14. prob← ∑a=b+d
a=b+1 count(Wa=Wb)

Wd

15. If probWd ≥ 0.6 and Ws = Kd, then Γb+1 − Γb+d = Ks , s ← a
16. If probWd ≥ 0.6 and Ws 6= Kd, then s = s + 1
17. End

4. Results
4.1. Land Use Classification and Accuracy

We classified the land use in the Bohai rim coastal area for each year from 1987 to
2020 (Figure 3a). Results show that, in 1987, the study area was dominated by cropland
(105,463.5 km2), accounting for 53.97% of the total area. This was followed by seawater
(23.66%) and unused land (8.24%). Despite its dominance, the area of cropland has de-
creased sharply in the past three decades, from 53.97% to 37.41%. A similar observation was
made for unused land. Most of the lost cropland was transformed into rural settlements,
city, and construction land (e.g., ports), accounting for 19.21% of the cropland in 1987
(Table 2). For transformed unused land, compared to 1987, 34.84% became grassland and
50.05% became forest. This indicates an increasing effort spent by the Bohai rim coastal
area on ecological protection and restoration. However, seawater also decreased, which
illustrates the expansion of coastal land areas used for aquaculture ponds (saltern), indus-
trial, mining, and harbors, showing the prominent aquaculture and land reclamation in
this area.
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Table 2. Transfer matrix of land use change in Bohai rim coastal area from 1987 to 2020.

1987
2020

CRP GRS FRT APS UBL UUS IFW TDF RST CIT SWT

CRP 66.59 2.28 5.07 4.72 9.46 0.80 0.56 0.25 6.49 3.25 0.52
GRS 16.02 36.60 43.08 0.27 1.04 1.47 0.10 0.14 0.63 0.65 0.00
FRT 1.11 7.28 90.47 0.09 0.15 0.62 0.01 0.06 0.07 0.13 0.00
APS 22.37 1.20 6.40 43.80 16.80 0.92 0.51 0.39 2.21 4.27 1.13
UBL 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
UUS 8.06 34.84 50.05 0.51 0.64 4.07 0.56 0.00 0.64 0.61 0.02
IFW 3.99 0.22 2.63 0.70 1.51 0.55 88.37 0.01 0.32 0.38 1.32
TDF 4.26 19.72 40.93 1.30 5.03 0.00 0.07 20.72 2.50 3.86 1.60
RST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 78.78 21.22 0.00
CIT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.99 0.01
SWT 0.84 0.04 0.09 2.59 2.60 0.00 0.02 0.51 0.06 0.27 92.96

Note: CRP denotes cropland, GRS denotes grassland, FRT denotes forest, APS denotes coastal aquaculture ponds
(saltern), SWT denotes seawater, IFW denotes inland fresh-waters, UBL denotes urban land, RST denotes rural
settlement, CTR denotes construction land, TDF denotes tidal flats, UUS denotes unused land. Units: %.

Our land use classification from 1987 to 2020 achieved an average overall accuracy
(OA) of 82.30% (76.70–85.60%) and a kappa coefficient of 0.74–0.83. The recognition ac-
curacy of rural settlements, cropland, and forest ranked in the top, with a correct rate
of 91.83%, 87.90%, and 80.59%, and average completeness rate of 90.94%, 94.13%, and
84.53%, respectively. We achieved a low accuracy for mudflats (55.42%) because of a rapid
increase in construction and aquaculture on mudflats, leading to significant disturbance
to the spectrum in a short time, especially from 2003 to 2009. The recognition accuracy of
cropland, aquaculture ponds (saltern), and impervious surface (urban land, rural settle-
ments, and other construction lands) are higher and more stable, with the average correct
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rate of 87.90%, 76.82%, and 81.29%, and the average completeness rate of 94.13%, 80.73%,
and 80.89%, respectively. Here, the completeness rate is the ratio of the number of pixels
obtained by a certain land type classification to the total number of actual pixels of the land
type, corresponding to the missing points; the correct rate is the number of pixels correctly
classified, and the actual number of land types. The ratio of the total number of pixels
corresponds to the misclassification.

4.2. Land Reclamation and Aquaculture Changes

To gain a better understanding of how sea and land interact with each other, we
analyzed the long-term changes of land reclamation and aquaculture (Figure 4). Land
reclamation increased significantly from 1987 to 2020. The changes in land reclamation
can be divided into three stages: 1987–2003, 2004–2013, 2014–2020. In the first stage,
land reclamation increased slowly with an overall less than 150 km2. In the second stage,
land reclamation increased much faster than before with an average annual increase of
271.24 km2. In the third stage, the speed of land reclamation slowed down again because of
the policy control. Land reclamation was concentrated in Bohai Bay, Laizhou Bay, Liaoning
Bay, and Dalian City coast (Figure 5I).
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Aquaculture ponds (saltern) increased by 7457.76 km2 in Bohai rim coastal area from
1987 to 2020. The increase in aquaculture ponds (saltern) during 1987–1995 was low, with
an average annual increase of 66.58 km2. From 1996 onwards, the increase in aquaculture
ponds began to show a clear upward trend, with an average annual increase of 198.36 km2.
These aquaculture ponds were concentrated in Bohai Bay and Laizhou Bay, especially in
Binzhou, Dongying, and Weifang in Shandong. Although Shandong Province is a largely
agricultural province in China, the area of cropland in Shandong has shown a decreasing
trend over the past two decades. Our results show that some of the cropland has been
converted into aquaculture ponds (saltern) (Figure 5II).
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5. Discussion

In this study, we used multi-source data fusion and prior knowledge to improve land
use classification, which addresses the limitation of existing classification relying only
on spectral information of features. Multi-source data fusion and prior knowledge can
combine spatial neighborhood features with temporal dimensional logical features and
significantly reduce the computational cost for long-term time series and high-frequency
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land use classification and change detections [52]. Although some algorithms such as deep
learning can achieve good recognition results for specific targets (e.g., aquaculture net cages
and mudflats) [29,53], they still cannot cope with the phenomenon of “same-spectrum
dissimilarity”. Some discussions are given below.

(1) Compared with previous studies, our results achieve good consistency. For exam-
ple, our results show a similar land use classification system in Bohai rim coastal area with
Liu [42]. The land reclamation changes found by this study are similar to Huang [33], where
it was shown that coastal land reclamations were stable from 2000 to 2005 and increased
rapidly from 2005 to 2010. Our research further found that the two important time points
for reclamation changes are 2003 and 2013. If the time sequence is divided into three phases,
the overall trend is the same: stable growth–surge growth–stable growth. We also obtained
a similar distribution of land use along the landward direction with Ding [44], where it
was shown that land uses near the coastline and inland boundary have relatively stable
sequential positions along the landward direction, while the intermediate land uses have
dynamic sequential positions leading to multiple CLUSPs. Using spatio-temporal change
logic to adjust land use classification helps to improve accuracy. After the change logic
correction, we found that the average overall accuracy of the corrected results improved
by about 8.03%, especially for impervious surfaces and aquaculture ponds (saltern). This
is because for long-term high-frequency land use mapping, classification errors may lead
to unsteady classifications. In this case, using the spatio-temporal change logic to adjust
frequent changes in stable land use can improve the classification accuracy and keep the
actual land use changes at the same time [52]. As shown in Figure 3b, the rural settlements
in the black box were divided into urban land in 2000, which is not in line with normal logic,
and the final result shows a natural trend of urban expansion. Final result in Figure 3c, the
identification rate of aquaculture ponds (saltern) in the black box is higher and the details
are better.

(2) There are some uncertainties in our results. By analyzing the results of image
classification in previous years, we can find that the classification accuracy tends to be low
with earlier years. For example, the overall accuracies of 1987, 1988, 1993, and 1994 were
79.31%, 79.85%, 76.70%, and 77.55%, respectively. Since 1997, the accuracy has been more
than 80% year by year, and the average OA from 1997 to 2020 is 84.35%. On the one hand,
the accuracy of the classification was directly affected by the generally poor imaging quality
in earlier years. On the other hand, the lack of high-resolution image-assisted discrimination
before 2000, relying only on visual identification and empirical judgment, led to poor quality
of sample points as well. Furthermore, some special land-cover types in the coastal zone,
such as mudflats, have extremely unstable spatial distribution due to the direct influence of
tides and the rapid land-use changes, resulting in the introduction of large uncertainties
in the sample point selection. For example, 30% of mudflats were misclassified during
fast-growing land reclamation (2004–2009). In addition, during the segmentation under
medium-resolution images, aquaculture ponds (saltern) may be misclassified as a river
because the boundary between aquaculture ponds (saltern) and rivers may be only a
few meters wide. Another uncertainty comes when urban land and rural settlements are
connected by main roads. In this situation, some rural settlements close to urban land
would be misclassified as urban land in advance.

(3) The above uncertainties can be reduced by using high-resolution satellite data such
as LiDAR data, which provide special backscatter responses to water and hardened surfaces,
which is helpful to distinguish between water bodies and impermeable surfaces [54,55].
In this study, we did not differentiate saltern from aquaculture ponds, because there is a
little difference in morphology and spectra between aquaculture ponds and saltern. It is
expected that in the follow-up research, a hyperspectral and water color analysis will be
used to realize the separation of the two.
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6. Conclusions

In this paper, we proposed a method to map the long-term land-use changes in the
Bohai rim coastal area. We first refined the classification system to include aquaculture
and land reclamation to consider coastal characteristics. Then, we applied multi-source
data fusion, the random forest algorithm, the optimal classification method using spatial
morphology and temporal change logic to make it computationally possible to map the
long-term annual time-series and detect changes in the Bohai rim coastal area from 1987
to 2020. Validation showed an overall acceptable error, which illustrates the use of multi-
source data fusion and prior knowledge to distinguish land use classes with similar spectra.
We found two key years for aquaculture and land reclamation, before and after which the
changes in respective land use are different. The proposed method shows its strength in the
land use classification for coastal zones. This method is transferable to land use mapping
for coastal zones, especially for long-term time series and high-frequency mapping.
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