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Abstract: Agricultural runoff transports sediments and nutrients that deteriorate water quality
erratically, posing a challenge to ground-based monitoring. Satellites provide data at spatial-temporal
scales that can be used for water quality monitoring. PlanetScope nanosatellites have spatial (3 m)
and temporal (daily) resolutions that may help improve water quality monitoring compared to
coarser-resolution satellites. This work compared PlanetScope to Landsat-8 and Sentinel-2 in their
ability to detect key water quality parameters. Spectral bands of each satellite were regressed against
chlorophyll a, turbidity, and Secchi depth data from 13 reservoirs in Oklahoma over three years
(2017–2020). We developed significant regression models for each satellite. Landsat-8 and Sentinel-2
explained more variation in chlorophyll a than PlanetScope, likely because they have more spectral
bands. PlanetScope and Sentinel-2 explained relatively similar amounts of variations in turbidity and
Secchi Disk data, while Landsat-8 explained less variation in these parameters. Since PlanetScope
is a commercial satellite, its application may be limited to cases where the application of coarser-
resolution satellites is not feasible. We identified scenarios where PS may be more beneficial than
Landsat-8 and Sentinel-2. These include measuring water quality parameters that vary daily, in small
ponds and narrow coves of reservoirs, and at reservoir edges.

Keywords: PlanetScope; Landsat-8; Sentinel-2; Chlorophyll a; turbidity; Secchi depth; agricultural
runoff; reservoirs

1. Introduction

Agricultural runoff transports sediments and nutrients to downstream ecosystems
where they may cause major water quality impairments. Sediments in the runoff cause
elevation in turbidity (Turb) and a cascade of water quality problems such as a reduction in
light penetration, low ecological productivity, alteration of food chains, and bioavailability
of associated pollutants [1]. Nutrients brought in by the runoff can stimulate phytoplankton
growth and promote harmful algal blooms (HABs) in downstream lakes and reservoirs [2].
A major problem with changes in water clarity and phytoplankton growth is that they are
both spatially and temporally erratic.

The erratic nature of chlorophyll a (Chl-a) is evident in surface algal blooms, which
may occur or disappear within hours or days depending on the underlying processes in
a water body [3]. Algal blooms may be more frequent when nutrient loading through
sediment transport is persistent. Since agricultural watersheds transport nutrients to
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lakes and reservoirs, especially during high flows, daily monitoring of sediments and
phytoplankton in reservoirs may be the best way to detect pollution at the early stage of
impairment.

Successful water quality monitoring programs require the collection of data that
capture spatial and temporal trends in many water bodies [4,5]. Achieving this is often
challenging because of limited resources. Many water bodies are not frequently monitored,
resulting in uncertainties in determining if they support their beneficial uses and the
magnitude to which they are impacted by nutrients and sediments [6]. Water quality
monitoring programs often utilize rotational monitoring schedules to address this issue.
The problem with infrequent monitoring and determining which water bodies to include
in a rotational monitoring program is the possibility of missing out on significant pollution
events because of their high temporal and spatial variations [7].

The availability of remotely sensed data from satellites provides the opportunity to
monitor water bodies at greater temporal and spatial resolutions than field-based moni-
toring alone [8]. Studies have developed various methods to use spectral bands for water
quality sensing. Examples include band ratios and band indices [9,10], spectral derivative
techniques [11], and color space transformation [12]. The resulting spectral data are paired
with the temporally and spatially coincident water quality data to establish empirical or
analytical relationships [13]. Three key water quality parameters that have been studied
using satellite remote sensing are Chl-a, Turb, and Secchi Disk depth (SD).

Satellite remote sensing of Chl-a is an active area of research because Chl-a is asso-
ciated with adverse ecological effects at high concentrations during bloom events [14],
and it is optically active with spectral signatures of green (G) reflectance and absorbance
in red (R) and blue (B) [15]. The optical properties of Chl-a have been used to develop
several empirical models using spectral bands and band combinations. For example, a
ratio of R to near-infrared (NIR) is a common band ratio used to estimate Chl-a concen-
trations [9,16–18]. Other examples of band combinations used to monitor Chl-a in water
bodies include a ratio of B to G [19] and the normalized difference between NIR and R at
specific wavelengths [10]. First and second derivatives have also been used to study Chl-a
in waterbodies. Becker et al. (2005) defined the first and second derivatives as shown in
Equations (1) and (2), respectively.

d1st = (ρn+1 − ρn)/(λn+1 − λn) (1)

d2nd = (dn+1
1st − dn

1st)/(λn+2 − λn) (2)

where d1st and d2nd are the first and second derivatives, n is the band number, ρ is the
surface reflectance, and λ is the wavelength.

Similarly, studies have used both single bands, such as B and R, and band combina-
tions, such as B/R and G/R, to study SD and Turb [20,21]. Polynomial terms of single
bands, such as R3, have also been used [22]. Studies have also compared visible bands
from different satellite sensors to estimate water transparency [23].

Remotely sensed data from satellites with moderate to coarse spatial resolution im-
agery such as Landsat-8 (with a spatial resolution of 30 m) and the Sentinel-2 constellation
(with a spatial resolution ranging from 10 to 60 m) have shown promising results in
monitoring water quality in inland water bodies [24,25]. However, their applications for
remotely sensing water quality in small reservoirs, narrow coves of large reservoirs, or for
parameters such as Chl-a that can vary daily within a system may be limited. PlanetScope
(PS) is a relatively new satellite that provides greater temporal (daily repeat schedule) and
spatial (3 m) resolution than these other satellites (Table 1). The temporal resolution of
Landsat-8 is 16 days and for Sentinel-2 is 10 days for each of its two polar-orbiting satellites
giving an average temporal resolution of 5 days. [26]. Table 1 compares some of the major
characteristics of PS, Landsat-8, and Sentinel-2. As such, we posit that where adequate
characterization of water quality for small reservoirs using moderate-coarse resolution
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data (e.g., Landsat-8, Sentinel-2) might not be feasible, PS data with finer spatial (3 m) and
temporal (daily) resolutions may be a viable alternative.

Table 1. Characteristics of Landsat-8, Sentinel-2, and PS.

Characteristics PS Landsat-8 Sentinel-2

Revisit time
(temporal resolution) Daily 16 days 10 days with each satellite (Sentinel 2A and

2B). Five days with combined satellites.

Spectral resolution Four 3-m bands Eight 30-m bands, two 100-m bands, one
15-m panchromatic band (11 bands)

Four 10-m bands, six 20-m bands, and three
60-m bands (13 bands)

Pixel size (spatial
resolution)

More pixels in small
areas/reservoirs

Few or no pixels in small areas/reservoirs
(e.g., with area 0.001 km2 or less)

Few pixels in small areas/reservoirs (e.g.,
with area 0.001 km2 or less)

Bandwidth in nm
(visible and NIR)

Blue: 465–517; Green:
547–595; Red: 650–682;

NIR: 846–888

Blue: 435–512; Green: 533–590; Red:
636–673; NIR: 851–879, Shortwave IR1

(SWIR1): 1570–1650; Shortwave IR2
(SWIR2): 2110–2290

Blue: 458–523; Green: 543–578; Red:
650–680; Red-Edge (RE1): 698–713;

Red-Edge (RE2): 733–748; Red-Edge (RE3):
773–793; NIR: 785–899; SWIR1: 1565–1655;

SWIR2: 2100–2280
Availability of free

imagery
10,000 km2 per month
for education purpose

Unlimited Unlimited

The spatial and temporal resolutions of PS for water resource remote sensing are
promising as shown in recent studies including bathymetric mapping [27] and change
detection of water quality parameters such as total suspended matter [28]. PS imagery
produced up to 50% overall accuracy for mapping benthic habitats with multiple species,
including coral reefs, macroalgae, seagrass, bare substratum, and dead coral. Up to 74.31%
accuracy was recorded for mapping several species of seagrass [29]. PS has also been used
together with Landsat-8 to improve on bathymetric maps produced by Landsat-8 [30].

The advantage of PS for water quality sensing in comparison to Landsat-8 and Sentinel-
2 may be limited by the number of spectral bands. Landsat-8 and Sentinel-2 have additional
spectral bands that may give them an advantage over PS to remotely sense water quality.
The shortwave infrared (SWIR) bands have been shown to be less susceptible to Turb than
the NIR band and, hence, better detect Chl-a [31]. The Red-Edge band in Sentinel-2 has
also been shown to better detect Chl-a than the NIR band [32].

The objective of this study was to determine if the finer spatial and temporal resolu-
tions of PS provided better water quality monitoring potential compared to Landsat-8 and
Sentinel-2. To achieve this, we determined empirical relationships between the surface
reflectance of each of the three satellites and Chl-a, Turb, and SD data from 13 reservoirs
in Oklahoma. We also present a specific case study of an algal bloom in an Oklahoma
reservoir to compare the utility of the three satellite platforms in monitoring an algal bloom
with respect to the spatial, temporal, and spectral properties of each satellite.

2. Materials and Methods
2.1. Description of the Study Area

The state of Oklahoma has a total surface area of 181,196 km2. It has approximately
3629 km2 of water in reservoirs and ponds and 89,554 km of shoreline [33]. There are
over 200 reservoirs distributed across the state that are greater than 0.2 km2 [33] and
qualify for rotational water quality monitoring in the state of Oklahoma’s Beneficial Use
Monitoring Program (BUMP). Beneficial use refers to defined water uses (primary body
contact recreation, public and private water supply, agriculture, aesthetics, and fish and
wildlife propagation) that must be supported by water quality parameters according to
prescribed standards [34]. Oklahoma also has thousands of reservoirs with surface areas
less than 0.2 km2 that include ponds ranging between 0.001 and 0.04 km2. Most of these
ponds were constructed to support livestock watering and recreation [35].
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Water quality data were obtained from 13 reservoirs: Lake Arcadia, Broken Bow Lake,
Canton Lake, Lake Eucha, Fort Gibson Lake, Foss Reservoir, Lake Hefner, Kaw Lake, Lake
McMurtry, Oologah Lake, Lake Thunderbird, Waurika Lake, and a single cove in Grand
Lake O’ the Cherokees (Grand Lake) called Horse Creek Cove. Grand Lake is the third
largest reservoir in Oklahoma with a surface area of 188.2 km2. We included Horse Creek
Cove because Grand Lake has experienced HABs during the summer coinciding with the
summer recreation season. Most of the HABs in Grand Lake start in Horse Creek Cove
from nutrient-rich runoff from agricultural production in its watershed [36]. Figure 1 shows
a map of Oklahoma and the state’s BUMP reservoirs (grey) including those studied here
(colors). Table 2 shows some characteristics of the study reservoirs.
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Figure 1. Map of Oklahoma showing the BUMP reservoirs across the state (grey polygons and speckles) and the 13 reservoirs
used in this study (in colors). The spatial data for this map were obtained from the Oklahoma Water Resource Board’s
website [34].
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Table 2. Characteristics of the reservoirs used in this study. This information was obtained from the
Oklahoma Water Resource Board’s website [37].

Reservoir
Surface Area

(km2) Trophic Status
Impairment Status

Chl-a Turb

Arcadia 7.40 Hypereutrophic Impaired Impaired
Broken Bow 57.50 Mesotrophic Not impaired Not impaired

Canton 32.00 Hypereutrophic Insufficient data Impaired
Eucha 11.60 Eutrophic Impaired Not impaired

Fort Gibson 60.30 Eutrophic Insufficient data Not impaired
Foss 35.61 Mesotrophic Insufficient data Impaired

Hefner 10.11 Hypereutrophic Insufficient data Not impaired
Grand 188.20 Eutrophic Insufficient data Not impaired
Kaw 68.96 Hypereutrophic Insufficient data Impaired

McMurtry 4.67 Eutrophic Insufficient data Impaired
Oologah 119.22 Mesotrophic Insufficient data Impaired

Thunderbird 24.60 Hypereutrophic Impaired Impaired
Waurika 40.87 Eutrophic Impaired Impaired

2.2. Water Quality Data

Water quality data for 12 of the 13 reservoirs were obtained from the BUMP, which
samples 62 lakes ranging in size from 0.2 to 2 km2, and 68 lakes greater than 2 km2. The
BUMP was designed to sample 130 reservoirs in Oklahoma quarterly, with a five-year
rotational schedule [38]. The data for Horse Creek Cove were obtained from the Grand
River Dam Authority (GRDA) water quality monitoring program.

We used Chl-a, Turb, and SD data collected between 2017 and 2020. We selected
sample data that corresponded to imagery acquired within ±2 days of each sample date
to allow for enough paired satellite and water quality data for each of the three satellite
platforms [25]. The assumption was that a satellite image that was acquired within a ±2-day
window of ground-based sampling would be representative of the water quality conditions
if no major events such as flooding, severe weather, and limnetic mixing occurred [39].
When more than one image was available within the ±2-day window, the image with an
acquisition date closest to the date of ground-based sampling was selected.

Chl-a samples were collected below the surface at a depth of 0.5 m and placed on
ice and returned to the laboratory for filtration, extraction, and measurement of Chl-a
concentrations in µg/L [40]. Surface water samples were collected from each sample site to
measure Turb using a Hach© 2100P PORTABLE Turbidometer in NTU [41]. A black and
white Secchi disc was used to measure transparency from the shady side of the boat. The
depths at which the disc disappeared and then reappeared were taken, and the average
value was reported as the SD.

2.3. Satellite Imagery

This study used imagery downloaded from the Planet Explorer website, the USGS
Earth Explorer website for Landsat-8, and the Copernicus Open Access Sentinel Hub.
Satellite images with less than 10% cloud cover were considered for analysis. When
the cloud cover was more than 10% but did not cover the sample sites, the image was
considered for analysis.

The PS images used in this study were acquired by the PS2.SD Dove satellites. The
PlanetScope Lab geometrically corrected the images using Ground Control Points (GCPs)
and digital elevation models (DEM) based on the Universal Transverse Mercator World
Geodetic System 1984 (UTM WGS1984). The images were atmospherically corrected to
surface reflectance using the 6SV2.1 radiative transfer code. The PlanetScope Lab also did
radiometric correction using sensor telemetry and sensor model. The processed images
were made available as open source for educational purpose. The image frame size is
approximately 24 km × 16 km. The PS2.SD constellation provides four-band imagery
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globally with a spatial resolution of 3 m, and they have a daily flyover schedule. Each
image is stored with information on the date, time of acquisition, and satellite ID [42].

The Landsat-8 images used in this study were obtained by the Operational Land
Imager (OLI) every 16 days, with spatial resolution 30 m, and included 11 bands of analysis
ready surface reflectance data. The USGS Earth Resource Observation and Science (EROS)
Center provides open-source Landsat Analysis Ready Data (ARD) for the United States
with image frame size 5 km × 5 km. The images are processed to the highest scientific
standards and level of processing required for direct use in assessing land cover change.
The Landsat Surface Reflectance Code (LaSRC) uses the coastal aerosol band to perform
aerosol inversion tests, auxiliary climate data from MODIS, and a unique radiative transfer
model. The LaSRC hardcodes the view zenith angle to “0” and the solar zenith and view
zenith angles are used to correct atmospheric scattering.

The ARD images are projected to the Albers Equal Area Conic (AEA) map projection
and are processed directly from Level-1 AEA scenes through Level-2 products using the
WGS84 datum. Level-1 processing includes radiometric calibration and orthorectifying
using GCPs and DEM data, and geometric correction using the spacecraft ephemeris and
DEM data. Level-2 processing includes atmospheric correction [43].

The Sentinel-2 Multi-Spectral Instrument (MSI) provides open access images available
to users via the Copernicus Open Access Hub. The Level-2A products, which are orthorec-
tified Bottom-Of-Atmosphere (BOA) reflectance in cartographic geometry, were generated
through the Payload Data Ground Segment (PDGS) utilizing the Sen2Cor processor. Radio-
metric and geometric corrections, including orthorectification and spatial registration, are
done at the Level 1 stage of image processing. The image is divided into 100 km tiles in
UTM WGS84 projection. Sentinel-2 imagery is acquired every five days by a constellation
of two polar-orbiting satellites placed in the same sun-synchronous orbit, phased at 180◦

to each other [26]. The Sentinel-2 instruments acquire images with 13 spectral bands and
spatial resolutions 10-60 m. Resampling was done to allow a combination of 20 m and 10 m
bands to compute and map the water quality parameters.

Band spectra from the three satellites were extracted using the extraction tool in the
spatial analyst toolset in ArcGIS 10.7.1. The extracted values were multiplied by the scaling
factor (0.0001) that was used for data storage. The surface reflectance values were paired
with their corresponding Chl-a, Turb, and SD data for regression analysis. For reservoir
polygons that required more than one tile of PS imagery, we ensured that they all had the
same satellite ID before they were used to extract spectral data.

2.4. Band Combination and Band Selection

Multiple linear regression with stepwise selection of terms was used to determine
empirical relationships between each of the three water quality parameters (the dependent
variables) and their corresponding surface reflectance values from the PS, Landsat-8, and
Sentinel-2 imagery. The independent variables included the spectral bands in each satellite,
band ratios, band indices, and spectral derivatives. Table 3 highlights the properties of each
satellite band that are relevant for water quality monitoring and were used in the study.
These band ratios are empirical scenarios informed by the spectral properties discussed
in Table 3. Transforming bands for the purpose of improving the predictive tendency of
empirical models is a common practice in remote sensing of water quality [9,18,44].
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Table 3. Spectral bands and their spectral properties that allow for monitoring Chl-a, Turb, and SD.

Spectral Bands and
Band Ratios

Wavelength Range, nm
(λi–λn; i = 1) Properties

Blue (B)
PS: λ465–λ517

Landsat-8: λ435–λ512
Sentinel-2: λ458–λ523

This is the region of deepest light penetration in clear waters.
However, most of Oklahoma lakes are turbid. The B band is
susceptible to scattering in the atmosphere and water [45].

Green (G)
PS: λ547–λ595

Landsat-8: λ533–λ590
Sentinel-2: λ543–λ578

The reflectance peak of different concentrations of Chl-a are at
wavelengths in this region [46].

Red (R)
PS: λ650–λ682

Landsat-8: λ636–λ674
Sentinel-2: λ650–λ680

The Chl-a absorption peak is at λ660 [15], which falls within the R
band. Ferric-rich soils in Oklahoma [47] end up in reservoirs
through surface runoff, making the R band a crucial spectral

signature for Turb (reflectance), and also for Chl-a and SD detection
when used as a ratio to other bands.

Near-infrared (NIR)
PS: λ846–λ888;

Landsat-8: λ851–λ879;
Sentinel-2: λ785–λ899

This band is absorbed in water [15]. Its high reflectance will
indicate the presence of substances other than water.

Red-Edge (RE)
RE1: λ698–λ713
RE2: λ733–λ748
RE3: λ773–λ793

The RE band transitions between the R and NIR bands, and it
uniquely correlates with Chl-a [32]

Shortwave infrared (SWIR)

Landsat-8:
SWIR1: λ1570–λ1650
SWIR2: λ2110–λ2290

Sentinel-2:
SWIR1: λ1565–λ1655
SWIR2: λ2100–λ2280

The longer wavelengths in the SWIR band give it the advantage of
minimal scattering by mineral Turb in the water, making it suitable

to detect algal pigments [31]. It is also useful to differentiate
between algal pigments and those in aquatic macrophytes [48]

2.5. Best-Fit Model Selection and Validation

The first step in the model building was power transformation of the dependent water
quality variables to increase the chances of improving the regression fits. Each of the three
water quality parameters was transformed into its natural logarithm (LN) and square root
(SQRT), and all three data types (actual values, LN, and SQRT) were used in the generation
and selection of the best fit model.

This was followed by generating several independent variables through different
methods of band combinations to increase the chances of developing strong regression
models. The first set of independent variables included single bands, band ratios, and band
indices. The band ratios were obtained by dividing two bands (e.g., ρR*ρNIR

−1). The band
indices were the square of the normalized difference between surface reflectance values in
two or more bands. These were paired with corresponding Chla, Turb, and SD (actual, LN,
and SQRT) values for the development of regression models. The resulting statistics were
recorded and evaluated.

In the following step, the independent variables were the surface reflectance values
divided by their respective center wavelengths and 1st and 2nd derivatives of the surface
reflectance spectra [11]. The first derivatives were designated dn with values ranging from
d1 = (ρband-3 − ρband-2) ∗ (λband-3 − λband-2)−1 to dn−1 = (ρband-(n+1) − ρband-n) ∗ (λband-(n+1) −
λband-n)−1. The 2nd derivatives were designated d2n with values ranging from d21 = (d2
− d1) ∗ (λband-3 − λband-1)−1 to d2(n−1) = (dn+1 − dn) ∗ (λband-(n+2) − λband-n)−1. The value
n is the band number, λ is the center wavelength, and ρ is the surface reflectance. These
were combined with their corresponding water quality parameters for the development of
regression models. Finally, we deployed all the independent variables generated above
with their paired water quality parameters and ran them in the regression analysis.

The criteria considered in this study were the p-value, R2, Root Mean Square Error
(RMSE), and Variance Inflation Factor (VIF). The regression terms that gave the best satis-
faction of these criteria were selected for model building. The criteria were set as follows:
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• The relationships should be significant on a 95% confidence interval (α ≤ 0.05);
• A strong relationship between the dependent variable and the predictors (R2 ≥ 0.5);
• Low standard deviation of the residuals (RMSE) relative to the range of values;
• Low correlation between the predictors (VIF < 10).

Selection of the best fit model was achieved using Minitab-19 statistical software [49].
The null hypothesis was that the surface reflectance from the bands, band combinations,
and spectral derivatives did not predict variations in Chl-a, Turb, or SD, at a significance
level (α) of 0.05. Each of the predictors was selected and evaluated using the Forward
Information Criteria (FIC) in Minitab. The function is a stepwise selection that takes away
and adds one variable at a time and determines selected statistics as it proceeds. This
function is exhaustive and reshuffles variables until it determines that the best criteria
are satisfied.

Model-derived values of each parameter were plotted against measured data that
matched sampling periods and sites. At least 40 data points were randomly selected
from the data and set aside for comparison to model derived values in scatter plots. The
R2 was used to determine the extent to which the model-derived data agreed with the
measured data.

Each best fit model was further tested using the K-folds cross-validation (cv) in
Minitab. The advantage of the K-folds cv method over a single training/testing split is
that every data point is used in both the training and testing sets. The data is divided into
a certain number of partitions (K-folds) and each partition is used as a testing set while
the rest of the data is used as a training set [50]. The average R2 and RMSE for 10 folds
of cv were used to determine the validity of the models obtained. The procedure for the
development of models, selection of the best fit model, and its validation are summarized
in Figure 2.
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Figure 2. Flow diagram showing the procedure for model development, model selection, and model validation.

2.6. Case Study Application—Algal Bloom in Lake McMurtry, Oklahoma

We used an algal bloom event that occurred in Lake McMurtry, northcentral Oklahoma,
from 27 November to 3 December 2019, to compare the spatial-temporal properties of
the three satellites. PS had 4 cloud-free images (27 November, 30 November, 1 December,
and 3 December 2019) available during this bloom event. In contrast, Landsat-8 had
only one image with a cloud-free portion in the northern part of the lake (27 November
2019). Sentinel-2 also had only one image (1 December 2019) with a cloud-free portion that
included the lake. These images were used to compare PS to Landsat-8 and Sentinel-2 in
terms of their temporal and spatial resolutions. The Spatial Analyst tool of ArcMap 10.7.1
was used to compute pixel values of Chl-a in the areas of interest.
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3. Results
3.1. Range of Values of the Three Parameters

Chl-a concentrations in the study reservoirs ranged from 0.60 to 540 µg/L. Turb ranged
from 0.00 to 966 NTU and SD ranged from 8.0 to 400 cm. PS had more data points to match
with water quality than Landsat-8 and Sentinel-2 because of its daily flyover schedule. For
PS, there were 207 data points for Chl-a, 225 data points for Turb, and 158 data points for
SD. For Landsat-8, there were 100 data points for Chl-a, 75 data points for Turb, and 96
data points for SD. For Sentinel-2, there were 129 data points for Chl-a, 101 data points for
Turb, and 113 data points for SD. Figure 3 shows the range of values of Chl-a, Turb, and SD.
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Figure 3. Histograms of the Chl-a (µg/L), Turb (NTU), and SD (cm) data from the study reservoirs that correspond to their
respective PS, Landsat-8, and Sentinel-2 images.

3.2. Best Fit Models

Equations (3)–(11) present the best fit regression equations for the three satellites.
PS based equations:

SQRT(Chl-a) = 1.24 − 89.10ρB + 79.10ρNIR + 9.67ρ((R+B−NIR)/(R+B+NIR))
2 + 13.67ρ((G−NIR)/(G+NIR))

2 (3)

LN(Turb) = 1.65 + 2.30ρ(R/G) − 0.035ρ(1/NIR) − 0.07ρ(1/R) (4)

LN(SD) = 4.22 − 0.90ρ(R/B) + 0.02ρ(1/NIR) + 0.07 ρ(1/R) (5)

where ρ is the surface reflectance value at a wavelength within the bands.
Landsat-8 based equations:

SQRT(Chl-a) = 4.778 − 45.5d4 − 123.03d5 − 26.33ρ(B/λB) (6)

where d4 = (ρSWIR1 − ρNIR)/(λSWIR1 − λNIR), d5 = (ρSWIR2 − ρSWIR1)/(λSWIR2 − λSWIR1), λB,
λSWIR1 and λSWIR2 are the center wavelength of the respective bands.

SQRT(Turb) = 4.67 + 9.86d2 + 41.70d24 (7)
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where d2 = (ρR − ρG)/(λR − λG), and d24 = (d5 − d4)/( (λSWIR2 − λNIR).

LN(SD) = 4.1974 − 2.018d2 + 1.227d3 + 18.76d4 − 18.22d5 (8)

where d2 = (ρR − ρG)/(λR − λG), d3 = (ρNIR − ρR)/(λNIR − λR)
Sentinel-2 Based Equations:

SQRT(Chl-a) = 2.986 + 6.936d3 − 0.861d4 − 91.4d8 (9)

where d3 = (ρRE1 − ρR)/(λRE1 − λR), d4 = (ρRE2 − ρRE1)/(λRE2 − λRE1); and d8 = (ρSWIR2 −
ρSWIR1)/(λSWIR2 − λSWIR1)

LN(Turb) = 0.076 − 29.80ρSWIR2 + 4.72ρ(R/B) − 3.38ρ((R−NIR)/(R+NIR))
2 (10)

LN(SD) = 6.66 + 28.81ρSWIR2 − 15.34ρRE3 − 2.86ρ(R/G) (11)

All the regression models for the three parameters provided significant relation-
ships between the spectral data from each platform and their respective parameters. The
p-values for the coefficients and constants were also significant (p < 0.01). Table 4 presents
results of the statistical analysis for the overall regressions, coefficients, and constants in
Equations (3)–(11).

Table 4. Statistics of the best fit regression models for PS, Landsat-8 (L8), and Sentinel-2 (S2).

Parameter
R2 RMSE Maximum VIF

PS L8 S2 PS L8 S2 PS L8 S2

Chl-a 0.58 0.75 0.85 4.41 µg/L 2.04 µg/L 1.19 µg/L 5.47 1.20 2.74

Turb 0.79 0.60 0.78 1.61 NTU 1.54 NTU 1.60 NTU 2.37 1.43 2.57

SD 0.76 0.58 0.80 1.54 cm 1.50 cm 1.35 cm 2.01 3.59 6.90

The Chl-a R2 values for Sentinel-2 (R2 = 0.85) and Landsat-8 (R2 = 0.75) showed that
the spectral data from these two satellites predict Chl-a better than PS (R2 = 0.58). Their
Chl-a RMSE values were also lower than that for PS. These results imply that Landsat-8
and Sentinel-2 are preferable for detecting Chl-a reflectance over PS. The low VIF values
(Maximum VIF < 10) in all three platforms indicate minimal collinearity between the
regression terms. This was the case for all the parameters and all three satellites.

For Turb, PS and Sentinel-2 had comparable R2 values (0.79 and 0.78, respectively),
while the R2 value for Landsat-8 was lower (R2 = 0.60). All the RMSE values were relatively
low, indicating reliability in using all three platforms for sensing Turb in the study reservoirs.
PS and Sentinel-2 are the preferred satellites for sensing Turb in the study reservoirs based
on their R2 values.

For SD, the R2 in Sentinel-2 was the highest (R2 = 0.80) followed by PS (R2 = 0.76).
The Landsat-8 value for SD was the lowest (R2 = 0.58). The RMSEs were low relative to
the range of values in all three satellites. Based on these results, Sentinel-2 and PS are the
preferred platforms for sensing SD in the study reservoirs.

Figure 4 presents scatter plots showing relationships between the values of Chl-a
(µg/L), Turb (NTU), and SD (cm) predicted by the PS, Landsat-8 (L8), and Sentinel-2 (S2)
spectra and those measured in the study reservoirs. The R2 (R-sq) values are displayed at
the top of each graph along with the associated parameters and satellite platforms. The
x-axis represents the model-derived values, and the y-axis represents the measured values.
All three satellites showed strong relationships between measured and model-derived
variables for the water quality parameters.
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Figure 4. Scatter plots showing relationships between the model-derived concentrations and measured concentrations of
Chl-a (µg/L), Turb (NTU), and SD (cm) with PS, Landsat-8 (L8), and Sentinel-2 (S2). The R2 (R-sq) values are displayed at
the top of each graph along with the associated parameters and satellite platforms.

Validation of the Best Fit Models

Figure 5 shows the average R2 values obtained in the 10-fold cv of the parameters
with PS, Landsat-8, and Sentinel-2. For Chl-a, Sentinel-2 had the highest average value
(R2 = 0.83), followed by Landsat-8 (R2 = 0.69) and then PS (R2 = 0.55). PS had the highest
average R2 for Turb (R2 = 0.78) followed by Sentinel-2 (R2 = 0.75), and Landsat-8 (R2 = 0.51).
For SD, Sentinel-2 had the highest value (R2 = 0.78), followed by PS (R2 = 0.74), and
Landsat-8 (R2 = 0.53).

Considering R2, the 10-folds cv showed that all three satellites are reliable for sensing
all three parameters. Comparatively, Landsat-8 and Sentinel-2 were more reliable than PS
for Chl-a sensing, while PS and Sentinel-2 were more reliable than Landsat-8 for Turb and
SD sensing.

Figure 6 shows the average RMSE values obtained for the three parameters with
the three satellites. The average RMSE values were below 5.0 for all three cases, which
are considered low in reference to the range of values utilized in the study. The RMSE
values for Turb and SD were comparable in the three satellites, while the PS RMSE for
Chl-a (4.62 µg/L) was almost twice the amount in Landsat-8 (2.37 µg/L) and 3.5 times the
Sentinel-2 amount (1.32 µg/L).
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Figure 5. Average R2 values in the 10-fold cv of the parameters with PS, Landsat-8, and Sentinel-2.
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Figure 6. Average RMSE values in the 10-fold cv of the parameters with PS, Landsat-8, and Sentinel-2.

Similar to the observations made in the R2 validation results, the 10-folds cross valida-
tion showed that all three satellites are reliable for sensing all three parameters. The RMSEs
also revealed that Landsat-8 and Sentinel-2 were more reliable than PS for Chl-a sensing,
while PS and Sentinel-2 were more reliable than Landsat-8 for Turb and SD sensing.
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3.3. Case Study Application—Algal Bloom in Lake McMurtry, Oklahoma

The onset of an algal bloom was reported in Lake McMurtry on 27 November 2019.
The bloom grew and dissipated between 27 November and 5 December 2019. The Landsat-
8 image that was available during these blooming dates (27 November) had a cloud-free
portion in one of the areas where the bloom occurred. Sentinel-2 had only one available
image with a cloud-free portion that included Lake McMurtry on December 1. There were
four cloud-free PS images available during the blooming period. This event allowed for
temporal and spatial comparisons in Chl-a mapping using models derived for PS, Landsat-
8, and Sentinel-2. Figure 7 shows the PS and Landsat-8 maps for Chl-a on 27 November,
2019. Note that Chl-a concentrations were more visible in the littoral and riverine coves of
the reservoir just as the bloom was observed when these sites were visited.
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Figure 7. PS (Left) and Landsat-8 (Right) maps of Chl-a in Lake McMurtry, northcentral Oklahoma. Both satellites acquired
their images on 27 November 2019, during an active algal bloom event. The overview maps at the top show the location of
Lake McMurtry in Oklahoma (Top Right spec in a red box) and Lake McMurtry (Top Left) showing the focus area delineated
in a red box. The color bars represent concentration ranges as estimated by each of the two satellites.

The PS-based Chl-a map showed the same pattern of Chl-a distribution as the Landsat-
8 map. This shows that the models developed for both satellites estimate Chl-a similarly.
The key difference in Figure 7 lies in the sizes of the pixels for PS (3 m) and Landsat-8 (30 m).
The PS image gave a higher definition (finer spatial resolution) of Chl-a distribution in the
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focus area of the reservoir compared to Landsat-8. This observation is important for water
quality sensing at the edges of the reservoir and in the riverine coves. The coarser spatial res-
olution of Landsat-8 could have caused the lower concentration range (13.09–147.64 µg/L)
in those edges and coves compared to the PS range of values (0.00–296.13 µg/L). Figure 7
shows that the small pixel size from PS is better at detecting Chl-a near the lake’s edge and
in the coves of the reservoir, which is where the bloom was most concentrated.

Figure 8 shows the PS and Sentinel-2 maps for Chl-a on 1 December 2019. We used
this figure to compare Chl-a from PS imagery to that from Sentinel-2 imagery for this single
date during an algal bloom. The PS-based Chl-a models gave the same pattern of Chl-a
distribution in both PS and Sentinel-2 maps, demonstrating that both models estimated
Chl-a similarly. The PS image gave a higher definition (finer spatial resolution) of Chl-a
distribution in the focus area of the reservoir compared to Sentinel-2. Unlike Landsat-8, the
Sentinel-2 model gave a similar concentration range as the PS model, probably owing to its
higher spatial resolution (10 m). Figure 8 again shows that on 1 December 2019, the small
pixel size from PS was better at defining the distribution of Chl-a (than Sentinel-2) near
the lake’s edge and in the riverine coves of the reservoir, which was where the bloom was
most concentrated.
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Figure 8. PS (Left) and Sentinel-2 (Right) maps of Chl-a in Lake McMurtry, northcentral Oklahoma. Both satellites acquired
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Lake McMurtry in Oklahoma (Top right spec in a red box) and Lake McMurtry (Top left) showing the focus area delineated
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Remote Sens. 2021, 13, 1847 15 of 20

Figure 9 presents PS Chl-a maps in the northwest cove of the reservoir. The images
were acquired on dates between 27 November and 3 December. The algae had dispersed in
the cove by 3 December. The bloom peaked and started dissipating just before this time,
and no bloom was observed during ground-based observation on 5 December. Figure 9
shows several PS images from the same bloom from 27 November to 3 December, 2019.
These images show the dynamic nature of the algal bloom as it changed daily. We also
note that during this period of the bloom, there was only a single image available for both
Landsat-8 and Sentinel-2. Of the 3 satellite platforms, PS was the only one with enough
available/usable imagery to follow the dynamic nature of the algal bloom during this
period.
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4. Discussion
4.1. PlanetScope Nanosatellites

PlanetScope (PS) nanosatellites were originally developed for terrestrial and aquatic
applications [51]. Our research contributes to a growing body of research [28] showing
that PS is also applicable for use in water quality management applications. The accuracy
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of the models developed from PS spectra (based on R2 and RMSE values) for three key
water quality parameters were relatively similar to those that have been developed for
other water bodies using other satellites such as Landsat-8 and Sentinel-2 [22,25,44].

The independent variables of the Chl-a, Turb, and SD models for PS were the single
bands, band ratios, and band indices. The spectral bands in the best fit PS model for Chl-a
were B, NIR, ((R + B − NIR)/(R + B + NIR))2, and ((G − NIR)/(G + NIR))2. Chl-a reflects
G and absorbs B and R during photosynthesis [15], which is probably why the B band has
a negative linear relationship with Chl-a in the equation. We suggest that the square of
the normalized difference between the visible bands (R + B) and the NIR band explains
the impact of Turb on Chl-a reflectance, since both visible and NIR bands interact with
both parameters [10,52]. The NIR band has also been used in previous satellite studies,
especially at wavelengths close to the Red-Edge. NIR has been used mostly in combination
with R [16]. Red may not be applicable in this case due to possible interference from Turb;
agricultural runoff, shoreline erosion, and in-lake resuspension make Turb a primary source
of reservoir impairment in the study area. The square of the normalized difference between
G and NIR is not as common as that between R and NIR [10] at specific wavelengths. Our
empirical results indicate that ((G − NIR)/(G + NIR))2 contributes significantly to Chl-a
detection.

The independent variables that were selected for Turb were R/G, 1/NIR, and 1/R.
The positive linear relationship between R/G and the natural log of Turb likely explains the
ferric oxide-laden sediment load in the study area. The second and third terms had a nega-
tive linear relationship with Turb, and their effect may be minimal when the exponential
function is considered. The opposite is the case for SD in which the inverse values of R and
NIR gave positive linear relationships while the R/B gave a negative linear relationship
with the parameter. Oklahoma’s Turb is mostly reddish in color, and it has an inverse
relationship with SD [47]. Additionally, since water absorbs NIR, clear waters (high SD)
would translate to low NIR reflectance. Similarly, R is associated with Turb and minimizes
light penetration. The reverse order of independent variables for Turb and SD is consistent
with past studies showing an inverse relationship between Turb and SD [53].

4.2. PlanetScope Compared to Landsat-8 and Sentinel-2

Although PS has finer spatial and temporal resolutions than Landsat-8 and Sentinel-2,
the latter two satellites have more spectral bands. These additional bands contributed to
better models for Chl-a in terms of the coefficient of determination (R2) and the error values.
Those additional bands are not as susceptible to Turb as the NIR band [31]. Additionally,
the spectral derivatives showed strong relationships with Chl-a in Landsat-8 and Sentinel-2.
They also showed strong relationships with Turb and SD in Landsat-8.

In addition to the visible bands, the two SWIR bands in Landsat-8 and Sentinel-2
contributed significantly to Chl-a reflectance in the study reservoirs. This observation
is consistent with the results obtained in previous studies. The SWIR band (λ = 1500–
2500) appears to be less susceptible to scattering than the NIR band because of its longer
wavelengths. This allows minimal Turb interference to this band compared to NIR [31].
The Red-Edge band in Sentinel-2 has been shown to better detect Chl-a than Landsat-8
bands [32] because it is not as susceptible to absorption or scattering. Wavelengths in this
region have a strong linear relationship with Chl-a reflectance [54].

The PS and Sentinel-2 models outperformed Landsat-8 for Turb and SD, probably
owing to their finer pixel sizes (3 and 10 m, respectively). Even though Sentinel-2 has a
coarser spatial resolution than PS, our study suggests that the 10 m pixel is fine enough for
detecting Turb in the study reservoirs. The agricultural practices, along with streambank
and shoreline erosion, and in-lake resuspension of sediment in the study area are common
sources of continuous sediment transport, which elevates Turb levels in waters in the
region. The same explanation applies to SD since its values trend inversely with Turb.

PS is a commercial satellite whereas Landsat-8 and Sentinel-2 images are open source.
Therefore, it may not be economically feasible to use PS to remotely sense water quality for
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all water resource applications. The bloom event from Lake McMurtry highlights a scenario
where the finer spatial and temporal resolutions of PS can be used to remotely sense Chl-a.
The algal bloom developed over several days in the reservoir (Figure 9). During this period,
there were several cloud-free PS images compared to only one for Landsat-8 and Sentinel-2
images during the blooming event. These return periods of PS allowed for the detection
and monitoring of bloom dynamics that changed daily and could not be measured from
the other satellite platforms. This temporal advantage of PS provides an opportunity for
lake managers to make informed decisions regarding response efforts such as the duration
of beach closures during HABs.

The finer spatial resolution of PS may allow for the remote sensing of water quality
in smaller ponds and reservoirs compared to coarser-resolution satellites. Small (farm)
ponds are important in agricultural watersheds and they often experience high nutrient
and sediment loads. Oklahoma has thousands of ponds ranging in size between 0.001 km2

and 0.04 km2. Because of their small size, they are difficult to monitor with ground-based
sampling or with Landsat-8 or Sentinel-2. For example, a 0.001-km2 pond would be covered
with only one Landsat-8 pixel or 10 Sentinel-2 pixels (considering Sentinel-2 data with
10-m pixel size). For the same 0.001-km2 pond, a PS image would have approximately 111
pixels. As such, PS data with finer spatial resolution (3 m) could be used to assess more
pixels in the ponds and better detect small-scale changes in water quality.

This study covered 13 reservoirs located in predominately agriculturally dominated
watersheds that are dominated by agricultural practices. Additional studies are needed
to determine if our models developed for agricultural landscapes could be used in other
reservoirs in the region and around the world. Additional studies are also required to test
and refine our models in areas with dominant human activities other than agriculture.

A limitation to using PS imagery is that it has fewer spectral bands compared to
Landsat-8 and Sentinel-2. PS also has many satellites each providing image tiles with
properties that may vary from each other. This may require normalization of those image
tiles, which was beyond the scope of this study. We selected image tiles with the same
satellite ID to minimize the likelihood of this source of error. However, a future application
of PS imagery for water quality monitoring requires normalization of multiple image tiles
to ensure comparability. Such image analysis, in addition to acquiring the imagery, makes
it costly for PS use for water quality monitoring at a regional scale. Furthermore, the
scalability of PS imagery for cost recovery in water quality monitoring is limited to areas
with high frequency of cloud-free days. A key benefit of PS data is using its finer spatial and
temporal resolutions to measure dynamic water quality parameters in small reservoirs and
coves of larger reservoirs that are not feasible to monitor with moderate-coarser resolution
satellites and are inaccessible for ground-based monitoring.

5. Conclusions

Traditional water quality monitoring is limited to specific sample locations and in-
frequent sample visits. These limitations create spatial and temporal gaps during which
water quality impairment may occur and pose exposure risks. This study explored the
utility of satellites to detect water quality in those spatial and temporal gaps in agricul-
tural watersheds. We compared the spatial, temporal, and spectral resolutions of PS to
those of Landsat-8 and Sentinel-2 for sensing three water quality parameters in Oklahoma
reservoirs. We used three years (2017–2020) of surface reflectance spectra for PS, Landsat-8,
and Sentinel-2 to develop empirical models for Chl-a, Turb, and SD in 13 reservoirs in
Oklahoma. Multiple linear regression models were developed using surface reflectance
from the bands, band ratios, and band indices of these water quality parameters.

Overall, the spectral data from each of the three satellite platforms (PS, Landsat-8, and
Sentinel-2) had significant relationships with Chl-a, Turb, and SD. We conclude that the
finer spatial and temporal resolutions in PS give it the capabilities that are comparable to
Landsat-8 and Sentinel-2 for sensing key water quality parameters in the study reservoirs.
However, this capability is moderated by the fewer spectral bands and the cost to acquire
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the PS imagery given that Landsat-8 and Sentinel-2 data are free. We identified scenarios
where it may be more beneficial to use PS compared to Landsat-8 and Sentinel-2. PS is
better suited for measuring water quality variables that vary daily, in small ponds and
reservoirs where satellites with coarser spatial resolution do not provide enough pixels and
at the edge of water bodies where variation in water quality requires fine-scale detection.

Future research should work to combine PS, Landsat-8, and Sentinel-2 to develop a
predictive monitoring tool that utilizes their tradeoffs to increase our ability to understand
water quality dynamics. Key areas of a combined satellite approach [55–58] could include
targeted monitoring of hot spot areas, frequent monitoring of phytoplankton and sedi-
ments from nutrient-rich runoff, wider spatial and temporal coverage than ground-based
monitoring programs can accomplish, and ultimately, effective use of resources for water
quality monitoring.
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