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Abstract: Estimating variations in material properties over space and time is essential for the purposes
of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure.
Properties such as compressive strength evolve over time and are reflective of the overall condition
of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent
spatial variability of material properties over large length scales. In recent years, nondestructive
approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ
material properties of concrete with a focus on the compressive strength. However, these methods
require personnel expertise, careful data collection, and high investment. This paper presents a
novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material
properties over time and space for assessment of concrete bridges. The results show that attributes
(or features) of the GPR data such as raw average amplitudes can be used to identify differences
in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous
amplitudes and intensity of reflected waves are useful in predicting the material properties such as
compressive strength, porosity, and density. For compressive strength, one alternative approach of
the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated
values. The results show that GPR attributes could be successfully used for identifying spatial and
temporal variation of concrete properties. Finally, discussions are presented regarding their suitability
and limitations for field applications.

Keywords: structural health monitoring; ground penetrating radar; attribute analysis; in situ material
property; machine learning; maturity method

1. Introduction

A significant proportion of the United States’ infrastructure has exceeded its intended
service life [1]. ASCE’s 2021 report-card on the state of US infrastructure grades bridges at
C with approximately 7.5% of the assessed bridges classified as structurally deficient, with
42% of the total bridge stock being over 50 years old [2,3]. To extend the remaining useful
life (RUL) of these structures, structural health monitoring (SHM) and nondestructive
evaluation (NDE) techniques are used by engineers. SHM can be considered as a set of
processes that are aimed at providing actionable information to the stakeholders using var-
ious monitoring strategies [4]. The monitoring could be permanent or periodic to evaluate
mechanical, physical, and chemical parameters over multiple scales (material or structural).
Various monitoring strategies based on strain, vibration, deflection, electrical impedance,
and pulse velocity in a medium have been commonly employed for SHM of transport
infrastructure. Their use for regular condition assessment of transport infrastructure [5–10]
has increased to reduce the total life-cycle cost of the structure [11–14].

Estimation of in situ material properties is key to these infrastructure assessment steps.
These properties provide key data which form the basis for structural computations, includ-
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ing those regarding safety, remaining capacity, and actual maintenance needs. Between
SHM and NDE, NDE is favored for evaluation of existing structures as these techniques
can be quickly deployed and often do not require information about the structure’s prior
history, which can only be available if SHM systems were installed from the time of con-
struction. SHM systems can often act as a complementary source of information to the
NDEs if installed later.

NDE for transport infrastructure involves techniques to examine and qualify the
structural condition of bridges, pavements, and roads without modifying the structure.
Development of reliable non-destructive techniques has been the focus of research in the
last few decades [15,16] and some methods have been standardized by technical com-
mittees through organizations such as International Union of Laboratories and Experts
in Construction Materials, Systems, and Structures (RILEM), The American Concrete In-
stitute (ACI), and American Society for Testing and Materials (ASTM). Methods such as
acoustic emissions [17–19], thermal methods [20,21], ultrasonic [22–27], magnetic meth-
ods [28,29], vibrational analysis [30,31], rebound hammer [32], combined methods such as
SonReb [33,34], and ground penetrating radar (GPR) [35–38] have been popular. These ap-
proaches focus on estimating the current strength levels of structural members, estimating
the moisture content, predicting damage due to corrosion, and detection of cracks [39,40].
Often a single NDE method does not provide reliable estimates of these parameters and
data fusion techniques are employed to converge towards a better estimate [40–44]. In this
paper, GPR is used as a nondestructive evaluation technique for comprehensive assess-
ment of concrete structures. GPR enables the inspectors to rapidly cover large surfaces
without disrupting the traffic, saving on time and expenses required for performing such
evaluations.

GPR-based condition assessment has gained great traction over the last two
decades [7,45] and has become one of the most successful NDE approaches for inves-
tigation of transport infrastructure such as bridges and pavement [6]. In the GPR approach,
low-frequency short electromagnetic signal pulses (≤1 ns) are emitted from the transmis-
sion antenna on the surface and the subsequent reflections are recorded at virtually the
same location on the surface by the receiving antenna. The recorded signal is called an
A-scan (or trace) and is a time-series of the reflected amplitude. Most surveys consist of
a series of adjacent A-scans collected along a transect, forming a B-scan or profile. The
high spatial resolution and sensitivity of the electromagnetic signal to factors such as
electrical conductivity and moisture content make GPR particularly useful for feature de-
tection and visual inspection of concrete structures [46]. They have been used for location
of reinforcements and tendon ducts [46–48], voids [49], determination of concrete cover
thickness [45], delamination, and crack detection [50]. Concrete moisture content [51,52]
and pavement density [53] are other application areas of GPR-based condition assessment
using amplitude of the signal as the quantifying parameter to estimate material properties.

Even though the use of GPR has gained prevalence, GPR attributes are rarely used
for infrastructure assessment. In previous work by the authors, GPR attributes were suc-
cessfully employed for estimating the material properties (compressive strength, porosity,
density) of concrete [54]. Previous works by the authors’ research group focused on feasibil-
ity of identifying material features in concrete deck using GPR attributes and quantitative
estimation of concrete properties in laboratory conditions. The current work extends the
previous studies to estimate relative variations in material properties using GPR attributes
in real-life conditions. Attribute analysis is chosen in this work too as it is computationally
inexpensive and does not require knowledge of the physical structure. As such it can
efficiently and effectively be applied to buildings, bridges, pavements, and highways.
Commonly used attributes in civil engineering applications include transient and time
lapse attributes, imaging analysis such as coherence, and amplitude- and frequency-based
attributes such as energy and frequency spectra [47,55].

The objective of the paper was to use GPR attributes to identify spatial and temporal
variations in concrete properties. This would enable both qualitative and quantitative
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assessment of concrete bridges for both monitoring and inspection needs. To achieve this
aim, GPR scans on a concrete pedestrian bridge are collected. These scans are used to
obtain attributes which provide qualitative differences and indicate the spatial variability
of concrete strength of the bridge deck. Using the machine learning models that predict
physical concrete properties from GPR attributes developed by the authors in a previous
work [54], quantitative assessment of the bridge deck is carried out. These quantitative
assessments involve using GPR attributes to estimate in situ material properties of concrete,
such as density, porosity, and compressive strength and establishing the differences over
both spatial and temporal domain. One of the challenges of using approaches such as
GPR is the lack of calibrated data about these properties to verify the results; in this work,
a variety of other data sources and analyses are used to provide some validation. Com-
pressive strength values estimated by GPR attributes were compared with the strengths
of the reserved core samples to validate the proposed approach. Since the bridge was
instrumented with a fiber-optic SHM system, available temperature measurements are
used to determine the present compressive strength using maturity index and compared
with the compressive strength estimated using GPR attributes for control.

2. Data Description

In this section, the data collection and processing applied for the GPR attribute-based
inspection of concrete bridges are described. For the purposes of establishing the use
of GPR as an approach to identify the spatial and temporal variations in concrete, four
different types of data sets were used. Three of these data sets have been published in
previous works by SHMlab and are being used as is [47,54,56] and the fourth is the GPR
scan collected on a real-life bridge for this study. Interested readers can refer to the cited
works for more details. These three data sets are:

1. Laboratory data: Concrete cylinders of 3in diameter and 6in height as per ASTM
testing standards, and beams (15 × 15 cm × 90 cm) made of various industrial
mixes and cured under different conditions were fabricated and tested . Direct tests
were used to obtain values for density, porosity, and compressive strength and the
corresponding beams were scanned using a 900-MHz GSSI antenna. The direct test
values and calculated attributes from scans were used to develop machine learning
models to predict the material properties on Streicker bridge in Section 4. The details
of data collection can be found in the previous work by the authors [54]; the lab data
and connection with the modeling pipeline (Section 3) are summarized in Figure 1.

2. Streicker bridge: Streicker bridge at Princeton University is the real-life application
structure for this paper. The pedestrian bridge provides strategic connection between
the east and west ends of the campus. It is a post-tensioned prestressed bridge in the
shape of a chromosome. It is 105 m long and consists of a 35 m deck-stiffened arch
(the main span) and four approach legs. The approach legs are continuous curved
concrete girders. The front view of the bridge is shown in Figure 2. The main span
and all legs except the southeast leg were constructed in August 2009. The southeast
leg was constructed in October of that year using the same specified concrete mix
(Class A HPC with design strength of 41 MPa at 28 days).
Streicker bridge was instrumented with long-gage fiber optic sensors at the time
of construction for research and teaching purposes. A schematic of Fiber Bragg
Grating (FBG) sensor used for temperature monitoring is shown in Figure 3. A brief
description of the working is as follows: When a light is sent from the reading unit,
specific wavelengths of the light are reflected back by the Bragg gratings in the fiber.
Depending on the strain in the fiber, the reflected wavelength changes. The fiber optic
sensors installed in Streicker bridge measure both the temperature and strain.
The sensor locations along the main span and southeast leg are shown in Figure 4 by
black boxes. The sensors have been continuously monitoring strain and temperature
with periodic interruptions for maintenance since their installation in 2009. These
sensors are installed at various locations on the bridge which provide the temperature
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data that are required for the maturity index calculations. The temperature readings
have an uncertainty of 0.14 ◦C. These sensors are used for compressive strength
calculations based on the maturity method. Two typical locations are also highlighted
in Figure 4. The GPR attributes collected on Streicker bridge in 2016 and 2020 are used
to identify the spatial and temporal variation in concrete in a structure. There are two
types of data sets used from previous studies for validation of those predicted values:

(a) Temperature measurements: Streicker bridge is instrumented with Fiber Bragg
Grating (FBG) fiber-optic sensors which have been regularly collecting tem-
perature and strain data from the time of construction in 2009. The sensor
locations along the main span and southeast leg are shown in Figure 4 by black
boxes. The sensors have been continuously monitoring strain and temperature
with periodic interruptions for maintenance since their installation in 2009.
These sensors are installed at various locations on the bridge which provide
the temperature data that are used for the maturity index estimates of com-
pressive strength. The temperature readings have an uncertainty of 0.14 ◦C.
The location of the typical sensors in the main span (P8h9) and southeast leg
(P10h11) are highlighted in Figure 4.

(b) Core reserves: Class A HPC concrete with a design strength of 41 MPa (at
28 days) was used for the construction of the bridge. The bridge was con-
structed in two phases; one in August 2009 (main span and northeast leg
included) and the other in October 2009 (southeast leg). Even though the
design strengths were the same for the two construction phases, the measured
compressive strength on the reserved cores indicate a nominal compressive
strength of 51 MPa for the main span (MS) and northeast (NE) leg and 59 MPa
for southeast (SE) leg at 28 days [56]. Figure 5 shows the compressive strengths
of the reserved cores based on the strength tests performed at US Laboratories
Inc (Broomall, PA, USA). Six samples were tested for the concrete poured in
August (MS and NE leg) at 2, 3, 7, and 28 days and four samples were tested
for the October pour (SE leg) at 3, 4, 7, 14, and 28 days. In this work, we try to
identify the spatial variation using GPR attributes.

Figure 1. Overview of the experimental approach and data collected in the laboratory study.
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Figure 2. Front view of the Streicker bridge at Princeton University.

Figure 3. A single fiber-optics sensor present as part of the SHM system in the Streicker bridge
(Adapted from [4]).
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Figure 4. Elevation view of the Streicker bridge with sensor locations and direction of GPR transects.
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Figure 5. (a) Compressive strength for the August pours (NE and main span.) (b) Compressive strength for the October
pour (SE leg).
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2.1. GPR Survey of Streicker Bridge

For identifying the temporal and spatial variations in concrete, the GPR data collection
on Streicker bridge was performed using a 900 MHz antenna (from GSSI) on 16 March
2020 (Note: the same antenna was used for laboratory testing and model development).
Leading up to the day of the scan, the weather conditions were dry with no precipitation
or surface moisture due to accumulated snow. The GPR unit is 15 cm × 23 cm × 18 cm and
was rolled on the surface while being connected to a data logger (Figure 6). Longitudinal
transects were collected along the northeast and southeast legs to assess the differences in
the two construction phases of the concrete structure.

Figure 6. GPR data collection on Streicker bridge by the authors.

These longitudinal scans were collected with an average spacing of 20 cm. The
location of the transects with respect to the internal structure of the cross-section is shown
in Figure 7. Only longitudinal scans were collected as the purpose of this survey was to
differentiate between the legs; from SHM of the structure, no damage to the bridge was
expected. The longitudinal scans were straight but their length varies due to the curved
plan of the bridge. Constant lengths were obtained and used for this study as part of the
data processing.

1.52m 1.52m

Air void

Exterior Edge

5
8

 c
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1
3
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m

Rebar Cage

Post-Tension Tendons

Transects

Interior Edge

Figure 7. Southeast leg section showing location of GPR scans. Transects run longitudinally from
main span down the SE and NE legs (adapted from [47]).

In addition to the 900 MHz data described, a previous survey of the bridge from 2016
was also included for some comparisons. This survey was collected and processed in the
same manner, but a 2.6 GHz antenna was used. With this high resolution antenna, the
survey focused primarily on feature detection, as described in [57].

2.2. Data Processing

The raw data obtained from the GPR scans were processed to calculate the primary
and derived attributes. The raw amplitudes of the GPR data are highly variable with
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respect to the electromagnetic properties of the material and to antenna ground coupling,
surface roughness, and other factors [58]. A standard set of basic filters were applied
while preserving the relative amplitudes of the traces. The initial reflection or first break is
trimmed using the STALTA algorithm, the traces are dewowed, and the scans are truncated
to include only the upper 6 cm of the deck (Figure 8) [59–61]. Truncating the scans
ensures that there are reflections from rebar present in the traces, but the spatially variable
reflections at deeper depths (such as air voids, the bottom surface of the deck, and other
reinforcing) are removed (Figure 8). The length of the scans are also trimmed to the same
length. The trimmed and filtered traces are then converted into continuous complex traces
using the Hilbert transform before attributes are computed.

Figure 8. (a) Raw B-scan along the deck of the bridge collected with 900 MHz antenna and (b) preprocessed B-scan truncated
to remove all internal reflections except the upper rebar layer.

The attributes used in this paper for the assessment of concrete bridges are summa-
rized in Table 1. The attributes are calculated from the instantaneous trace that results
from the Hilbert transform, which has the form A(t) = a(t) + φ(t)i, where A(t) is the
instantaneous amplitude and φ is the phase of the signal. This selection of attributes is
chosen from the best performing attributes in [54], which tested the attribute’s correlation
with the porosity, strength, and density of a range of lab concrete samples. Therefore, the
selected attributes are expected to have correlation with the physical properties of the
concrete, particularly the subtle differences between the two legs of Streicker bridge. Most
of the attributes are related to the cumulative behavior of the traces and capture differences
between the attenuation in different materials.

Table 1. Attribute calculation for GPR scans. The attributes are based on a Hilbert transform. Here,
c = speed of light, d = depth of concrete, ttop = travel time top reflection, tbottom = travel time bottom
reflection, αr = attenuation ratio, αc = attenuation constant, DW = direct wave, RW = reflected wave,
TR = top reflected surface.

Main Attribute Equation Derived Attribute Equation

Instantaneous Amplitude A(t) Total energy ∑ A(t)2

Intensity A(t)2 Raw average amplitude Average(A)
Phase φ(t) Signal-to-Noise (SNR) Pclean

Pavg

Dielectric Constant (ε)
(

c(ttop−tbottom)
2d

)2
αr,DW

ADW
ATR

αr,RW
ATR
ARW

αc,DW
20

dlog(αr,DW )

αc,RW
20

dlog(αr,RW )
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The data sets used for comparison with the GPR data (attributes and predicted prop-
erties) have been previously published and validated, the errors, outliers, and gaps in data
are well understood. The GPR data collection and processing scheme includes a number of
standard and additional steps which reduce random and measurement errors. Standard
GPR data recording includes stacking, which records one compiled trace at a location that
has been created from multiple recordings, thereby removing random errors and improv-
ing resolution. The data are prepared for use by the described preprocessing, including
attribute calculation. The attributes used in this study represent the “average” B-scan from
each leg (averaged across the width of the deck in each leg), thereby reducing the effects of
any measurement errors and lateral variation in the already truncated scans. In addition to
the truncation, this reduces the effect of variations from the internal structure of the bridge
such as voids, tendons, and reinforcement locations that are oriented longitudinally.

3. Modeling

In this section, we describe the machine learning model used for quantitative predic-
tion of compressive strength ( f

′
c), density (ρ), and porosity(θ), and the maturity method

used to estimate the in situ strength using the temperature measurements from the SHM
system collected over the 8 year period from 2009 to 2017.

3.1. Machine Learning Pipeline

The laboratory samples described in Section 2 were used to train the machine learning
models for prediction of compressive strength, density, and porosity using GPR scans
collected from Streicker bridge. The machine learning model development process is
shown in Figure 9.

Direct	Test	
on	Cylinders

Impute	missing
data	to	get	labels

Raw	GPR	scans	of	
beams

Preprocess	GPR
scans

Compute	GPR
attributes	in	
Table	1,

Preprocess	and	clean	
Streicker	Bridge	

GPR	Scans

Match	the	direct	tests
with	GPR	attributes;	

Obtain

Input	the	attributes	in
the	trained	model

Split	data	into	training
and	validation	sets

Predict	in	situ	
properties

Compute	GPR	attributes	
listed	in	Table	1,

`
Train	model	using

Fine	tune	and	obtain
best	model	using	cross-

validation	with

Obtain	the	�ine
tuned	Model

Figure 9. Flowchart depicting the steps involved in estimating the material properties using a machine learning model.
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To describe the machine learning pipeline, let the set of GPR trace attributes and their
corresponding imputed labels be represented byD(X lab, ylab). Here, X lab are the calculated
GPR attributes which act as the “features” for the machine learning models and ylab
represent the imputed labels corresponding to the direct test values of material properties
of the cylinders (see Figure 1). This set was separated into training and validation sets,
Dtrain and Dvalidation, respectively. Using Random Forest [62] as the supervised learning
model, the cross-validation [63] scores are used to determine the best performing features
and fine tune the model. Random Forest was chosen as it had shown the best performance
based on authors previous work [54]. These best performing attributes are then calculated
from the GPR scans collected from the Streicker bridge (Xbridge). These attributes are used
for the final estimation of the material properties using the Random Forest model, ybridge.

The key features for the current machine learning pipeline are as follows (details can
be found in [54]):

1. Data imputation: The total samples tested directly in the laboratory for density,
compressive strength, and porosity were 219, 146, and 73, respectively. Since the
number of samples tested for compressive strength and porosity were small, a data
imputation was performed. Mean substitution was chosen as it is a standard practice
in data science even if it sometimes results in statistically correlated samples [64].

2. Stratified split of train-validation data: For a small sample set such as ours, stratified
splitting of training and validation sets avoids overfitting. The stratified approach
further guarantees that a sample in the validation set would have the same mix of
concrete in the training set while preserving the distribution of properties [63].

3. Feature selection: Since many of the attributes had more than 500 features, feature
selection was adopted to improve the computational efficiency of the machine learning
models. The feature selection was performed using the f1 score. The top “n” features
were chosen heuristically based on the f1 scores.

4. Model tuning approach: All the machine learning models were first trained using
a baseline set of hyper-parameters. These hyper-parameters were then fine-tuned
to improve the predictions using randomized search and grid search [65]. The cross-
validation score was used to determine the best parameters in all these cases.

3.2. Maturity Index Model

The maturity method is a technique that estimates the strength of concrete from either
the equivalent age (at certain temperature) or the temperature–time factor based on the
reserved cores of the concrete mix [66]. The temperature–time factor (or the Nurse–Saul
maturity index) is given by Equation (1)

M =
t

∑
0
(T − T0)∆t (1)

where M is the maturity or temperature–time factor; t is time; T is the average temperature
during the time interval ∆t; and T0 is the datum temperature. Based on experimental
studies conducted by previous researchers to develop the relationship between concrete
maturity and compressive strength, a straight line best fit was found between the loga-
rithmic value of maturity and compressive strength [67,68]. After combining Equation (1)
with the logarithmic best fit line for the strength of the cylinders, a relationship between
compressive strength ( f ′c) and Nurse–Saul maturity (M) can be found as per Equation (2)

f ′c = C1ln(M(t)) + C2 (2)

where C1 and C2 are constants obtained from the cylinder test data. The compressive
strength and maturity index of the cylinder tests (Figure 5) was fit to the logarithmic curve
as shown in Figure 10.
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Figure 10. Compressive strength obtained as a function of maturity index based on the initial concrete core sample tests.

Based on the logarithmic fit for the cylinder data for Streicker bridge, the constants,
C1 and C2, are obtained for the main span/northeast leg (MS/NE) and southeast leg (SE)
and shown in Table 2.

Table 2. Constants of the maturity index and compressive strength logarithmic fit.

Span C1 C2

Main Span 1116.3 −3198.7
South-east Leg 2249.7 −12,951.9

The temperature–time factor is calculated using the temperature data recorded by the
SHM system installed in the bridge. The data used in this paper consist of the time-stamped
temperature measurements from each sensor located in the main span and southeast leg
through 2017.

The maturity and strength functions used in this paper take the value of temperature–
time factor to be zero for time intervals when the average concrete temperature is less than
the datum temperature. As recommended by ASTM C1074-19, a datum temperature of
0 ◦C was used. This ensures that the analytical model does not predict loss of concrete
strength when exposed to sub-zero temperature. The choice of datum temperature is
important to avoid overestimation or underestimation of concrete strengths. Previous
studies have shown that concrete can potentially gain strength at temperatures as low as
−10◦ while most common values for different mixes were above freezing point, roughly
2.2 ◦C [68]. Estimating the actual datum temperature is not possible after construction.
Since over the 8-year period only 10% had sub-zero temperature, the choice of datum is
acceptable for the present work. A slight overestimation of strength is expected which
would not affect the main findings. For the periods of time when the system is not active,
the average temperature for the inactive period was used. The temperature–time factors
for each sensor are used in the corresponding maturity–strength relationship found from
the cylinder data to obtain a strength development curve for each sensor.
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4. Results

In this section, the results of identifying the spatial and temporal variations in concrete
of the bridge are provided. First, the results from GPR scans are provided to differentiate
qualitatively and quantitatively between the northeast and southeast legs of the Streicker
bridge. Then, the maturity method results are presented as an upper limit for the GPR’s
compressive strength prediction.

4.1. GPR Attributes: Qualitative Spatial and Temporal Variation

In this subsection, we highlight the key attributes that identify differences between
the two scanned segments, northeast and southeast, of Streicker bridge. Recall that the
main span and northeast legs were constructed at the same time. First, the spatial variation
between the northeast and southeast legs is demonstrated using GPR attributes collected
by the authors (See Section 2) followed by the temporal variation using the attributes
computed from an earlier GPR scan of the bridge.

4.1.1. Spatial Variation

Figure 11 shows that raw means (raw average amplitude), total energy, attenuation
constant, and attenuation ratio (relative to the direct wave) are attributes which qualitatively
identified the differences in the two legs. Figure 12 shows that attributes such as total
phase, SNR, attenuation constant, and centroid of instantaneous frequency do not visually
capture differences between the two legs.
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Figure 11. Attributes capturing qualitative differences in the two construction phases.

The red and yellow bands around the average value of attributes represent one
standard deviation range. For the first set of attributes in Figure 11, there is little or no
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overlap and hence a new measurement is likely to indicate whether the concrete was from
the southeast leg or the northeast leg with 85% confidence. However, for the attributes
shown in Figure 12, there is considerable overlap between the 1−standard deviation bands
and hence these attributes could not be used to determine which concrete phase the GPR
scan is from.
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Figure 12. Attributes unsuccessful in capturing differences between the construction phases.

For a more quantitative comparison, the range of measured values for the two different
legs are shown in Table 3.

Table 3. Range of values for various measured attributes in the southeast and northeast legs.

Attribute Range SE Leg Range NE Leg

Raw Means [−542.13, 196.38] [−464.25, 60.93]
Attenuation DW constant [−0.73, 6.16] [−0.47, 6.23]

Denergy [5.64× 105, 1.11× 108] [1.8× 105, 9.37× 107]
Attenuation DW ratio [0.58, 101.32] [0.70, 107.22]

Total Phase [0.58× 104, 1.70× 104] [0.48× 104, 1.65× 104]
SNR [−16.797, 12.224] [−16.899, 14.009]

Attenuation constant [−6.51, 15.00] [−6.18, 20.17]
Dielectric constant [3.01, 78.74] [3.10, 93.71]

Two key statistical measures used for determining whether the means of two different
test samples can be considered different are Welch’s t-test and Mann–Whitney U-Test [69].
These tests are used to further characterize the spatial variation in concrete. Welch’s t-test
tests the hypothesis that two populations have the same mean. A low p-value in the test
indicates that the means are different. The test is most commonly employed to differentiate
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samples which have many overlapping values. Mann–Whitney U-test determines whether
the two samples themselves are independent, with low scores indicating stronger indepen-
dence. The results are shown in Table 4. The absolute value of the scores are useful for
relative comparison. Hence, based on the combination of results from the two tests, it can
be inferred that the mean values of GPR scan attributes for the two legs are different and
that they are obtained from different populations.

Table 4. Statistical comparison (with p-values) of the attributes for the northeast and southeast legs.

Attribute Welch’s t-Score p-Value Mann–Whitney U-Score p-Value

Raw Means 154.52 0.0 12.41× 106 0.0
Attenuation DW constant 86.57 0.0 1.03× 106 0.0
Denergy 55.60 0.0 1.01× 107 0.0
Attenuation DW ratio −67.88 0.0 1.20× 106 0.0
Total Phase 21.19 1.11× 10−96 7.88× 106 1.14× 10−95

SNR 21.06 1.48× 10−95 4.52× 106 1.12× 10−80

Attenuation constant 7.73 1.26× 10−14 7.06× 106 1.96× 10−28

Dielectric constant −22.41 1.62× 10−107 4.54× 106 3.6× 10−79

Attenuation ratio −11.42 6.38× 10−30 5.50× 106 7.58× 10−14

The low p-value of both the Welch’s t-score and Mann–Whitney U-score as shown
in Table 4 indicates that (i) the mean values of both the legs are different in a statistically
significant way and (ii) the samples themselves are taken from different populations. Those
are independent and interesting findings in their own regard which indicate the value in
qualitative attribute based comparisons of GPR attributes in concrete inspections. These
statistical measures confirm the capability of GPR attributes to qualitatively distinguish
between different concrete mixes used in the same structure.

4.1.2. Temporal Variation

To identify the temporal variation in concrete, the above attributes from the 900 MHz
antenna (2020) are compared with GPR data collected in Nov, 2016 with a 2.6 GHz antenna
for a previous study more focused on high resolution feature mapping [47]. A special
deicing agent is used on the bridge to avoid corroding the exposed rebar on the surface, so
seasonal accumulation of chlorides over the winter should be negligible in the November
2016 to March 2020 comparison. The temperature, humidity, and very low precipitation [70]
for the week preceding GPR measurements in both surveys were similar, so the effect of
moisture related seasonal changes in the dielectric properties and other attributes are
minimal. The results are presented in Table 5. Since two different antennas were used in
2016 and 2020 (2.6 GHz vs. 900 MHz), attributes that consider amplitude values directly,
such as raw means and total energy were normalized for 2016 to match 2020 values and
minimize the effect of using two different antennas. Recall that the 900 MHz antenna used
primarily in this work matches the laboratory data and predictive modeling; the 2.6 GHz
antenna was not available and not used in 2020.

Table 5. Comparison of attribute values for southeast and northeast legs between 2016 and 2020 measurements. Note,
∗ represents normalized value to account for different antennas.

Attribute
Southeast Leg Northeast Leg Ratio SE/NE

2016 2020 2016 2020 2016 2020

Raw Means −160.4 ∗ −156.65 −169.5 ∗ −207.50 0.95 0.75
Attenuation constant (DW) −0.60 1.17 −1.29 1.63 0.46 0.72
Total energy 3.49× 107 ∗ 1.92× 107 3.50× 107 ∗ 1.48× 107 1.0 1.30
Attenuation ratio (DW) 3.41 2.70 1.84 4.48 1.85 0.60
Total Phase 0.419× 104 1.11× 104 0.450× 104 1.09× 104 0.93 1.01
Attenuation constant −1.07 0.32 −0.36 0.25 2.97 1.28
Attenuation ratio 21.72 3.19 25.64 5.39 0.85 0.59
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The qualitative comparison of the attributes over a gap of 4 years using two antennas
provides some interesting insights. The ratio of attribute values for the two legs increased
for attenuation constant (with respect to direct wave), total energy, and total phase, while
the ratio decreased for raw means, attenuation ratio (with respect to both the direct wave
and the reflected wave), and attenuation constant (with respect to reflected wave). These
could be explained by a higher loss in concrete cover in the southeast leg compared to the
northeast leg due to higher pedestrian and golf cart traffic. As the concrete cover decreases,
the reflected signals have thinner concrete medium to travel before they penetrate into the
voids resulting in proportionally lower travel time in the concrete than the second medium
(grout, air, etc.). As a result of the change in the medium, the computed attributes could
have higher negative values. This is reflected in the higher negative raw means value and
the decrease in the ratio over the 4 years period. However, an increase in negative values
of the attribute would still result in higher total energy as the the total energy only takes
the square of the values into account. For a reduced cover, the values of αDW decrease
while the αTR remains constant (see Table 1) which would explain the change over time
in attributes such as attenuation constant and ratio. The total phase comparison does
not change significantly over time, as it is largely determined by the antenna frequency
characteristics and therefore should not change significantly between legs. This increased
loss of concrete cover can be seen in Figure 13. The aggregates are visible on the southeast
leg while it is not the case with the northeast leg.

Figure 13. Figure showing increased loss of cover on the southeast leg compared to northeast leg.

4.2. Quantitative Differences between Legs

In this section, quantitative analyses of the GPR attributes of the northeast and south-
east legs are presented to identify the spatial differences. The quantitative analysis is based
on the machine learning framework and maturity method described in Section 3.

4.2.1. In Situ Property Estimation Using GPR Attributes

Different material properties required different attributes for the best prediction. The
most successful attributes were instantaneous amplitude for porosity and compressive
strength, while it was intensity for the density prediction. Using these GPR attributes
and fine tuned Random Forest models from [54], the compressive strength, density, and
porosity were predicted using all the GPR transects collected. These predicted values and
the average for each leg is shown in Figure 14 (Note: outlier datum points were removed).

Figure 14 shows the predicted values for each of these properties are fairly scattered.
This is attributed to the macro-scale variation along the length of the scans from the
irregular presence of plastic tubes (voids in Figure 7) and reinforcing along each transect.
Hence, in the discussion of the results, we only focus on the average values of these
material properties over all the transects. Though not an accurate representation, it is in
line with the practice of using a single number to quantify material properties for civil
engineering structures.
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Figure 14. Spatial differences in material properties between the southeast and northeast legs.

The compressive strength predicted by the machine learning model is less than the
measured compressive strength from the reserve cores. The compressive strength is not
actually expected to have reduced over time (it is expected to have increased) and the lower
predicted values are a result of using small training sets of lab data to create the models.
The predicted values still identify a 12% difference between the two legs, while the initial
difference between the reserved cores was 13.6%. This shows the potential of using GPR
attributes to identify relative difference over space.

The density predicted by the machine learning model is close to those expected in real-
life settings for this type of concrete. The predicted density is ≈2300 kg/m3 for both legs
while the concrete mix used for the construction of the bridge had a density of 2400 kg/m3.
It is a 4% lower prediction than the expected value but it is acceptable. This variation
could be attributed to embedded air voids in the structure lowering the effective density
compared to the training set based on laboratory fabricated samples with only one piece of
reinforcing steel embedded.

Finally, the predicted porosity values for both the legs are around 6%. This porosity
includes the connected pores and not include dead-end pores and unconnected air voids.
Saturated pores would not be included in this porosity. Although there is no direct way to
verify the porosity values, it is possible to compare them with those found in literature. The
in situ porosity values reported for concrete structures is between 5 and 10%. The reported
value falls comfortably in this range. The relative values do not follow the expected trend
of higher porosity-lower strength, though this could be due to other factors in the mix
design, such as the high rate of strength development required in the SE leg.

4.2.2. Compressive Strength Calculation Using Maturity Method

Based on the Equation (2) and the constants obtained using the reserved concrete cores
(Table 2), the mean 8-year compressive strength for all sensors in main span is 57.12 MPa
and 74.8 MPa in the southeast leg (see Figure 15). The higher compressive strength of
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the southeast leg compared to the main-span is attributed to the higher initial strength of
the concrete mix and rapid early strength gain of that particular concrete mix. Hence, the
method predicts a gain of 6.2 MPa for main span and 15.1 MPa for the southeast leg for
the same period of 8-years. These estimates should be considered as upper bounds on the
compressive strengths as the maturity method overestimates the strength at later stages.
This results from the logarithmic function used to predict the strength gain for the entire
life of the concrete. The issue is aggravated when the method is applied to concrete mixes
designed for early strength gain [68]. For strength development at specific sensor locations,
readers can refer to [71].
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Figure 15. Strength calculation at different sensor locations using maturity method.

5. Conclusions and Discussion

In this paper, GPR attributes were used to estimate temporal and spatial variation
of in situ material properties of mature concrete. Variation in in situ material properties
was evaluated on a concrete pedestrian bridge at Princeton University campus using GPR
attributes. The novelty of the present work is three-fold: (1) GPR attributes are used
to qualitatively differentiate between different mixes of concrete in place, (2) machine
learning algorithms are developed for quantitative differentiation, and (3) maturity index
is demonstrated as a method for establishing bounds on the predictions of mature concrete
strength. The conclusions are summarized below:
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1. Instantaneous amplitude and summary attributes can statistically distinguish between
the concrete in Streicker bridge on the basis of relative material properties.

2. Spatial variation in the physical properties of the two phases of concrete is identified
with amplitude-based attributes such as raw means, total energy, and two different
measures of attenuation.

3. Temporal variation in the physical properties over a four-year period is difficult
to determine due to the use of different antennas and seasonal differences, but the
comparison does identify how sensitive attributes are to the antenna relative to the
different concrete.

4. The GPR attributes predict a 5.01 MPa difference in the mean compressive strength,
a 13.6 kg/m3 difference in density, and a 0.23% difference in porosity between the
southeast and northeast legs of the bridge.

5. The quantitative strength predictions from the GPR attributes are reasonable and fall
between the lower bound of the 28-day reserved concrete core strength and the upper
bound from the maturity method and temperature history of the concrete.

The quantitative estimates for density and porosity cannot be verified through alterna-
tive measurements but the values are within reasonable ranges for the concrete mix used
in Streicker bridge. While the current work is limited due to the availability of samples
to train models on, the availability of temperature and GPR data from the bridge enable
a range of techniques to be applied. For GPR attributes to become an accepted industry
practice for establishing spatial variability in properties like rebound hammer technique,
further research into the development of calibration charts for attribute values and material
properties are required. In future works, these studies would be carried out to identify
point, local, global relationships between material properties and GPR and more fully
describe the effects of data collection settings like antenna frequency, seasonal variability,
and variability in internal reflectors. Some immediate directions towards these would
be a one-on-one comparison between traces with consistent profiles to understand and
calibrate the GPR attributes with concrete properties. Long term projects using total phase
could present a solution to evaluate material property evolution as these attributes are
only dependent on frequency of the internal reflected waves and not affected by concrete
cover. Finally, other NDT techniques like rebound hammer or ultrasonic testing could be
conducted to provide additional data about spatial and material variability. The present
work paves the way for future research in expanding the use of GPR attributes for as-
sessments and laying the groundwork for developing codes of practice for using GPR for
maintenance of transport infrastructure.
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