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Abstract: In this study, the Fengyun-3D (FY-3D) clear-sky microwave temperature sounder-2 (MWTS-2)
radiances were directly assimilated in the regional mesoscale Weather Research and Forecasting
(WRF) model using the Gridpoint Statistical Interpolation (GSI) data assimilation system. The
assimilation experiments were conducted to compare the track errors of typhoon Lekima from uses of
the Advanced Microwave Sounding Unit-A (AMSU-A) radiances (EXP_AD) with those from FY-3D
MWTS-2 upper-air sounding data at channels 5–7 (EXP_AMD). The clear-sky mean bias-corrected
observation-minus-background (O-B) values of FY-3D MWTS-2 channels 5, 6, and 7 are 0.27, 0.10
and 0.57 K, respectively, which are smaller than those without bias corrections. Compared with
the control experiment, which was the forecast of the WRF model without use of satellite data, the
assimilation of satellite radiances can improve the forecast performance and reduce the mean track
error by 8.7% (~18.4 km) and 30% (~58.6 km) beyond 36 h through the EXP_AD and EXP_AMD,
respectively. The direction of simulated steering flow changed from southwest in the EXP_AD to
southeast in the EXP_AMD, which can be pivotal to forecasting the landfall of typhoon Lekima (2019)
three days in advance. Assimilation of MWTS-2 upper-troposphere channels 5–7 has great potential
to improve the track forecasts for typhoon Lekima.

Keywords: MWTS-2; data assimilation; typhoon forecast

1. Introduction

The observations from satellite microwave temperature sounders play a key role in nu-
merical weather prediction (NWP), typhoon monitoring, and climate change research [1,2].
Significant progress has been made in the NWP centers around the world regarding the di-
rect assimilation of the satellite microwave and infrared radiances [3], and in the application
of satellite observations for typhoon monitoring and forecasting. The AMSU-A clear-sky
radiances are assimilated by a limited-area ensemble Kalman filter (EnKF) to improve
forecast skills for tropical cyclone (TC) prediction [4]. The brightness temperatures from
the Advanced Technology Microwave Sounder (ATMS) onboard the Suomi-NPP satellite
were directly assimilated into the Hurricane Weather Research and Forecasting (HWRF)
model, which improved the track and intensity forecasts of Hurricane Sandy (2012) [5].
Results from the assimilation of multiple satellite data also indicated that satellite radiances
can improve the typhoon Chan-Hom (2015) forecast skills [6]. In conclusion, the incorpora-
tion of satellite data, especially microwave observations, has greatly improved the NWP
forecast skills of the worldwide NWP centers [7–9].

Fengyun-3D (FY-3D), an operational satellite from the China Meteorological Admin-
istration (CMA), was launched in November 2017. There are 13 oxygen channels in the
microwave temperature sounder-2 (MWTS-2) instrument onboard the FY-3D, which ob-
serve the atmospheric temperature from the surface to the upper stratosphere. However,
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the FY-3D MWTS-2 lacks the two window channels at 23.8 and 31.4 GHz (see Table 1),
which are critical for retrieving the cloud liquid water path (CLW) [10] and for cloud
detection in the Gridpoint Statistical Interpolation (GSI) data assimilation system [11]. In
previous studies, the cloud detection methods for the MWTS-2 were developed mainly by
setting the cloud products from other instruments [12,13]. Recently, a convenient cloud
detection method was proposed by Yang and Weng (2019) [14] that uses the brightness
temperatures of 23.8 and 31.4 GHz channels reconstructed from a machine learning method.
The data from the FY-3C/D MWTS-2 and the microwave humidity sounder-2 (MWHS-2)
were recently evaluated and assimilated into the Met Office operational global model. The
results indicate that assimilating MWTS-2 and MWHS-2 can reduce the errors of the global
forecasts [15]. Besides, FY-3D MWTS-2 channels have similar global O-B biases with those
from NOAA-20 ATMS at the same frequencies, which suggests that MWTS-2 has a similar
performance to ATMS [16]. Therefore, the FY-3D MWTS-2 can play a significant role in
satellite data assimilation of the global/regional NWP model, tropical cyclone warm core
retrievals [17], and detection of atmospheric gravity waves [18]. In order to further investi-
gate the potential impact of assimilating FY-3D data into the regional NWP model, in this
study observations from the MWTS-2 upper-troposphere channels were firstly assimilated
into a regional model to quantify the impacts on typhoon forecast.

Table 1. Channel number, frequency, noise equivalent differential temperature, bandwidth, and
weighting function peak of the AMSU-A and FY-3D MWTS-2.

Channel
No.

Frequency
(GHz)

NEDT
(K)

Bandwidth
(MHz)

WFP
(hPa)

A/M AMSU-A MWTS-2 AMSU-A MWTS-2 AMSU-A MWTS-2

1/- 23.8 - 0.30 - 270 - 1085
2/- 31.4 - 0.30 - 180 - 1085
3/1 50.30 50.30 0.40 1.20 180 180 1085
-/2 - 51.76 - 0.75 - 400 950
4/3 52.80 52.80 0.25 0.75 400 400 850
5/4 53.596 0.25 0.75 170 400 700
6/5 54.400 0.25 0.75 400 400 400
7/6 54.940 0.25 0.75 400 400 250
8/7 55.500 0.25 0.75 310 330 200
9/8 57.290 (f0) 0.40 1.20 310 330 100

10/9 f0 ±0.217 0.40 1.20 76 78 50
11/10 f0 ±0.322 ± 0.048 0.40 1.20 34 36 25
12/11 f0 ±0.322 ± 0.022 0.60 1.70 15 16 10
13/12 f0 ±0.322 ± 0.010 0.80 2.40 8 8 5
14/13 f0 ±0.322 ± 0.005 1.20 3.60 3 3 2
15/- 89 - 0.05 - 6000 - 1085

The remainder of this paper is organized as follows. Typhoon Lekima (2019) and
model configurations are introduced in Section 2. The quality controls and data assimilation
results are presented in Section 3. Finally, conclusions and discussion are given in Section 4.

2. Case and Model Configurations
2.1. Brief Description of Typhoon Lekima

Typhoon Lekima formed as a tropical depression (TD) at 0000 UTC on 2 August 2019
over the ocean to the east of the Philippines, and further strengthened into a typhoon (TY)
around 1800 UTC on 6 August 2019. The best track of Lekima from the Regional Specialized
Meteorological Center (RSMC), Tokyo, is shown in Figure 1. Lekima landed on the coast
of Wenling City, Zhejiang Province, around 1800 UTC on 9 August 2019, and brought
sufficient water vapor and abundant rainfall with an 85 kt (1 kt = 0.51 m/s) maximum
sustained wind. Lekima caused severe province-wide rainstorms and disasters in Zhejiang,
Jiangsu, and Shandong Provinces from 0000 UTC on 5 August to 1200 UTC on 17 August
2019 [19]. Therefore, it was essential to accurately forecast the landfall of Lekima two or
three days in advance.
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Figure 1. Model domain configuration and the best track of typhoon Lekima during the period from
0000 UTC on 2 August 2019, to 1800 UTC on 14 August 2019. Lekima made first landfall at 1800 UTC
on 9 August 2019 in the Zhejiang Province. TD, TS, STS, TY, and L stand for tropical depression,
tropical storm, severe tropical storm, typhoon, and extra-tropical cyclone, respectively. The red
points stand for the FY-3D MWTS-2 data points after data thinning in the GSI with (a) a 1.5 h data
assimilation time window and (b) a 3 h data assimilation time window at 0600 UTC on 6 August 2019.

2.2. Model and Experimental Setup

In this study, WRF version 3.8 [20–22] and GSI version 3.7 were used for regional
forecast and data assimilation, respectively. For the data assimilation experiments, the
three-dimensional variational (3D-Var) data assimilation (DA) method was adopted [23,24].
The forecast domain was centered at (25◦ N, 135◦ E) with a horizontal resolution of 9 km.
It is well known that WRF has a cumulus parameterization grey-zone between 1 and
10 km, which can lead to errors in small-scale convection systems [25,26], so the cumulus
parameterization scheme was not used in this study. There were 51 Eta levels in the vertical
direction for simulations from Eta = 1 to Eta = 0, and the WRF model maximum was set
to 10 hPa. The WRF model was initialized by the National Centers for Environmental
Prediction (NCEP) Global Forecast System (GFS) analysis and forecasts with the spatial
resolution of 0.5◦ × 0.5◦ [27]. The Duhia shortwave scheme [28], the rapid radiative
transfer model (RRTM) scheme for longwave radiation [29], the Thompson microphysical
scheme [30], the Noah land-surface model [31], and a three-dimensional (3D) scale-adaptive
turbulent kinetic energy-based boundary layer scheme [32] were adopted in the WRF
model (see Table 2). The advanced radiative transfer modeling system (ARMS) was
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coupled as an observation operator in the GSI to simulate the FY-3D MWTS-2 brightness
temperatures [33]. The brightness temperatures of MWTS-2 channels 1–13 and the machine-
learned 23.8 and 31.4 GHz were stored in the binary universal form for the representation
of meteorological data as one data stream in the GSI system.

Table 2. Model set up with main physical parameterization schemes in the simulation.

Model Set Up Values

Horizontal resolution 9 km
Vertical levels 51 eta levels up to 10 hPa
Domain size 760 × 600

Physical option Adopted scheme

Microphysics Thompson
Cumulus parameterization -

Shortwave radiation Dudhia
Longwave radiation RRTM

Land surface Unified Noah Land Surface Model
Planetary boundary layer Scale-adaptive 3D-TKE

Three experiments were conducted twice daily at 0600 and 1800 UTC, respectively,
during the period from 5 August 2019 to 8 August 2019. Firstly, a model-free run without
data assimilation (to be denoted as CTRL) was conducted. Then, two data assimilation
experiments, EXP_AD and EXP_AMD, were carried out. The EXP_AD assimilated the
conventional data and radiance data from NOAA-15, -18, -19, and the Meteorological Op-
erations Platform A/B (MetOp-A/B) Advanced Microwave Sounding Unit-A (AMSU-A)
channels 1–11 and 15 [34]. AMSU-A channels 12–14 were set by default not to be as-
similated in the GSI because their weighting function peaks are above the WRF model
maximum (10 hPa). The EXP_AMD is the same as EXP_AD except that it assimilated
extra data from the FY-3D MWTS-2 upper-troposphere channels 5–7. In data assimilation
experiments, a 3 h assimilation window was applied, instead of the 1.5 h window, because
more MWTS-2 observations over the Northwest Pacific (Figure 1b) can be assimilated to
improve the forecast skills for Lekima.

3. Results
3.1. Quality Control

Latitudinal and scan-angle biases from instruments, calibrations, and models are some-
times larger than the atmospheric signal [35–37], which will cause a significant decrease
in the quality of the analysis and forecast fields [38]. Therefore, a combined variational
bias correction (VarBC) scheme was used to quantify and remove the latitudinal biases and
scan-angle biases for the satellite radiances in the GSI. The quality control procedure of data
thinning was also applied to the MWTS-2 data to reduce the correlated observation errors.
A 120 km thinning box was selected for FY-3D MWTS-2 data thinning criteria, which is the
same as for the Suomi-NPP ATMS [39]. A cloud detection method based on the retrieved
CLW was carried out to remove the cloudy data points from the cloud-affected channels,
MWTS-2 channel 4 (53.59 GHz), and channel 5 (54.4 GHz). Figure 2 shows the differences
between the observations and the simulations (O–B) of the MWTS-2 channels 5, 6, and 7 at
0600 UTC on 7 August 2019 before and after bias corrections. Negative scan-angle biases
of channel 5 were removed after the bias correction, and the cloudy data points around
the typhoon Lekima were also rejected. The clear-sky mean O-B biases of FY-3D MWTS-2
channels 5–7 decreased from −1.8, −1.6 and −1.4 K to 0.27, 0.10 and 0.57 K, respectively,
after bias corrections.
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Figure 2. (a–f) O–B for FY-3D MWTS-2 channels 5, 6, and 7 before (left panel) and after (right panel)
bias corrections at 0600 UTC on 7 August 2019.

3.2. Impact on Initial Conditions

Figure 3 shows the vertical root-mean-square errors (RMSEs) for the increments of
temperature, water vapor mixing ratio, zonal wind (U), and meridional wind (V) at the
initial time in the EXP_AD and EXP_AMD. The vertical RMSE value refers to the sensitivity
of physical variables at different model levels after assimilating satellite radiance. The larger
RMSE value implies the larger data impact on the model’s initial condition. The RMSE
values were slightly increased by EXP_AMD after adding FY-3D MWTS-2 channels 5–7
in data assimilation based on the EXP_AD. More changes were observed in the common
physical variables by EXP_AMD, which resulted in slightly larger RMSE values. The
RMSE values of increments for the water vapor mixing ratio in the EXP_AMD did not
change much, compared with those in the EXP_AD, because there were only three MWTS-2
temperature sounding channels added to the EXP_AMD. Therefore, there was no significant
improvement in forecast skills for typhoon intensity (not shown). However, the change
of temperature led to the shift in the mass field, which resulted in the evolution of wind
fields, especially zonal wind, from the 25th (~470 hPa) to the 34th (~210 hPa) model level.
The shift in wind fields can directly affect the large-scale environmental steering flow of a
typhoon, which will significantly influence the accuracy of the typhoon track forecasts.
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Figure 3. Domain-averaged RMSEs of vertical profiles of the (a) temperature, (b) water vapor mixing ratio, (c) U and (d) V
increments of the EXP_AD (green) and EXP_AMD (red) at the initial time at 0600 UTC on 7 August 2019.

3.3. Track Forecasts

The large-scale environmental steering flow and the beta drift are the most critical
factors for the motion of a tropical cyclone. To understand how the MWTS-2 upper-
troposphere channels 5–7 affect the track forecast, the steering flows of EXP_AD and
EXP_AMD were examined in this study. Firstly, the mean wind flow in deep layers is
calculated by using the following formula [40,41]:

umean = 75u300+100u400+150u500+175u600+175u700+150u850
825

vmean = 75v300+100v400+150v500+175v600+175v700+150v850
825

(1)

Then, the steering flow is defined as the average of the mean wind flows within
500 km of the typhoon center [41].

Figure 4a shows the three-day best track along with the forecast tracks of the CTRL,
EXP_AD, and EXP_AMD from 0600 UTC on 7 August 2019. Only the EXP_AMD could
forecast the landfall of typhoon Lekima, indicating its good performance in simulating the
steering flow. Figure 4b,c shows the comparison of mean wind flows, wind speed (shaded)
and calculated steering flows from the 48 h forecasts in the EXP_AD and EXP_AMD. The di-
rection of the simulated steering flow changed from southwest in the EXP_AD to southeast
in the EXP_AMD, which contributed to the northwest movement of typhoon Lekima.
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Figure 4. (a) The best track (white) and the track forecasts from CTRL (blue), EXP_AD (green), and
EXP_AMD (red) from 0600 UTC on 7 August 2019 to 0600 UTC on 10 August 2019. The background
image shows the Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) True Color
Imagery on 0600 UTC 7 August 2019. The mean wind flow, wind speed (shaded), and calculated
steering flow (solid circle with black arrow) by the 48 h forecasts of the (b) EXP_AD and (c) EXP_AMD
on 0600 UTC 9 August 2019.
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Figure 5 shows the comparison of track errors of CTRL, EXP_AD, and EXP_AMD at
eight different initial times. The track errors (D) are calculated by the distances between
the model simulations (ϕ2, λ2) and best tracks (ϕ1, λ1) as follows:

D = R · cos−1(sin ϕ1 sin ϕ2 + cos ϕ1 cos ϕ2 cos(λ2 − λ1)) (2)

where R represents the radius of the earth, and λ and ϕ are the longitude and latitude,
respectively. In general, the EXP_AMD performed the best in the track forecast with
the leading time of 36 h to 72 h, followed by the EXP_AD, which indicated the good
performance when the AMSU-A and MWTS-2 data were both assimilated into the model.
The mean track errors and percentages of improvement, i.e., (EXP_AD–CTRL)/CTRL and
(EXP_AMD–CTRL)/CTRL, are shown in Figure 6. There was no significant improvement
from the initial time to the 30 h forecasts by the EXP_AD and EXP_AMD compared with
that by the CTRL. However, the mean track errors, calculated by averaging track errors
of eight different initial times from Figure 5 with the forecast hours of 42 h to 72 h by
the EXP_AD, decreased by 8.7% (~18.4 km) approximately, while the mean track errors
of the forecasts, with the leading time of 36 h to 72 h by the EXP_AMD, reduced by 30%
(~58.6 km).
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4. Conclusions and Discussion

In this study, the results show that the combined assimilation of the AMSU-A and
MWTS-2 upper-troposphere channels 5–7 has great potential to improve the track forecast
for typhoon Lekima. The main conclusions are as follows.

(i) Compared with the CTRL and EXP_AD, the EXP_AMD can significantly reduce
the mean track errors by improving the zonal wind and meridional wind in the middle and
upper layer for the analysis and forecasts. Assimilating FY-3D MWTS-2 upper-troposphere
channels 5–7 shows added value for typhoon Lekima track forecasts.

(ii) The steering flow [42–45] plays an important role in the northwest movement of
typhoon Lekima, which is conductive to forecasting typhoon Lekima’s landfall three days
in advance.

(iii) The VarBC scheme is effective to remove the latitudinal biases and scan-angle
biases for the satellite radiances in the GSI. The clear-sky mean bias-corrected O-B values
of FY-3D MWTS-2 channels 5, 6, and 7 are smaller than those without bias correction.

In this study, only the data from the MWTS-2 channels 5–7 were assimilated because
there were considerable noise equivalent differential temperatures (see Table 1) in channels
8–13 (greater than 1.2 K). Moreover, the retrieved CLW can identify most cloudy data points
(CLW > 0.05 mm), but some data points partially affected by the clouds were located near
the edges of the cloud, which are hard to remove. Therefore, the data from the MWTS-2
channels 1–4 were not easily assimilated. In the future, we will assimilate the MWTS-2
channels 1–4 to improve the low tropospheric structures of the storm by removing the
cloud-edge data points and optically thin clouds, based on the cloud detection method
proposed by Niu and Zou (2020) [13].

Because only clear sky radiances from satellite temperature sounder channels were
assimilated, there was no significant improvement in storm intensity forecasts in this
study. In order to improve intensity forecasts, more effort should be made on assimilating
observations within or surrounding the storm center, such as all-sky assimilation [46] and
storm vortex initialization (VI) [47]. In the future, the data from the 183 GHz humidity
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channels of the microwave humidity sounder onboard the FY-3D will be assimilated
into the GSI system to improve the performance in simulating the tropical cyclone three-
dimensional water vapor structures. Furthermore, other advanced assimilation methods,
such as the ensemble Kalman filter or hybrid data assimilation methods, will also be used
to further improve the tropical cyclone forecast skills.
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